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a b s t r a c t

Human mesenchymal stem cells (hMSC) have immunomodulative properties and, associated with cal-
cium phosphate (CaP) ceramics, induce bone tissue repair. However, the mechanisms of osteoinduction
by hMSC with CaP are not clearly established, in particular the role of osteoclasts and macrophages.
Biphasic calcium phosphate (BCP) particles were implanted with or without hMSC in the paratibial
muscles of nude mice. hMSC increased osteoblastic gene expression at 1 week, the presence of macro-
phages at 2 and 4 weeks, osteoclastogenesis at 4 and 8 weeks, and osteogenesis at 4 and 8 weeks. hMSC
disappeared from the implantation site after 2 weeks, indicating that hMSC were inducers rather than
effectors of bone formation. Induced blockage of osteoclastogenesis by anti-Rankl treatment significantly
impaired bone formation, revealing the pivotal role of osteoclasts in bone formation. In summary, hMSC
positively influence the body foreign reaction by attracting circulating haematopoietic stem cells and
inducing their differentiation into macrophages M1 and osteoclasts, thus favouring bone formation.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Autologous bone grafts are considered the gold standard in bone
regeneration because of their osteogenicity, osteoinductivity,
osteoconduction and osteointegration characteristics [1]. However,
the bone harvesting procedure requires a second surgical site, at
which complications have been reported, and the quantity of bone
available for grafting is limited.

Synthetic bone substitutes, particularly calcium phosphate
(CaP) ceramics, have been proven safe and biocompatible and are
widely used to fill bone defects in clinical indications such as
dental, maxillofacial and orthopaedic augmentation [2,3]. Despite
having a similar chemical composition to bone mineral [1] and
possessing osteoconductive properties, CaP ceramics lack the
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osteogenicity needed to support bone healing in critical size defects
[4] thus limiting their clinical use to small bone defects where
osteoconduction is sufficient. The use of bone marrow derived
mesenchymal stem cells (MSC) in unison with synthetic biomate-
rial scaffolds may overcome the challenges of autologous bone
grafting for the regeneration of large defects. Human MSC (hMSC)
are easily isolated, expanded in culture and have the ability to
differentiate into multiple lineages such as osteoblasts, chon-
drocytes and adipocytes [5]. In vitro, hMSC cultured on CaP differ-
entiated into osteoblasts even without osteogenic supplements [6]
and in vivo bone formation is achieved by the use of MSC with
ceramic scaffolds in ectopic sites [7] and critical sized defects [8]. In
addition to their regenerative properties, MSC are also known to
have unique immunoregulatory properties [8,9]. It has been
demonstrated that transplanted hMSC promote wound healing by
recruitment of host MSC to the wound site [10] and Song and col-
leagues elegantly showed the homing of bone marrow MSC to
ectopic sites for bone formation by using a sex-mismatched dog
model [11].
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An inflammatory reaction is expected following implantation of
a biomaterial such as CaP due to the host response to a foreign
body. During the innate inflammatory reaction, monocytes which
circulate in the blood become tissue macrophages [12]. There is
evidence that MSC can regulate the macrophage M1/M2 balance to
the M2, IL-10 producing anti-inflammatory phenotype [13], by
secreting some M2 inducers such as interleukine-4 (IL-4), IL-13
[13], IL-6 [14], and prostaglandin E2 [15]. Bone is essential for a
functioning immune system since immune cells originate in the
bone marrow; however the significance of immune cells to bone
tissue formation is less understood. Nonetheless, disordered bone
formation occurs in autoimmune diseases and recently it was
shown that ablation of macrophages inhibits intramembranous
bone healing [16]. The contribution of macrophages to tissue
engineered bone formation is unclear however.

While osteoclast activity is generally associated with bone
resorption, it has been demonstrated in vitro that osteoclasts
secrete mediators which induce the migration and osteogenic dif-
ferentiation of MSC [17]. In addition, the Wnt/BMP signalling
pathway and sphingosine-1-phosphate cytokines, secreted by os-
teoclasts, seem to be implicated in osteoblast precursor recruit-
ment [18]. Furthermore, osteoclast ablation was found to inhibit
ectopic bone formation by b-TCP [19]. However, the influence of
transplanted MSC on osteoclast activity during in vivo bone for-
mation is unknown.

In this study, the hypothesis that transplanted hMSC, associated
with BCP granules, can mobilize circulating monocytes thereby
favouring bone formation is tested. Specifically, we investigated the
interactions of transplanted hMSC, macrophages and osteoclasts in
ectopic ossification in nude mice. To further elucidate the contri-
bution of osteoclasts to bone formation, we used an anti-mouse
RANKL antibody depleting osteoclast in mice [20].

2. Materials and methods

2.1. Biomaterials

Micro-porous biphasic calcium phosphate (BCP) granules of 0.5e1 mm in size
and composed of HA/b-TCP in a ratio of 20/80 inweight were used as received by the
supplier (MBCPþ®, Biomatlante, Vigneux de Bretagne, France). Briefly, BCP granules
were prepared by mixing calcium deficient apatite with organic pore makers, fol-
lowed by compaction and sintering at 1050 �C. The overall porosity (% vol) was
75 ± 5%, with a pore size distribution of 70% (0e10 mm), 20% (10e100 mm) and 10%
(100e300 mm). Aliquots of 40 mg of BCP granules were prepared in Eppendorf
centrifuge tubes sterilized by autoclaving at 121 �C for 20 min.

2.2. hMSC isolation and culture

The human bonemarrowmesenchymal stem cells (hMSC) were kindly provided
by Prof. Markus Rojewski, Institute for Clinical TransfusionMedicine, Ulm, Germany.
After receiving informed consent from adult donors, a bone marrow aspiration was
performed under local anaesthesia by haematologists. The cells were seeded at low
density on treated culture polystyrene flasks (Corning) and cultured in a-modified
Eagle's medium (aMEM, LONZA), supplemented with 10% foetal bovine serum (FBS,
Lonza), 100 UI/ml penicillin, 100 mg/ml streptomycin. hMSC were isolated by plastic
adherence, amplified in culture until passage 4 in a humidified atmosphere at 37 �C
and 5% CO2. hMSC were characterized by flow cytometry as being positive for CD73,
CD90, CD105 and negative for CD45. Multipotency was demonstrated by culturing
cells in adipogenic, chondrocytic and osteogenic conditions, as previously described
[21]. For the preparation of cell-loaded implants, 1.4�106 viable hMSC suspended in
70 mL PBS were added to 40 mg sterile BCP particles. The average time between cell
seeding and surgery was approximately 1 h.

2.3. In vivo experimental design

All animal handling and surgical procedures were conducted according to Eu-
ropean Community Guidelines (2010/63/EU) for the care and use of laboratory an-
imals. An animal experimentation protocol was prepared, submitted and approved
by the local Ethic Committee (CEEA.2012.27).

In order to evaluate the influence of transplanted hMSC on bone formation,
Adult nude NMRI Nu/Nu female mice (4 weeks old, body weight 20 g) were pur-
chased from a professional stock breeder (Janvier Labs, France). The nude mice were
kept in Hepa filtered closets with water and food ad libitum and were quarantined
for a minimum of 10 days prior to surgery. The mice were randomly and equally
divided into 2 groups: BCP particles alone (40 mg) and BCP þ hMSC (40 mg and
1.4�106 viable cells) that were bilaterally implanted in paratibial muscles. Fivemice
from each treatment group (n¼ 5) were followed for 1, 2, 4 or 8 weeks after surgery.
Animals were placed under general anaesthesia by inhalation of isoflurane (2.5%
Flucka, 1 L/min) and an intramuscular injection of the analgesic Buprenorphine
(Buprecare 60 mL/kg, Axience) was performed 30 min before surgery. A skin incision
of 0.5 cmwas made for exposing the muscle, and fibres were taken away to create a
pocket where BCP granules were inserted. Skin incisions were closed with sutures
(Filapeau 4/0, Peters). The mice were euthanized under general anaesthesia by
cervical dislocation.

To determine the impact of osteoclastogenesis on bone formation initiated by
hMSC, 8 weeks experiments were reproduced in nudemicewhich received injections
ofmAb anti-RANKL. RANKL is a key factor for osteoclast differentiation and activation.
Anti-RANKL is known to drastically inhibit the formation of TRAP positive multinu-
cleated cells in vitro and in vivo [20]. Adult nude NMRI Nu/Nu femalemice (n¼ 4) were
implanted with BCP alone (40 mg on left leg) and BCP þ hMSC (40 mg and 1.4 � 106

viable cells, on right leg) and treated with a subcutaneous injection (50 mg dose) of
antibody anti-mouse RANKL, kindly provided by Prof. Hideo Yagita, Department of
Immunology, Juntendo University School of Medicine, Tokyo, three days before im-
plantation. This same injection regime was repeated twice a week and animals were
sacrificed after 8 weeks under general anaesthesia by cervical dislocation. Implants
were sectioned after euthanasia to perform histology and RNA extraction.

2.4. Histological analysis

The muscles were excised, fixed in 4% paraformaldehyde, decalcified in a PBS so-
lution with 0.5% paraformaldehyde 4.13% EDTA in a microwave decalcifying automat
(KOS Histostation) at 46 �C. Samples were then embedded in paraffin and 3 mm thick
sections were cut. Three sections through each implant were attained for histological
analysis. The sections were stained with Masson's Trichrome and qualitative/quanti-
tative histological evaluations of soft-tissue in-growth and bone formationwere per-
formed. Masson's trichrome technique combines hematoxylin for cell nuclei (blue/
black), fuchsine for cytoplasm, muscle and erythrocytes (red) and light green solution
for collagen (green). Thequantity of newbonewasmeasured in separate sectionswith
the software ImageJ. The bone formationwas evaluated according to:

Newly formed bone ¼ (bone surface) * 100/[(total implant surface) � (BCP granules
surface)]

Tartrate resistant acide phosphatase (TRAP) is highly expressed by osteoclasts
and therefore can be used to stain these cells in histological sections. The sections
were stained using a commercial TRAP staining kit (Acid Phosphatase Leukocyte
Staining Kit, Sigma) following the manufacturer's instructions. Briefly, the staining
solution was prepared with Fast Red TR salt (3.9 mM), naphthol AS-TR phosphate
disodium salt (2.3 mM), NeN dimethylformamide (68 mM), and L(þ)-tartaric acid
(100 mM) all diluted in sodium acetate buffer (0.1 M, pH 5.2). Deparaffinised sections
were incubated in the solution for 90 min at 37 �C and then counterstained with
Mayer's hematoxylin. TRAP-positive stained cells appeared red. Qualitative/quan-
titative histological evaluations of osteoclasts were then performed.

2.5. In situ hybridization

In situ hybridization using the human-specific repetitive Alu sequence, which
comprises approximately 5% of the total human genome was performed for iden-
tification of human cells. Sections were deparaffinized and rehydrated in graded
series of ethanol and washed with tris buffered saline (TBS) tween 0.05% pH 7.6
three times for 5 min each under gently agitation. Slides were treated with 3% H2O2

for 15 min at room temperature (RT) to block endogenous peroxidase activity, fol-
lowed by three washes with TBS tween 0.05%. Sections were then treated with
10 mg/mL proteinase K (P2308, Sigma Aldrich, France) for 10 min at 37 �C. After a
further three washes for 5 min each in TBS tween 0.05%, sections were treated with
0.25% acetic acid in 0.1 M triethanolamine (TEA) pH 8.0 for 20 min at RT under
agitation. Pre-hybridization was performed for 3 h at 56 �C in a hybridization buffer
containing 4 � SSC (S6639, Sigma Aldrich France), 50% deionized formamide,
1� Denhardt's solution, 5% dextran sulphate and 100 mg/mL salmon sperm DNA and
molecular grade H2O. Hybridization buffer was replaced by fresh hybridization
buffer containing 70 nM DIG-labeled human locked nucleic acid (LNA) Alu probe
5DigN/50-TCTCGATCTCCTGACCTCATGA-30/3DigN (Exiqon, Vedbaek, Denmark) and
then target DNA and the probewere denatured for 5 min at 95 �C. Hybridizationwas
carried out for 40 h at 56 �C in a wet chamber. Sections were washed twice in
2 � SSC, then twice in 0.5 � SSC at 56 �C for 10 min each time, followed by three
washes in TBS tween 0.05%. Finally, the hybridized probe was detected by immu-
nohistochemistry using biotin-SP-conjugated IgG fraction monoclonal mouse anti-
digoxin (Jackson Immunoresearch, Baltimore, USA) diluted 1/200 in PBS for
45 min at 37 �C. After three washes in TBS tween 0.05% at RT, streptaperoxidase was
added (1/200 in TBS tween 0.05%) for 45 min at 37 �C before diaminobenzidine
(DAB) substrate addition (Dako). Sections were counterstained with Gill-2 hema-
toxylin (Thermo Shandon Ltd, Runcorn, UK) dehydrated and mounted using Pertex
(HistoLab Products AB, Sweden).
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2.6. Immunohistochemistry

Immunohistochemistry was performed on deparaffinised and rehydrated sec-
tions with specific primary antibodies: CD146 antibody (ab75769, rabbit anti-
mouse, 1/200, Abcam), F4/80 antibody (MCA4976, rat anti-mouse, 1/200, Serotec),
iNOS antibody (ab15323, rabbit anti-mouse, 1/100, Abcam), CD206 antibody
(ab64693, rabbit anti-mouse, 1/1000, Abcam), CD68 (MCA1815T, mouse anti-
human, 1/100, Abd Serotex). All sections were counterstained using Gill's hema-
toxylin and mounted using permanent mounting medium. Tissue staining was
viewed using Nanozoomer 2.0 Hamamatsu slide scanner.

The CD146 antibody was used to detect pericytes in the histological sections.
CD146, also known as Mel-CAM, MUC18, A32 antigen and S-Endo1, is a membrane
glycoproteinobserved inpericyte that surround the endothelial layers [22]. The F4/80
antibodywasused todetectmacrophagesM0. The antigen, F4/80, iswell expressed in
macrophages M0 in most tissues of the developing and adult mouse. The iNOS
antibody was utilised in this study for the detection of macrophages M1. Inducible
nitric oxide synthase (iNOS) is a enzymecatalysing theproductionof nitric oxide (NO)
from L-arginine [23]. The presence of macrophages M2 was detected by the CD206
antibody. CD206, widely known as themannose receptor (MR) ormore precisely MR
C type 1 (MRC1) is a type 1 transmenbrane protein involved in innate immunity [24].
The CD68 antibody was used to detect macrophages M0. CD68 is a member of the
lysosome-associatedmembrane protein (LAMP)-1 family [25]. It is a transmembrane
glycoprotein highly expressed by monocytes and tissue macrophages [26].

2.7. Quantitative real-time reverse transcription-polymerase chain reaction (RT-
PCR)

Implants were sectioned after euthanasia to perform histology and RNA
extraction. Thus, each half of implants were transferred into a 1 mL tube with and
vigorously shaken to lyse the cells. Phase separation was performed using chloro-
form. RNA was recovered from the aqueous phase using isopropanol, and this was
followed by alcohol precipitation steps. RNA samples (4 mg) were reverse transcribed
with Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Scientific) and
random primers in a total volume of 20 mL. Quantitative real-time PCR was per-
formed in the CFX96 (Bio-Rad Laboratories) with SYBR Green detection according
the manufacturer's recommendations. PCR amplifications involved 39 cycles of 30 s
at 98 �C,15 s at 95 �C and 30 s at 60 �C. Expression of the target genewas normalized
to that of the endogenous control ribosomal protein L19. The 2eDCt (Ct: cycle
threshold) method was used to calculate the relative expression levels. Gene name
symbols with corresponding full names and the list of corresponding primer se-
quences are indicated in Table 1. The primer sequence used were specific to mouse
genome to only evaluate the host cells behaviour.

Relative gene expression for osteoblastic markers, as alkaline phosphatase (Alp),
Bone sialo protein (Bsp) and osteocalcin (Oc), for osteoclastic markers, as acid
phosphatase tartrate resistant (Trap) have been evaluated.

2.8. Statistics

Statistical comparisons of gene target expression and histomorphometry were
performed using Two-way ANOVA and Bonferroni post tests in GraphPad Prism 6.0
software. p values <0.05 were considered statistically significant.

3. Results

3.1. Bone formation is increased by transplanted hMSC

Histological analyses showed bone tissue and bone marrow
formation at 4 and 8 weeks in all implants consisting of hMSC and
BCP granules (bone incidence 5 out of 5) (Fig. 1A). Conversely, there
Table 1
Sequences of primers used for real-time PCR analysis of mouse genes.

Official Symbol Official full name; Alias

Osteogenic markers Alpl Alkaline phosphatase, li

Bglap Bone gamma-carboxygl

Ibsp Integrin-binding sialo p

Osteoclaetic markers Acp5 Acid phosphatase 5, tar

Ctsk Cathepsin K; Cathk

Reference Alu Alu sequence

Rpl19 Ribosomal protein L19
was no bone tissue at 4 weeks and only small quantities of bone
formation without the presence of bone marrow at 8 weeks in the
BCP group without cells (Fig. 1A). Quantification by histo-
morphometry revealed a significant increase in bone formation
with BCP plus hMSC at 4 and 8 weeks, compared with BCP alone (5
and 10 fold increase respectively, p < 0.001, Fig. 1B). Supporting
these findings, there was a significant up-regulation in the
expression of mouse bone markers, bone sialo protein and osteo-
calcin, in BCP plus hMSC at 1 week compared to BCP alone (Fig. 1C).
In contrast to histological bone detection that increased between 1
and 8 weeks, the gene expression of these bone markers decreased
after 1 week. This apparent discrepancy may be explained by the
loss of efficiency in RNA extraction frommineral tissue compared to
soft tissue.

3.2. Transplanted hMSC disappear from implanted site

The presence of hMSC in the implants was evaluated by in situ
hybridization on histological sections and by gene expression of the
specific human Alu sequence. As illustrated in Fig. 2A, human cells
were detected at 1 and 2weeks within the BCP plus hMSC implants,
while they were not detected at 4 weeks. These results were
corroborated by the relative gene expression of Alu sequence
(Fig. 2B) which detected human cells within BCP plus hMSC im-
plants at 1 and 2 weeks, but with a large decrease of activity be-
tween 1 and 2 weeks (2 fold decrease, p < 0.001, Fig. 2B). As
expected, no human cell transcription was measured in the control
group without human cells. Confirming the in situ hybridization
results, human cell transcription was not detected within the BCP
plus hMSC implants at 4 and 8 weeks.

3.3. Osteoclast activity is enhanced by transplanted hMSC

Distribution of osteoclasts at the implantation site was investi-
gatedby theTRAP staining. Representative stained sections showeda
large production of this resorbing enzyme around the BCP granules
(Fig. 3A). Histomorphometry quantification confirmed that hMSC
significantly increased osteoclast activity in the implants (more than
a 2 fold increase, p < 0.001, Fig. 3B). There was an increase in the
relative gene expression of the mouse osteoclast markers Cathk and
Trap at 1 and 2weeks in both the BCP group and BCPþ hMSC group;
however there was no difference between the two groups.

3.4. Mobilization of macrophages M0 and M1 to the implant site is
enhanced by transplanted hMSC

The distribution of first innate immunological cells, macro-
phagesM0 andM1within the implants was detected in histological
Sense primer antisense primer

ver/bone/kidney; Alp CCGGATCCTGACCAAAAAC
GCCTTACCCTCATGATGTCC

utamic acid-containing protein; Oc AGACTCCGGCGCTACCTT
CAAGCAGGGTTAAGCTCACA

rotein; Bsp CGGCGATAGTTCCGAAGAGGA
CCCCTCAGAATCTTCATTGTTT

trate resistant; Trap CGTCTCTGCACAGATTGCAT
AAGCGCAAACGGTAGTAAGG
GGAGGCGGCTATATGACCA
GGCGTTATACATACAACTTTCATCC
TCTCGATCTCCTGACCTCATGA
TCATGAGGTCAGGAGATCGAGA
TCGTTGCCGGAAAAACAC
AGGTCACCTTCTCAGGCATC
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sections as illustrated in Fig. 4. Macrophages M0, labelled by the
antibody anti-F4/80, were distributed in fibrous tissue between the
BCP granules, whereas, macrophages M1, labelled by the antibody
anti-iNOS, were primarily located surrounding the BCP biomaterial
(Fig. 4A). Histomorphological quantification showed an increase in
the mobilization of macrophages M0 and M1 to the implant site in
the BCP plus hMSC group compared to BCP alone (Fig. 4B). Specif-
ically, macrophages M0 were increased by the presence of hMSC at
2 and 4 weeks and decreased thereafter, while macrophages M1
were significantly higher at 4 weeks as a consequence of hMSC.

Presence of macrophages M2 was investigated by immunohis-
tochemistry directed against CD206 and relative gene expression of
CD206, FCGR2, CD163 (data not shown). However, few positive cells
were detected and no difference between the BCP alone group and
the BCP plus hMSC group was found. The presence of pericytes was
also investigated by immunohistochemistry directed against CD146
and relative gene expression of vascular endothelial growth factor
and matrix metallopeptidase 2. The implants were highly vascu-
larised but no difference could be quantified between the BCP and
BCP þ hMSC groups (data not shown). Moreover, CD146 and in situ
hybridization of Alu sequence were performed on serial sections of
each implant demonstrating that human cells did not colocolize in
the vessel walls.

3.5. Anti-RANKL treatment induces simultaneous blockage of
osteoclastogenesis and reduced bone formation

Fig. 5 depicts 8week implants in nudemicewith orwithout anti-
RANKL treatment which inhibits osteoclastogenesis. Blockage of
osteoclast activitywas successfulwith a significant decrease inTRAP
staining compared to non-treated controls (Fig. 5A and D). Inter-
estingly, inhibition of osteoclastogenesis with anti-RANKL treat-
ment also resulted in a dramatic reduction in bone formation (from
15% to 5%), as highlighted in Fig. 5B and D. Supporting these results,
osteoclastic and osteoblastic gene expression were quantified and
showed a considerable decrease with mouse anti-RANKL antibody
treatment (Fig. 5E). Thedistribution ofM0macrophageswas studied
by immunohistochemistry directed against CD68 (Fig. 5C). The re-
sults showednodifference in the presence ofmacrophages between
the untreated and mAb anti-RANKL treated groups.
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4. Discussion

The objective of the present study was to understand the under-
lyingmechanisms of bone formation inducedby thegraftingof hMSC.
To achieve this, micro-porous BCP granules were implanted in the
paratibial muscles of nude mice with or without hMSC and the
chronological events leading to osteoinduction were identified. Im-
plantation of hMSC considerably enhanced and sped up bone for-
mation. Human cells were not found within the implants at 4 weeks,
proving their role as mediators rather than effectors of bone forma-
tion. The foreign body reaction was studied revealing that hMSC
induced an early mobilization of circulating monocytes to the im-
plantation site as the presence of macrophages and osteoclasts was
significantly up-regulated, suggesting their implication in the mech-
anism of bone formation. To more precisely determine the contribu-
tion of osteoclasts to osteogenesis, implantations were repeated in
nude mice treated with mAb anti-RANKL to deplete osteoclast for-
mation and activation. Ablation of osteoclastogenesis significantly
impaired bone formation, proving the pivotal role of osteoclast-
mediated bone formation. The implantation of hMSC with BCP ce-
ramics in this study resulted in a 15 fold increase in bone formation
compared toBCPalone. Thisfinding is inagreementwithother studies
inbone defects [8] and ectopic sites [7]which show thebone-forming
benefits of implantedMSC.However, the exactmechanisms bywhich
implanted MSC mediate bone induction is unclear. In the past it was
thought that the therapeutic effects of implanted MSC lay in their
ability to differentiate into cells of different lineages, into bone-
forming osteoblasts in the case of bone tissue engineering. However,
in this study the implanted MSC disappeared completely from the
implantation site between 2 and 4weeks and the newly formed bone
tissue was exclusively of host origin, suggesting that the implanted
MSC facilitate but do not participate directly in the bone formation.
Indeed, it has been previously demonstrated that calcium phosphate
granules implanted ectopically induced the homing of MSC from the
bonemarrow to the site of CaP particles implantation to form ectopic
bone tissue [11]. Previous studies substantiate the large scale death of
implanted MSC [8,27] which is due to ischaemia [25] and lack of
glucose [26] in the implant microenvironment. It has recently been
shown that the viability of implanted MSC can be maintained in
glucose supplemented implants [26]. Nevertheless, the maintained
viability of implanted MSC was not necessary to initiate bone forma-
tion in this study.

The foreign body reaction against BCP biomaterial and hMSC
was investigated in this study and it was found that BCP granules
initiated a recruitment of cells of the monocyte/macrophage line-
age, which was significantly potentiated by the addition of hMSC.
Attraction of macrophages to b-TCP particles was previously
demonstrated in vitro, wherebymacrophagesmigrated towards the
biomaterial by emitting cytoplasmic extensions [28]. Furthermore,
interactions of poly morphonuclear neutrophils with hydroxy-
apatite particles increase levels of pro-inflammatory mediators
interleukin-8 (IL-8) and the matrix metallopeptidase 9 [29], a
possible mechanism contributing to the mobilization of monocytes
and macrophages M1 to BCP. The further significant increase in
mobilization of cells of the monocyte lineage by the addition of
hMSC in our study, may be explained by the secretion of monocyte
chemo-attractant protein-1 by implanted MSC, which was previ-
ously described in a model of vascular tissue engineering [30].

It has been previously shown that ablated osteoclastogenesis
significantly impaired bone formation by calcium phosphate im-
plantations in ectopic sites [19]. However, the present study is the
first to investigate hMSC-mediated osteoclast activity in bone for-
mation. Increased bone formation was found when osteoclast and
macrophage M0 and M1 presence was up-regulated at the im-
plantation site by hMSC, and when osteoclastogenesis was abro-
gated a significant reduction in bone formation was significantly
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impaired. The precise underlyingmechanisms are unclear, however
several in vitro studies shed light on possible contributing factors
such as the secretion of platelet-derived growth factor by osteo-
clasts which induces the migration of MSC [17] and the production
of oncostatin M by monocyte/macrophages and osteoclasts which
strongly induces the osteogenic differentiation of MSC in vitro
[31,32].

In the present study, in response to the implantation of BCP and
hMSC, numerous macrophages M0 were observed around the parti-
cles and converted into pro-inflammatory M1. Co-implantation with
human cells further enhanced thismechanism. Previous studies have
shown that MSC can regulate the M1/M2 macrophage balance,
favouring a shift towards the M2 anti-inflammatory phenotype
[13,15,33]. Thismove towards theM2 phenotype has been implicated
in the resolution of inflammation, tissue repair and remodelling in the
heart [34] and kidney [35]. In contrast, the presence of macrophages
M2 (study of 3 gene markers by PCR and 1 specific protein by
immunohistochemistry), within implants with or without the addi-
tion of human cells was not observed in the current study. Therefore,
macrophage M2 were shown not to be implicated in MSC mediated
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ectopic bone formation, rathermacrophagesM1 and osteoclastswere
the prominent cells implicated in the ectopic osteogenesis
mechanism.

It would be interesting to study the macrophage role in bone
formation, but independently of the osteoclast one. Alexander et al.
have concluded that osteal macrophages promoted bone healing by
using clodronate treatment and Macrophage Fas-Induced
Apoptosis (MAFIA) transgenic mice model [16]. However, clodro-
nate treatment and conditionally depletion of macrophages in
MAFIA alter the osteoclast differentiation as well as the
macrophage one. Furthermore, the MAFIA mouse model is in
immune-competent mice and the bone formation mechanism
should be differently addressed in an immune-deficient model, as
suggested by recent study [36].

In this study, the number of vascular cells within the implants was
quantified and while the implants were observed to be highly vas-
cularised, no difference between groups was observed. This suggests
that there is no direct implication of vascularised tissue in this
mechanism of ectopic bone formation induced by BCP granules and
hMSC.
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5. Conclusion

Human MSC significantly enhanced ectopic bone formation in
nude mice. They did not participate directly in osteogenesis, rather
they increased the innate immune response and enabled to speed
up the mobilization of monocytes to the implantation site where
they differentiate intomacrophagesM1 and osteoclasts. Ablation of
osteoclastogenesis by anti-RANKL treatment considerably impaired
hMSC-mediated bone formation, highlighting the pivotal role of
osteoclasts in the ectopic bone formation. In nude mice models, an
up-regulation of osteoclasts and macrophages M1 at the implan-
tation site was correlated with increased bone formation due to
hMSC associated to BCP particles.
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