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The three�dimensional development of the shearing instability of convection

P�C� Matthews
Department of Theoretical Mechanics� University of Nottingham�
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A�M� Rucklidge� N�O� Weiss and M�R�E� Proctor
Department of Applied Mathematics and Theoretical Physics�

University of Cambridge� Cambridge CB� �EW� UK

�Phys� Fluids � ���� June ���� ��	
���	��

Two
dimensional convection can become unstable to a mean
shear �ow� In three dimensions� with periodic boundary con

ditions in the two horizontal directions� this instability can
cause the alignment of convection rolls to alternate between
the x and y axes� Rolls with their axes in the y
direction
become unstable to a shear �ow in the x
direction that tilts
and suppresses the rolls� but this �ow does not a�ect rolls
whose axes are aligned with it� New rolls� orthogonal to the
original rolls� can grow� until they in turn become unstable
to the shear �ow instability� This behaviour is illustrated
both through numerical simulations and through low
order
models� and the sequence of local and global bifurcations is
determined�

The instability of two�dimensional convection rolls to
a mean �ow has been the subject of much recent study
���	
� If a roll tilts over� horizontal momentum will be
transported to the top and bottom of the layer in such a
way as to enhance the original tilt� and a vertical shear
across the layer may be spontaneously generated� This
mechanism is purely hydrodynamic� so the instability is
not restricted to convective �ows but can occur in any
periodic cellular �ow ��
� These mean �ows may be im�
portant in a variety of contexts� including the generation
of zonal winds in planetary atmospheres ��
 and plasma
�ows in tokamaks �

�
The shear �ow instability of two�dimensional convec�

tion is now well understood� and has been observed in
experiments ��
 and numerical simulations ���	��
� Low�
order models of the instability have played a central role
in interpreting the complicated dynamics associated with
the development of mean �ows ����
� The instability is
favoured when the convection cells are narrow and when
the Prandtl number is small� As the Rayleigh number R
is increased above its critical value RC � convection rolls
are formed� having mirror planes of symmetry separating
counter�rotating rolls �cf� �gure �a� c�� Beyond a second
critical value� the symmetric state is unstable and asym�
metric tilted convection occurs� with a steady shear �ow
�cf� �gure �b� d�� There are subsequent bifurcations to
time�dependence� and global bifurcations lead to compli�
cated dynamics ����
�

This letter considers the extension of these results to
three�dimensional convection� In this situation� the dy�
namics rapidly becomes more complicated than in two di�
mensional convection� since a shear �ow suppresses con�
vective rolls with their axes perpendicular to the shear�
but not rolls whose axes are aligned with the shear� Thus
we expect to �nd oscillations� rolls are formed and tilt
over since they are unstable to shear� the shear then sup�
presses the original rolls� but orthogonal rolls grow� and
in turn are suppressed by the shear �ow that they en�
gender� Here we unravel the details of the transitions
from rolls to this three�dimensional shearing oscillation
by supplementing numerical simulations of the PDEs for
three�dimensional convection with a study of the bifur�
cations in a low�order ODE model�
Details of the numerical procedure are given elsewhere

��
� Periodic boundary conditions are imposed in both
horizontal directions x and y� while the upper and lower
boundaries are stress�free with �xed temperature� The
�uid is compressible� but only weakly strati�ed� and we
have checked that similar behaviour is obtained using
a Boussinesq code� The Prandtl number � is �xed at
���� and the aspect ratio is unity� so that the compu�
tational domain is a cube� The controlling parameter
is the Rayleigh number� proportional to the temperature
di�erence imposed across the layer� The PDEs are solved
numerically using a pseudospectral representation in the
two horizontal directions ��� � �� Fourier modes� and
fourth�order �nite di�erences in the vertical direction �
�
grid points��
We have constructed a model by truncating the PDEs

for Boussinesq convection �the minimal truncation re�
sults in 
� ODEs� and taking the limit of narrow rolls�
which reduces the order to seven� details are given else�
where �����
� The resulting model is�
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Here� � is the bifurcation parameter proportional to
�R	RC���� � � ���		�������� and � is a small positive
parameter� The mode �x�� in ��� represents the ampli�
tude of rolls in the x�direction� �x�� is the mode that
causes these rolls to tilt and �x�� is the mean shear �ow�
The modes �y��� �y�� and �y�� are de�ned similarly� but
for rolls aligned in the y�direction� ��� represents pertur�
bations to the horizontally averaged temperature� Since
we are considering narrow rolls� half as wide as they are
tall� we may neglect the higher�order shear modes that
would be important in wider boxes ���
�
We do not expect quantitative agreement between the

ODEs ��� and the full PDEs� but understanding the bi�
furcations in the ODE model� particularly the global bi�
furcations� has proved essential in interpreting the be�
haviour of the PDEs� Truncated models like ��� can pro�
vide reliable descriptions of PDE behaviour only when
the amplitudes of the modes and the driving forces are
small� We examine behaviour only up to R � ����RC

in this letter� and �nd that the PDE behaviour can be
interpreted in terms of the ODEs with � � ��
��
The ODEs ��� have a number of symmetries and as�

sociated invariant subspaces inherited from the original
PDEs� As � is increased� symmetries are broken in a se�
quence of bifurcations that is the same in the PDEs as
in the ODEs� The resulting steady solutions are summa�
rized in table I� The �rst bifurcation at � � � creates
rolls and squares� Rolls are stable and may be aligned
in the x�direction �xR� or the y�direction �yR� � see �g�
ure ��a�c�� Squares �Sq� are unstable and are a saddle
point in ���� so trajectories that start near squares tend
towards one of the roll solutions� The next bifurcation
breaks the mirror symmetry of the rolls� so xR lose stabil�
ity to tilted x�rolls �xTR�� tilted either to the left or the
right ��gure �b�� So far the behaviour has been within
the two�dimensional subspaces� but the next bifurcation
breaks into three dimensions� xTR lose stability to cross�
rolls with �y�� �� �� we will refer to the resulting solution
as x�tilted squares �xTSq�� There are additional unstable
steady solutions� diagonally tilted squares �DTSq��
As � is increased further� the system becomes time�

dependent� The xTSq undergo a Hopf bifurcation leading
to oscillatory tilted squares �xOTSq�� without breaking
the remaining re�ection symmetry� The phase portrait
of this solution is shown in �gure 
�a� for the ODEs and
�d� for the PDEs� For higher �� the system approaches
a heteroclinic� or global� bifurcation� the orbit visits xR�
then xTR� then Sq before returning to xR ��gure 
b� e��
Beyond this bifurcation� a structurally stable heteroclinic
cycle exists� linking xR� xTR� yR and yTR ��gure 
c� f��
The bifurcation sequence is summarized in �gure ��
The heteroclinic cycle as it appears in the PDEs is

shown in �gure �� Each connection that makes up the
heteroclinic cycle is within an invariant subspace and
connects an unstable steady solution to a steady solution

that is stable within that subspace� There are two types
of connection� from rolls to tilted rolls� and from tilted
rolls to untilted orthogonal rolls� The connection from x�
rolls to tilted x�rolls is within the �y�� � �y�� � �y�� �
� invariant subspace �in which convection is purely two�
dimensional�� within this subspace� tilted x�rolls are sta�
ble� The connection from tilted x�rolls to y�rolls is within
the �y�� � �y�� � � invariant subspace �in which con�
vection is three�dimensional but does not break the y re�
�ection symmetry�� within this subspace� y�rolls are sta�
ble� The heteroclinic cycle has in�nite period� but in
numerical simulations� which are a�ected by round�o�
errors� the period of the cycle is �nite and dependent
on the numerical precision� In addition� the direction of
the shear �ow that destabilizes the rolls is determined by
numerical noise�
Structurally stable heteroclinic cycles often occur in

systems with symmetry ��

� The value � � ��� was se�
lected for the simulations discussed in this letter as it
provides the simplest of many possible scenarios� For
higher values of �� a Hopf bifurcation within the two�
dimensional subspaces can occur while the heteroclinic
cycle is stable� leading to a more complicated connec�
tion that links �xed points �rolls� and periodic orbits
�oscillatory tilted rolls�� or even chaotic attractors� For
smaller �� the xOTSq in the ODEs can undergo a period�
doubling cascade before the heteroclinic cycle is formed�
just as in the PDEs� A detailed discussion of the depen�
dence of the behaviour of the PDEs on � is beyond the
scope of this letter� this will be undertaken in a future
work�
In summary� we have shown how the instability of

convection to a mean shear �ow can lead to three�
dimensional behaviour via a series of local and global
bifurcations� The ODE model has proved to be essential
for the interpretation of complicated dynamics of three�
dimensional convection�
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Symbol Name De�ning equations

xR x�rolls �x�� � �x�� � �
�y�� � �y�� � �y�� � �

Sq squares �x�� � ��y��

�x�� � �x�� � �
�y�� � �y�� � �

xTR tilted x�rolls �y�� � �y�� � �y�� � �

xTSq x�tilted squares �y�� � �y�� � �

DTSq diagonally tilted �x�� � ��y��

squares �x�� � ��y��

TABLE I� Steady solutions of the PDEs and ODEs ����

�a� �b�

x
y

z

�c� �d�

FIG� �� Steady solutions of the PDEs� �a� x
rolls �xR�� in

variant under re�ections in the vertical plane that lies between
the pair of rolls� �b� tilted x
rolls �xTR�� the mirror symme

try is broken and there is a spontaneously generated shear
�ow across the layer� �c� y
rolls �yR�� orthogonal to x
rolls�
�d� tilted y
rolls �yTR�� These steady solutions of the PDEs
are all unstable and there is a structurally stable heteroclinic
cycle between them� x
rolls are unstable to shear� leading
to tilted x
rolls� these are unstable to cross
rolls� leading to
y
rolls� which in turn give way to tilted y
rolls� and then back
to x
rolls� The Rayleigh number is R � ���
RC � Velocity
arrows are projected onto the sides of the cube�

�



(a)

Ψ   x11

Ψ   y11

Ψ   x0
1
 + Ψ   y0

1

xR

yR

Sq

xTR

yTR

xTSq

yTSq

(b) (c)

(d) (e) (f)

FIG� �� Unsteady solutions of the ODEs ��� �with � � 
�� and � � 
��� in �a���c� and the PDEs in �d���f�� The xTSq
have lost stability to form xOTSq �a� � � 
��	�� this undergoes a heteroclinic bifurcation �b� � � 
��	���	� when it collides
with xR� xTR and Sq� The structurally stable heteroclinic cycle �c� � � 
��
� visits xR� xTR� yR and yTR before returning to
xR� A similar sequence is seen in the PDEs� the xOTSq �d� R � ���
RC� become chaotic as they approach the heteroclinic
bifurcation with squares �e� R � ���	RC � to form the heteroclinic cycle �f� R � ���
RC�� The �xed points that make up the
cycle are illustrated in �gure ��
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FIG� �� Schematic bifurcation diagram for the system ���
and the PDEs� Closed circles represent local �pitchfork and
Hopf� bifurcations� and the open circle represents the global
�heteroclinic� bifurcation�
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