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Kermions

Elizabeth Winstanley

Abstract In the framework of quantum field theory in curved space-time, we study

the quantization of a massless fermion field on a non-extremal Kerr black hole. The

key theme in this note is the fundamental difference between scalar and fermion

fields for the process of defining quantum states. In particular, we define two new

states for fermions on Kerr which cannot be defined for quantum scalar fields on

Kerr. These two states are the analogues of the standard Boulware and Hartle-

Hawking states on a Schwarzschild black hole.

1 Canonical quantization

In the canonical quantization of a free field on a curved space-time, an object of

fundamental importance is the vacuum state |0〉. On a general curved space-time,

there is no unique vacuum state.

For a quantum scalar field, the process starts by expanding the classical field Φ in

terms of an orthonormal basis of field modes, which are split into positive frequency

modes φ+
j and negative frequency modes φ−

j :

Φ =∑
j

a jφ+
j + a†

jφ
−
j . (1)

The choice of positive/negative frequency modes is constrained by the fact that

positive frequency modes must have positive Klein-Gordon norm and negative fre-

quency modes have negative Klein-Gordon norm (by “norm”, here we mean the in-

ner product of a field mode with itself). With this restriction, quantization proceeds
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by promoting the expansion coefficients in (1) to operators satisfying the usual com-

mutation relations. The â j are interpreted as particle annihilation operators and the

â†
j as particle creation operators. The vacuum state |0〉 is then defined as that state

annihilated by all the particle annihilation operators: â j |0〉 = 0. The definition of a

vacuum state is therefore dependent on how the field modes are split into positive

and negative frequency modes, which is restricted for a quantum scalar field by the

fact that positive frequency (particle) modes must have positive norm.

For a fermion field Ψ , we again start with an expansion in terms of an orthonor-

mal basis of field modes analogous to (1):

Ψ =∑
j

b jψ+
j + c†

jψ
−
j . (2)

In this case, both positive and negative frequency fermion modes have positive Dirac

norm, so the split of the field modes into positive and negative frequency is much

less constrained for a fermion field compared with a scalar field. As in the scalar

field case, the expansion coefficients are promoted to operators but now they satisfy

anti-commutation relations. The vacuum state |0〉 is again defined as that state anni-

hilated by all the particle annihilation operators: b̂ j |0〉= 0 = ĉ j |0〉. Compared with

the scalar field case, there is much more freedom in how the vacuum state is defined

for a fermion field, because there is much more freedom in how positive frequency

modes can be chosen.

2 Quantum field theory on Schwarzschild space-time

Before studying the construction of quantum states on a Kerr black hole, we briefly

review the Boulware [1] and Hartle-Hawking [3] states on a Schwarzschild black

hole. We emphasize that the construction of these two states is the same for quantum

fermion and scalar fields.

Modes for both a massless scalar field and massless fermion field are indexed by

the quantum numbers ω, ℓ (a total angular momentum quantum number) and m (the

azimuthal quantum number). The quantum number ω is the frequency of the modes

as seen by a static observer either near the event horizon or at infinity. For scalar

field modes, the Klein-Gordon norm is proportional to ω. We emphasize that all
fermion modes have positive Dirac norm. A suitable basis of field modes consists

of the “in” and “up” modes shown in Figs. 1a, 1b.

Boulware state |B〉 [1]

To define this state we choose positive frequency modes as seen by a static observer

at infinity. The resulting vacuum state |B〉 contains no particles in the “in” and “up”

modes with ω > 0. This state is as empty as possible at infinity I± but diverges on
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Fig. 1a “In” modes: a wave is incident from

infinity; part of the wave is reflected back to

infinity and part goes down the event horizon

of the black hole

Fig. 1b “Up” modes: a wave is outgoing

from the event horizon; part of the wave is re-

flected back down the event horizon and part

escapes to infinity

the event horizon H±. The unrenormalized expectation value of the stress-energy

tensor (UEVSET) for a fermion field in this state is

〈B|T̂µν |B〉=
1

2

∞

∑
ℓ= 1

2

ℓ

∑
m=−ℓ

∫ ∞

0
dω

{

Tµν

[

ψin
ωℓm

]

+Tµν
[

ψup
ωℓm

]

}

. (3)

Here, and in subsequent expressions, we write the UEVSET as a mode sum to show

the differences between the various states considered. The expression Tµν [ψ
in/up

ωℓm ]
denotes a classical field mode contribution to the total UEVSET.

Hartle-Hawking state |H〉 [3]

In this case we choose positive frequency modes with respect to Kruskal time near

the event horizon H±. The “in” and “up” modes with ω > 0 become thermally

populated with energy ω. The resulting state |H〉 is regular at both the event horizon

and infinity; however it is not empty at infinity. It represents a black hole in thermal

equilibrium with a heat bath at the Hawking temperature TH . The UEVSET for a

fermion field in this state is

〈H|T̂µν |H〉=
1

2

∞

∑
ℓ= 1

2

ℓ

∑
m=−ℓ

∫ ∞

0
dω tanh

(

ω
2TH

)

{

Tµν

[

ψin
ωℓm

]

+Tµν
[

ψup
ωℓm

]

}

. (4)

For a quantum scalar field, the thermal “tanh” factor becomes a “coth”.
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3 Quantum field theory on Kerr space-time

The Kerr space-time represents a black hole whose event horizon rotates with an-

gular velocity ΩH . Some key features of the geometry are shown in Figs. 2a, 2b. In

each figure, the central black region is the interior of the event horizon, and the axis

of rotation runs vertically down the middle of each diagram. Two further surfaces

are important in our later discussion:

• The stationary limit surface (the short-dashed surface in Figs. 2a, 2b) is the sur-

face inside which it is not possible for an observer to remain at rest relative to

infinity;

• The speed of light surface (the long-dashed surface in Figs. 2a, 2b) is the surface

outside which it is not possible for an observer to co-rotate with the black hole

event horizon.

A suitable basis of field modes is made up of “in” and “up” modes as in the

Schwarzschild case, indexed by the quantum numbers ω, ℓ and m. A static observer

near infinity measures ω to be the frequency of a particular field mode. Choosing

modes with positive frequency at infinity therefore corresponds to choosing ω > 0.

Due to the rotation of the black hole, the corresponding frequency near the hori-

zon is no longer ω but is shifted by the angular velocity of the black hole to be

ω̃ = ω−mΩH . Choosing modes with positive frequency with respect to Kruskal

time near the horizon therefore corresponds to thermally populating the “in” and

“up” modes with energy ω̃ rather than ω. A further complication is that, for scalar

fields, the “in” modes have positive norm only if ω > 0 whereas the “up” modes

have positive norm only if ω̃ > 0. As previously, for a fermion field all modes have

positive norm.

We now describe three quantum states on Kerr space-time, including analogues

of the Boulware and Hartle-Hawking states defined above for Schwarzschild black

holes.

“Past” Boulware state |B−〉 [5]

Based on the norms of the scalar field modes, the natural frequency for the “in”

modes is ω, while for the “up” modes it is ω̃. Choosing ω > 0 for the “in” modes

and ω̃ > 0 for the “up” modes as the definition of positive frequency leads to the

“past” Boulware [4, 5] state, for which the UEVSET for a fermion field is [2]

〈B−|T̂µν |B
−〉=

1

2

∞

∑
ℓ= 1

2

ℓ

∑
m=−ℓ

{

∫ ∞

0
dωTµν

[

ψin
ωℓm

]

+

∫ ∞

0
dω̃Tµν

[

ψup
ωℓm

]

}

. (5)

Like the Boulware state on a Schwarzschild black hole, the “past” Boulware state

is divergent on the event horizon of a Kerr black hole, but it is regular everywhere

outside the event horizon. Unlike the Boulware state on a Schwarzschild black hole,
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it is not empty at infinity; there is an outgoing flux of radiation at I+ [5]. The con-

struction of the “past” Boulware state is identical for both scalar and fermion fields.

“Boulware” state |B〉 [2]

We next seek to construct an analogue of the Boulware state on Schwarzschild

space-time, which is as empty as possible at both future and past null infinity, I±.

We would therefore like to choose ω > 0 as positive frequency for both “in” and

“up” modes. For scalar fields there is an immediate problem: the “up” modes have

positive norm for ω̃ > 0, not ω > 0. As a result for scalar fields no state empty

at both future and past null infinity I± can be defined [4]. However, for fermion

fields all modes have positive norm and in this case we can construct a state, the

“Boulware” state |B〉, by taking ω > 0 as the definition of positive frequency for all

modes. The UEVSET for a fermion field in this state is [2]

〈B|T̂µν |B〉=
1

2

∞

∑
ℓ= 1

2

ℓ

∑
m=−ℓ

∫ ∞

0
dω

{

Tµν

[

ψin
ωℓm

]

+Tµν
[

ψup
ωℓm

]

}

. (6)

To determine where the state |B〉 is regular, we subtract from (6) the UEVSET (5),

since the state |B−〉 is regular everywhere outside the event horizon. It can be seen

from Fig. 2a that this difference in expectation values is regular outside the station-

ary limit surface of the Kerr black hole, but diverges in the ergosphere. We therefore

deduce that the state |B〉 is also regular outside the stationary limit surface but di-

vergent in the ergosphere.

“Hartle-Hawking” state |H〉 [2]

To define an analogue of the Hartle-Hawking state on Schwarzschild space-time, we

would like to construct a state representing a Kerr black hole in thermal equilibrium

with a heat bath at the Hawking temperature TH . Since the frequency of the modes

near the horizon is ω̃, this would correspond to thermally populating the “in” and

“up” modes with energy ω̃. For a quantum scalar field, this cannot be done because

the “in” modes are defined in terms of frequency ω, not ω̃.

On the other hand, for fermions on Kerr we are able to define a “Hartle-Hawking”

state for which both the “in” and “up” modes are thermalized with energy ω̃. In this

case the UEVSET for the fermion field is [2]

〈H|T̂µν |H〉=
1

2

∞

∑
ℓ= 1

2

ℓ

∑
m=−ℓ

∫ ∞

0
dω̃ tanh

(

ω̃
2TH

)

{

Tµν

[

ψin
ωℓm

]

+Tµν
[

ψup
ωℓm

]

}

. (7)

To determine where the state |H〉 is regular, we subtract from (7) the UEVSET (5). It

can be seen from Fig. 2b that this difference in expectation values is regular between
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Fig. 2a Regularity properties of |B〉. The

UEVSET (5) is subtracted from (6). Dark re-

gions indicate where this difference is diver-

gent and light regions where it is finite. Taken

from [2]

Fig. 2b Regularity properties of |H〉. The

UEVSET (5) is subtracted from (7). Dark re-

gions indicate where this difference is diver-

gent and light regions where it is finite. Taken

from [2]

the event horizon and the speed-of-light surface, but diverges outside the speed-of-

light surface. We therefore deduce that the state |H〉 is also regular between the

event horizon and the speed-of-light surface but diverges outside the speed-of-light

surface.
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