
Physics Letters B 753 (2016) 268–273
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Topological black holes in su(N) Einstein–Yang–Mills theory
with a negative cosmological constant

J. Erik Baxter a, Elizabeth Winstanley b,∗
a Norfolk Building, Sheffield Hallam University, 1 Howard Street, Sheffield, S1 1WB, United Kingdom
b Consortium for Fundamental Physics, School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road,
Sheffield, S3 7RH, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 November 2015
Accepted 8 December 2015
Available online 11 December 2015
Editor: M. Cvetič
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We investigate the phase space of topological black hole solutions of su(N) Einstein–Yang–Mills theory 
in anti-de Sitter space with a purely magnetic gauge potential. The gauge field is described by N − 1
magnetic gauge field functions ω j , j = 1, . . . , N − 1. For su(2) gauge group, the function ω1 has no zeros. 
This is no longer the case when we consider a larger gauge group. The phase space of topological black 
holes is considerably simpler than for the corresponding spherically symmetric black holes, but for N > 2
and a flat event horizon, there exist solutions where at least one of the ω j functions has one or more 
zeros. For most of the solutions, all the ω j functions have no zeros, and at least some of these are linearly 
stable.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Many properties of black holes in asymptotically anti-de Sit-
ter (adS) space–time are rather different from those of black holes 
in asymptotically flat space–time. For example, stationary vac-
uum black holes in four-dimensional asymptotically flat space–
time must have spherical event horizon topology [1,2] but in four-
dimensional adS space–time, vacuum black holes with other event 
horizon topologies exist (see, for example, [3–12]).

Many properties of black holes with nontrivial matter field hair 
in asymptotically adS space–time also differ from the properties of 
their asymptotically flat counterparts. In su(2) Einstein–Yang–Mills 
(EYM) theory, spherically symmetric, asymptotically flat “coloured” 
black holes [13] are unstable under linear, spherically symmet-
ric, perturbations [14]. In contrast, there exist stable, spherically 
symmetric, asymptotically adS, black hole solutions of su(2) EYM 
with a negative cosmological constant [15–17]. Analogues of these 
spherically symmetric, asymptotically adS black holes with non-
spherical event horizon topology also exist when the gauge group 
is su(2) [18]. Furthermore, these topological EYM black holes are 
linearly stable [18].
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Since the discovery of stable black holes in su(2) EYM in adS, 
black hole solutions with the larger su(N) gauge group have been 
extensively studied (see [19,20] for reviews). For all N , there exist 
stable, spherically symmetric, purely magnetic, asymptotically adS 
black holes [21–23]. For su(N) gauge group, the purely magnetic 
gauge field is described by N − 1 independent functions, so these 
stable black holes have an unlimited amount of gauge field “hair”.

A natural question is whether there exist analogues of the 
purely magnetic, spherically symmetric black holes in su(N) EYM 
in adS with nonspherical event horizon topology. Recently this 
question was answered in the affirmative [24], in two regimes: 
(a) for a negative cosmological constant with sufficiently large 
magnitude and (b) in a neighbourhood of an embedded su(2) so-
lution. Furthermore, the proof of the existence of stable spherically 
symmetric su(N) EYM black holes in adS [23] can be extended 
to these topological su(N) EYM black holes, showing that at least 
some purely magnetic topological black holes, in the intersection 
of the regimes (a) and (b) above, are linearly stable [25].

The analytic work in [24,25] proves the existence of stable topo-
logical black holes in su(N) EYM in adS, but does not tell us about 
the nature of the phase space of topological black hole solutions. 
In the spherically symmetric case, the phase space of purely mag-
netic black hole solutions of su(N) EYM in adS has a very rich 
structure [26]. In this letter we explore the phase space of numer-
ical topological black hole solutions of su(N) EYM in adS, drawing 
comparisons with the spherically symmetric solution space studied 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in [26]. We begin in section 2 with a review of the salient features 
of su(N) EYM in adS before presenting our numerical results in 
section 3 and our conclusions in section 4.

2. su(N) Einstein–Yang–Mills theory in adS

We consider Einstein–Yang–Mills (EYM) theory in four space–
time dimensions, having the action:

S = 1

2

∫
d4x

√−g
[

R − 2� − Tr Fαβ F αβ
]
, (1)

where R is the Ricci scalar and � < 0 the cosmological con-
stant. Here and throughout this paper we use units in which 
8πG = c = 1. We also set the gauge coupling constant equal to 
unity. The nonabelian gauge field strength Fμν is given in terms of 
the gauge field potential Aμ as follows:

Fμν = ∂μ Aν − ∂ν Aμ + [
Aμ, Aν

]
. (2)

Varying the action (1) gives the EYM field equations:

Rαβ − 1

2
Rgαβ + �gαβ = Tαβ,

∇α F α
β + [

Aα, F α
β

] = 0, (3)

where the stress–energy tensor of the Yang–Mills field is:

Tαβ = Tr Fαλ F λ
β − 1

4
gαβTr Fλσ F λσ , (4)

with Tr denoting a Lie algebra trace.
In this letter we are interested in asymptotically anti-de Sitter 

(adS) topological black holes. The metric ansatz we employ takes 
the form:

ds2 = −μ(r)S(r)2 dt2 + [μ(r)]−1 dr2 + r2
(

dθ2 + f 2
k (θ)dφ2

)
,

(5)

where the metric functions μ(r) and S(r) depend on the radial 
coordinate r only. The metric function μ(r) can be written in an 
alternative form in terms of a new function m(r):

μ(r) = k − 2m(r)

r
− �r2

3
. (6)

In (5), (6), the constant k can take the values {1, 0, −1}. The form 
of the function fk depends on k as follows:

fk(θ) =
⎧⎨
⎩

sin θ, k = 1,

θ, k = 0,

sinh θ, k = −1.

(7)

When k = 1, the metric (5) is spherically symmetric, with the t =
constant, r = constant hypersurfaces being two-spheres. For k = 0, 
the t = constant, r = constant hypersurfaces are two-dimensional 
Euclidean spaces, while for k = −1 these hypersurfaces have con-
stant negative curvature (see [3–12] for further details).

An appropriate ansatz for a purely magnetic su(N) Yang–Mills 
gauge field potential on the space–time with metric (5) is [18,24,
27]

Aα dxα = 1

2

(
C − C H

)
dθ

− i

2

[(
C + C H

)
fk(θ) + D

dfk(θ)

dθ

]
dφ, (8)

where C and D are N × N matrices. The matrix C has hermi-
tian conjugate C H and is upper-triangular, with nonzero entries 
only immediately above the diagonal. These nonzero entries can 
be written in terms of N − 1 functions of r only:

C j, j+1 = ω j(r), j = 1, . . . , N − 1. (9)

The matrix D is constant and diagonal:

D = Diag{N − 1, N − 3, . . . ,−N + 3,−N + 1}. (10)

The ansatz (8) reduces in the case k = 1 to that in [27] for a 
purely magnetic spherically-symmetric su(N) gauge field potential. 
For su(2) EYM, it is the ansatz used in [18] for topological black 
holes. The general form (8) was derived in [24]. The su(N) gauge 
potential (8) is therefore described by the N − 1 magnetic field 
functions ω j(r), j = 1, . . . , N − 1.

With the form of the gauge potential (8) and the metric ansatz 
(5), (6), the field equations (3) simplify to the following Einstein 
equations [24]:

m′ = μG + r2 pk,
S ′

S
= 2G

r
, (11)

with

G =
N−1∑
j=1

ω′ 2
j , pk = 1

4r4

N∑
j=1

[
ω2

j − ω2
j−1 − k (N + 1 − 2 j)

]2
,

(12)

and N − 1 coupled Yang–Mills equations

0 = r2μω′′
j +

(
2m − 2r3 pk − 2�r3

3

)
ω′

j + Wk, jω j, (13)

where

Wk, j = k − ω2
j + 1

2

(
ω2

j−1 + ω2
j+1

)
. (14)

As in the k = 1 case, the equation (11) for the metric variable 
S(r) decouples from the remaining equations. Furthermore, the 
field equations (11), (13) are invariant under the transformation 
ω j → −ω j for each j independently, and also under j → N − j for 
all j.

We are interested in topological black holes with a regular 
event horizon at r = rh , where μ(rh) = 0 and μ′(rh) > 0. We as-
sume that the field variables m(r), S(r) and ω j(r) have regular 
Taylor series expansions in a neighbourhood of r = rh , of the form

m(r) = m(rh) + m′(rh) (r − rh) + O (r − rh)
2 ,

S(r) = S(rh) + S ′(rh) (r − rh) + O (r − rh)
2 ,

ω j(r) = ω j(rh) + ω′
j(rh) (r − rh) + O (r − rh)

2 . (15)

The condition μ(rh) = 0 fixes m(rh) to be

m(rh) = rh

2

(
k − �r2

h

3

)
. (16)

The parameters S(rh) and ω j(rh) are a priori arbitrary; the value of 
S(rh) will be fixed by the boundary conditions at infinity. From the 
field equations (11), (13) the values of m′(rh), ω′

j(rh) and S ′(rh) are 
fixed in terms of rh , � and the values of the magnetic gauge field 
functions on the horizon ω j(rh) [24]. For a regular event horizon 
at r = rh , we require μ′(rh) > 0 and this implies that

m′(rh) = r2
h pk(rh) <

1

2

(
k − �r2

h

)
, (17)

which places a (weak) constraint on the values of the magnetic 
gauge field functions on the horizon ω j(rh). For the k = −1 case, 
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Fig. 1. Phase space of topological black hole solutions of su(2) EYM for (a) k = 0, (b) k = −1. In both plots we have fixed the event horizon radius to be rh = 1 and varied |�|. 
Black hole solutions exist in the regions below the solid curves. For parameter values above the solid curves there are no solutions. The region bounded by dashed and solid 
curves denotes that region of parameter space where the condition (17) for a regular event horizon holds, but we did not find a suitable numerical solution. All topological 
black hole solutions are such that ω1(r) has no zeros so that n1 = 0.
the relation (17) implies the existence of a minimum value of |�|
for fixed rh:

|�| > 1

r2
h

(
1 + N(N − 1)(N + 1)

6r2
h

)
. (18)

As r → ∞, the field variables have the following expansions 
[24]:

m(r) = M + O (r−1), S(r) = 1 + O (r−1),

ω j(r) = ω j,∞ + O (r−1), (19)

where M and ω j,∞ are arbitrary constants. The value of the met-
ric function S(rh) on the horizon is fixed by the requirement that 
S(r) → 1 as r → ∞. The local existence of solutions of the field 
equations (11), (13) satisfying the boundary conditions (15), (19)
is proven in [24].

The field equations (11), (13) possess a trivial solution when 
all the magnetic gauge field functions are set to vanish identically 
ω j(r) ≡ 0. In this case S(r) ≡ 1 and the other metric function takes 
the form

μ(r) = k − 2M

r
+ Q 2

r2
− �r2

3
, (20)

where M is an arbitrary constant and the magnetic charge Q is 
given by

Q 2 = k2

6
N (N + 1) (N − 1) . (21)

For k = 0, we have Q = 0 and the solution is the embedded 
Schwarzschild–adS black hole with planar event horizon topology. 
For k = −1, the magnetic charge Q > 0 and we have an em-
bedded (magnetically-charged) Reissner–Nordström–adS black hole 
with constant negative curvature horizon.

3. Topological black hole solutions

We now integrate the field equations (11), (13) numerically. 
We begin our integration close to the event horizon r = rh , using 
the expansion of the field variables (15) as initial conditions. We 
then integrate for increasing r until either the solution approaches 
the boundary conditions (19) to within a suitable tolerance or the 
solution becomes singular. The field equations (11), (13) are invari-
ant under the transformation ω j(r) → −ω j(r) for each j indepen-
dently, so without loss of generality we may restrict our attention 
to values of the parameters such that ω j(rh) > 0 for all j.
In this section we plot the phase spaces of topological black 
hole solutions of the field equations, fixing rh = 1, so that all 
length scales are in units of the event horizon radius, and con-
sidering various �. The plots show the spaces of initial parameters 
v j = ω j(rh) which determine the solutions, and we explore the 
values of v j for which there is a regular event horizon, so that (17)
holds. In each plot, we show the region of the parameter space for 
which there are nontrivial topological black hole solutions and la-
bel these solutions by the quantities n j , with n j being the number 
of zeros of the magnetic gauge field function ω j . We review the 
numerical solutions for su(2) gauge group [18] before discussing 
our new solutions for su(3) gauge group.

3.1. su(2) topological black holes

Topological black hole solutions of the su(2) EYM field equa-
tions (11), (13) were first found in [18]. In this case the YM field is 
described by a single gauge field function ω1(r). In Fig. 1 we plot 
the phase space of solutions for k = 0 and k = −1 in plots (a) and 
(b) respectively, with rh = 1 and varying cosmological constant �. 
The black holes are parameterized by � and v1 = ω1(rh), the value 
of the single magnetic gauge field function on the horizon. In Fig. 1
we show the space of the parameters (�, v1) satisfying the con-
dition (17) for a regular black hole event horizon at r = rh . This is 
the region underneath the dotted curves. For some values of the 
parameters (�, v1) such that (17) is satisfied, the numerical so-
lution of the field equations (11), (13) becomes singular at some 
r < ∞. Such points are contained in the region labelled “no solu-
tion”, bounded by the dotted and solid curves.

Nontrivial topological black holes exist in the regions below the 
solid curves in the plots in Fig. 1. The line v1 = 0 corresponds 
to the trivial embedded Reissner–Nordström–adS black hole with 
magnetic charge given by (21). As shown in [18], for all the solu-
tions for both k = 0 and k = −1 the single magnetic gauge field 
function ω1(r) has no zeros, so n1 = 0.

For k = 0, we find nontrivial solutions for all values of � with 
rh = 1, but for |�| smaller than 10−3 the range of values of v1
for which there are solutions is very small, as in this case the 
condition (17) reduces to v4

1 < −�r4
h . In accordance with this in-

equality, as |�| increases, we find an increasingly large range of v1
for which nontrivial black hole solutions exist.

For k = −1 and rh = 1, the minimum value of |�| for which 
there is a regular event horizon, given by (18), reduces to |�| > 2. 
As in the k = 0 case, as |�| increases for k = −1, we find an in-
creasing range of values of v1 for which there are nontrivial black 
hole solutions.
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Fig. 2. Phase space of topological black hole solutions of su(3) EYM for k = 0. We have fixed the event horizon radius to be rh = 1 and � to have the values (a) −0.01, 
(b) −0.1, (c) −1 and (d) −7. Black hole solutions exist in the region bounded by the axes and the solid curves. For parameter values outside the solid curves there are no 
solutions. The region bounded by dashed and solid curves denotes that region of parameter space where the condition (17) for a regular event horizon holds, but we did not 
find a suitable numerical solution. Regions where there are nontrivial topological black hole solutions are labelled according to the number of zeros n1, n2 of the magnetic 
gauge field functions ω1, ω2 respectively.
The phase spaces in Fig. 1 for k = 0 and k = −1 are much sim-
pler than the corresponding phase space of spherically symmetric 
(k = 1) black holes (see, for example, [26]). In the k = 1 case, for 
fixed rh and sufficiently large |�|, all the black holes are such 
that ω1(r) has no zeros. However, as |�| decreases, n1 increases 
(for example, with |�| = 10−4, there are k = 1 black holes with 
ω1(r) having up to four zeros [26]). As |�| → 0, the phase space 
of k = 1 black holes fragments and reduces to the asymptotically 
flat “coloured” black holes [13]. If k 	= 1, there is no asymptotically 
flat limit. For k = −1 the phase space of topological black holes 
simply ends when |�| < 2, while for k = 0 the phase space shrinks 
to zero size as |�| → 0.

In [18] it is shown that all the k = 0 topological black hole solu-
tions shown in Fig. 1 are stable under linear, spherically symmetric 
perturbations. For k = −1, solutions for which ω1,∞ > 1 in (19) are 
shown to be stable [18].

3.2. su(3) topological black holes

All the su(2) solutions shown in Fig. 1 can be embedded as 
solutions of su(N) EYM theory for any N [24]. Setting

ω j(r) = √
j (N − j)ω(r), (22)

and defining rescaled quantities r̃ , m̃, �̃ as follows:

r̃ = Ñ− 1
2 r, m̃ = Ñ− 1

2 m, �̃ = Ñ�, (23)

where

Ñ = 1
N (N − 1) (N + 1) , (24)
6

it is found that ω and m̃, considered as functions of r̃, satisfy 
the su(2) EYM field equations (11), (13) with cosmological con-
stant �̃ [24]. In [24] it is proven that there exist nontrivial (that is, 
nonembedded) su(N) topological black holes in a neighbourhood 
of these embedded su(2) black holes.

In Figs. 2 and 3 we plot the phase space of su(3) topological 
black holes for k = 0 and k = −1 respectively. In each case we 
fix rh = 1. The black holes are now parameterized by v1 = ω1(rh), 
v2 = ω2(rh) and �. We fix a few selected values of � for both 
k = 0 and k = −1 and plot the phase space in (v1, v2) in each 
case. As in the su(2) case, we scan over those values of (v1, v2)

for which the condition (17) is satisfied.
In each plot in Figs. 2 and 3, the condition (17) for a regu-

lar event horizon is satisfied by parameter values in the region 
enclosed by the axes and the dotted curve. It can be seen how 
the size of this region expands as |�| increases, in accordance 
with (17). For some values of the parameters such that (17) holds, 
we are unable to find a suitable numerical solution, and these 
values of the parameters are in the region labelled “no solution” 
between the dotted and solid curves. We find nontrivial topologi-
cal black hole solutions for values of the parameters (v1, v2) in the 
regions bounded by solid curves and the axes. The regions with 
solutions are labelled according to the number of zeros (n1, n2) of 
the magnetic gauge field functions ω1(r), ω2(r) respectively.

From Figs. 2, 3, the region of parameter space where we 
have nontrivial topological black hole solutions expands as |�| in-
creases, both in absolute size and in its size relative to the size 
of the region of parameter space for which (17) holds. For both 
k = 0 and k = −1, embedded su(2) topological black hole solu-
tions lie on the line v1 = v2. From (22) and the discussion in 
section 3.1, for these embedded solutions the two magnetic gauge 
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Fig. 3. Phase space of topological black hole solutions of su(3) EYM for k = −1. We have fixed the event horizon radius to be rh = 1 and � to have the values (a) −5.1, 
(b) −7, (c) −10 and (d) −20. Black hole solutions exist in the region bounded by the axes and the solid curves. For parameter values outside the solid curves there are no 
solutions. The region bounded by dashed and solid curves denotes that region of parameter space where the condition (17) for a regular event horizon holds, but we did not 
find a suitable numerical solution. Regions where there are nontrivial topological black hole solutions are labelled according to the number of zeros n1, n2 of the magnetic 
gauge field functions ω1, ω2 respectively. For all solutions found we have n1 = 0 = n2.
field functions are equal and have no zeros so n1 = 0 = n2. Since 
the field equations (11), (13) are invariant under the transforma-
tion j → N − j, the phase space of su(3) black holes is symmetric 
about the line v1 = v2. The point where v1 = 0 = v2 gives the triv-
ial embedded Reissner–Nordström–adS black hole with magnetic 
charge Q = 2k (21).

For k = 0, the condition (17) makes no constraints on the mag-
nitude of the cosmological constant � and we find nontrivial 
topological black holes for all values of � examined. For each �
we find a region of nontrivial topological black hole solutions for 
which both gauge field functions ω1 and ω2 have no zeros, whose 
existence was proven in [24] for sufficiently large |�|. This region 
contains the embedded su(2) solutions. For larger values of |�|, all 
nontrivial solutions found are such that both ω1 and ω2 have no 
zeros.

However, for smaller values of |�| we find nontrivial topolog-
ical black hole solutions for which at least one of ω1, ω2 has 
zeros. The corresponding regions of parameter space lie between 
the nodeless n1 = 0 = n2 regions (which contain all the embedded 
su(2) solutions) and the “no solution” region. When � = −1 we 
find solutions with n1 = 0, n2 = 1 and n1 = 1, n2 = 0 in very small 
regions exterior to the n1 = 0 = n2 region. The size of the regions 
of parameter space containing n1 = 1, n2 = 0 or n1 = 0, n2 = 1
solutions increases as |�| decreases, as a proportion of the total 
size of the region of parameter space for which there are nontriv-
ial solutions. For � = −0.01 we also find numerical solutions with 
n1 = 2, n2 = 0 and n1 = 0, n2 = 2, but the relevant regions of pa-
rameter space are too small to be seen in Fig. 2(a). They lie just 
outside the regions where n1 = 1, n2 = 0 or n1 = 0, n2 = 1.
The overall shape of the region of parameter space for which 
there are nontrivial solutions with k = 0 also changes as |�| in-
creases: for small |�| we see a cusp-like shape at the maximum 
values of v1 and v2 in this region, but this smooths out for larger 
values of |�|. This qualitative feature is also seen the k = 1 spher-
ically symmetric black holes discussed in [26].

The phase space shown in Fig. 2 is much simpler than that for 
spherically symmetric solutions with k = 1 [26]. When k = 0 there 
are nodeless solutions for any value of |�|, no matter how small 
(in a neighbourhood of the embedded su(2) solutions), whereas 
when k = 1 and |�| = 10−4 there are no nodeless solutions [26]. 
For a fixed |�|, we also find a smaller range of values of n1 and 
n2 when k = 0 compared with k = 1. For example, with |�| = 0.1, 
when k = 0 we find the following combinations of (n1, n2): (0, 0), 
(1, 0) and (0, 1), but with k = 1 there are also the combinations 
(1, 1), (2, 0), (2, 1), (2, 2), (1, 2) and (0, 2) [26]. As |�| decreases 
towards zero, in the k = 0 case presented here we do not see the 
fragmentation of the phase space seen when k = 1 [26]. This is 
because for k = 0 there is no solution in the |�| → 0 limit; instead 
the phase space simply shrinks in size as |�| decreases.

For k = −1, with rh = 1, the minimum value of |�| for which 
there is a regular event horizon is |�| = 5. Unlike the situation for 
k = 0, for k = −1 all the topological black hole solutions that we 
find numerically are such that both magnetic gauge field functions 
have no zeros, so n1 = 0 = n2. Furthermore, the shape of the region 
of parameter space for which there are nontrivial solutions does 
not vary much as |�| increases.
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4. Discussion

In this letter we have constructed numerical solutions of the 
su(N) Einstein–Yang–Mills (EYM) equations in anti-de Sitter (adS) 
space–time representing purely magnetic topological black holes. 
These solutions generalize the numerical spherically-symmetric 
black holes and solitons discussed in detail in [26]. We have ex-
plored the phase space of solutions for su(2) and su(3) gauge 
groups, for both k = 0 (planar event horizon topology) and k = −1
(when the event horizon is a surface of constant negative curva-
ture).

In the su(2) case, the (single) magnetic gauge field function 
has no zeros for all topological black holes with both k = 0 and 
k = −1 [18]. For N > 2, the existence of topological black holes 
for which all the magnetic gauge field functions have no zeros is 
proven in [24]. These solutions are of particular interest because 
at least some of them have been proven to be stable under lin-
ear perturbations of the metric and gauge field [25]. In the su(3)

case, all the numerical solutions we find for k = −1 have node-
less magnetic gauge field functions, but this is not the case for 
k = 0. When k = 0, as well as the nodeless solutions whose exis-
tence was proven in [24], we also find topological black holes for 
which at least one of the gauge field functions has one or more 
zeros.

Topological black holes with Ricci-flat (k = 0) event horizons 
have attracted a great deal of attention recently as models of holo-
graphic superconductors (see, for example, [28] for a recent re-
view). In particular, su(2) EYM black holes in adS with k = 0 have 
been studied as gravitational analogues of p-wave superconduc-
tors [29]. Unlike the situation in this paper (where we consider 
only purely magnetic gauge fields), in holographic superconductor 
models the gauge field is dyonic, with nonzero electric and mag-
netic parts. The magnetic part of the su(2) gauge field forms a 
nontrivial condensate outside the event horizon and vanishes as 
r → ∞ [29,30]. A natural question is whether enlarging the gauge 
group to su(N) yields solutions which also model holographic su-
perconductors. Recently the existence of dyonic topological black 
holes in su(N) EYM in adS was proven [31], but in that paper the 
solutions shown to exist are such that all the gauge field functions 
have no zeros (including at infinity), which are not relevant for 
holographic superconductors. A numerical study of the solutions 
of the field equations for a dyonic gauge field, extending the work 
in this letter, is therefore needed. We leave an investigation of this 
for future work.
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