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Abstract

We investigate the induced action of convolution semigroups of
probability measures on Lie groups on the L2-space of Haar measure.
Necessary and sufficient conditions are given for the infinitesimal gen-
erator to be self-adjoint and the associated symmetric Dirichlet form is
constructed. We show that the generated Markov semigroup is trace-
class if and only if the measures have a square-integrable density. Two
examples are studied in some depth where the spectrum can be ex-
plicitly computed, these being the n-torus and Riemannian symmetric
pairs of compact type.
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1 Introduction

Brownian motion on a compact Riemannian manifold is a good source of
topological and geometric information (see e.g. [6], [9]). This is because it is
a time homogeneous Markov process whose associated transition semigroup
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is precisely the heat semigroup which is generated by the Laplace-Beltrami
operator acting on functions. We may enquire as to whether there are any
other Markov processes on a manifold that have an intrinsic geometric char-
acter and natural candidates for investigation are Lévy processes [4]. A great
deal more is known about these processes in the Lie group case than on more
general manifolds (see [16] and references therein) and since a wider range of
tools are available in this context it makes sense to begin our investigations
here. Indeed because of the light it sheds on the properties of key operators,
it seems that this can be a useful study in its own right from a purely analytic
perspective.

For a Markov process to be a suitable candidate for geometric investiga-
tion it is reasonable to ask for the action of generator on the L2-space of Haar
measure to have a discrete spectrum of real-valued eigenvalues (c.f. [19], [5]).
This is far from the case for all Lévy processes on Lie groups and the purpose
of this paper is to identify some conditions when this holds. Throughout this
paper we work with convolution semigroups of probability measures rather
than Lévy processes as this seems to be a more natural framework. There
is no loss of generality here. Given such a convolution semigroup we can
always construct a Lévy process on the space of all real-valued mappings on
the group by using Kolmogorov’s construction theorem. Conversely the laws
of a group-valued Lévy process form a convolution semigroup.

The organisation of this paper is as follows. We begin in section 1 by
collecting together key results that we’ll need about convolution semigroups
and the induced “Hunt semigroup” (Tt, t ≥ 0) on the space of continuous
functions which vanish at infinity. We describe Hunt’s classification of the
infinitesimal generators of these semigroups from his seminal 1956 paper
[14]. We then examine the action of this semigroup on the L2-space of a
right-invariant Haar measure and give necessary and sufficient conditions
for the generator to be self-adjoint extending the account that is given in
Corollary 2.4 of [15]. As a consequence of these results we are able to obtain
a Beurling-Deny representation for the associated symmetric Dirichlet form.
Most of the results of this section can be extended to general locally compact
groups by using the approach of E.Born [8].

In the second part of the paper we turn our attention to finding sufficient
conditions for Tt to be trace-class for all t > 0. We prove that a necessary
and sufficient condition is that it has a square-integrable density. Finally
we focus on two cases where the spectrum can be computed explicitly. The
first of these is the n-torus where we can use the classical Lévy-Khintchine
formula. In the second case we employ spherical functions to investigate bi-
invariant convolution semigroups on Riemannian symmetric pairs of compact
type. We study the d-sphere in some detail where we can use subordination
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to construct specific examples.

Notation. Einstein summation convention will be used throughout this
paper. If G is a locally compact group then B(G) is the σ-algebra of all Borel
sets in G, Cb(G) is the Banach space (with respect to the supremum norm)
of all real-valued bounded continuous functions on G, C0(G) is the closed
subspace of Cb(G) which consists of functions which vanish at infinity, Cc(G)
is the dense linear subspace in C0(G) comprising functions of compact sup-
port and C∞

c (G) is the subspace of Cc(G) wherein all functions are required
to be smooth (i.e. infinitely differentiable).

2 Hunt’s Theorem and Self-Adjointness

Let G be a locally compact group with neutral element e and let M(G)
denote the set of all Borel probability measures on G. It is a monoid
with respect to the binary operation of convolution where the identity el-
ement is δe, the Dirac mass at e. We recall that the convolution µ1 ∗ µ2

of µ1, µ2 ∈ M(G) is the unique Borel probability measure on G for which∫
G

f(σ)(µ1 ∗µ2)(dσ) =
∫

G

∫
G

f(στ)µ1(dσ)µ2(dτ), for all real-valued bounded
Borel functions f defined on G. The reversed measure µ̃ that is associated to
each µ ∈M(G) is defined by µ̃(A) = µ(A−1) for each A ∈ B(G). µ ∈M(G)
is said to be symmetric if µ̃ = µ. A family of probability measures (µt, t ≥ 0)
is a weakly continuous convolution semigroup of probability measures on G
(or convolution semigroup for short) if µ0 = δe, µs+t = µs ∗ µt for all s, t ≥ 0
and limt→0

∫
G

f(σ)µt(dσ) = f(e), for all f ∈ Cb(G). Such a semigroup is
said to be symmetric if each µt is. It is easily verified that (µt, t ≥ 0) is a
convolution semigroup if and only if (µ̃t, t ≥ 0) is a convolution semigroup.
Given a convolution semigroup (µt, t ≥ 0), we obtain a strongly continu-
ous contraction semigroup of linear operators (Tt, t ≥ 0) on C0(G) via the
prescription

(Ttf)(σ) =

∫

G

f(στ)µt(dτ), (2.1)

for all t ≥ 0, σ ∈ G. It is easily verified that LσTt = TtLσ for all σ ∈ G where
Lσf(τ) = f(σ−1τ) for all f ∈ C0(G), σ, τ ∈ G.

The infinitesimal generator of (Tt, t ≥ 0) will be denoted as L. Clearly
Dom(L) is Lσ-invariant and LLσf = LσLf for all σ ∈ G and all f ∈ Dom(L).
We call (Tt, t ≥ 0) a Hunt semigroup and L its Hunt generator in view of
Hunt’s seminal work on classifying these operators [14] in the Lie group case
which we will describe below. The corresponding Hunt semigroup associated
to (µ̃t, t ≥ 0) is denoted by (T̃t, t ≥ 0) and its generator is L̃, so for all
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t ≥ 0, f ∈ C0(G), σ ∈ G, (T̃tf)(σ) =
∫

G
f(στ−1)µt(dτ). For the remainder of

this section G will be an n-dimensional Lie group with Lie algebra g whose
elements will be considered as left-invariant vector fields. We first fix a basis
(Xj, 1 ≤ j ≤ n) of g and define the dense linear manifold C2(G) := {f ∈
C0(G); Xi(f) ∈ C0(G) and XiXj(f) ∈ C0(G) for all 1 ≤ i, j ≤ n}. There
exist functions xi ∈ C∞

c (G), 1 ≤ i ≤ n so that xi(e) = 0, Xixj(e) = δij and
xi(σ) = −xi(σ

−1) for all σ ∈ G, 1 ≤ i, j ≤ n. A measure ν defined on B(G−
{e}) is called a Lévy measure whenever

∫
G−{e} {(

∑n
i=1 xi(σ)2) ∧ 1} ν(dσ) <

∞.

Theorem 2.1 (Hunt’s theorem) Let (µt, t ≥ 0) be a convolution semi-
group of measures in G with Hunt generator L then

1. C2(G) ⊆ Dom(L).

2. For each σ ∈ G, f ∈ C2(G),

Lf(σ) = biXif(σ)+aijXiXjf(σ)+

∫

G−{e}
(f(στ)−f(σ)−xi(τ)Xif(σ))ν(dτ),

(2.2)

where b = (b1, . . . bn) ∈ Rn, a = (aij) is a non-negative-definite, sym-
metric n× n real-valued matrix and ν is a Lévy measure on G− {e}.

Conversely, any linear operator with a representation as in (2.2) is the re-
striction to C2(G) of the Hunt generator corresponding to a unique convolu-
tion semigroup of probability measures.

For the proof see [14] or more recently [16]. We call (b, a, ν) the charac-
teristics of L. It is easy to see that L has characteristics (b, a, ν) if and only

if L̃ has characteristics (−b, a, ν̃).
Let m be a right-invariant Haar measure on G. We will adopt the

standard convention of writing m(dσ) as dσ within integrals. The action
of each Tt when restricted to C∞

c (G) extends to a bounded operator on
L2(G) := L2(G,m;R) which we continue to denote by Tt. Using standard
arguments we can show that (Tt, t ≥ 0) is a strongly continuous contrac-
tion semigroup on L2(G) which is also Markovian in that f ∈ L2(G) and
0 ≤ f ≤ 1 (a.e.) ⇒ 0 ≤ Ttf ≤ 1 (a.e.). From now on the actions of Hunt
semigroups will always be considered in the L2-setting. It is easily verified
that T̃t = T ∗

t (see Proposition 2.2 in [15]) and hence L̃ = L∗.
Define C2

c (G) = C2(G)∩Cc(G) then since C∞
c (G) ⊆ C2

c (G) it follows that
C2

c (G) is dense in L2(G) and by Theorem 2.1 we see that C2
c (G) ⊆ Dom(L)
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where L is now considered as the L2-generator of (Tt, t ≥ 0). Furthermore
we see that for all f ∈ C2

c (G), σ ∈ G,

L∗f(σ) = −biXif(σ)+aijXiXjf(σ)+

∫

G−{e}
(f(στ−1)−f(σ)+xi(τ)Xif(σ))ν(dτ),

(2.3)
(c.f. (2.7) in [15]).

Theorem 2.2 The following are equivalent.

(i) The convolution semigroup (µt, t ≥ 0) is symmetric.

(ii) Tt = T ∗
t for each t ≥ 0.

(iii) L = L∗.
(iv) b = 0, ν = ν̃.

(v) For all f ∈ C2
c (G),

Lf(σ) = aijXiXjf(σ)+
1

2

∫

G−{e}
(f(στ)−2f(σ)+f(στ−1))ν(dτ). (2.4)

Proof. The equivalence of (i), (ii) and (iv) is stated in Corollary 2.4 of [15].
(ii) ⇔ (iii) is standard semigroup theory and (iv) ⇒ (v) is straightforward.
Finally for (v) ⇒ (i) we observe that if (v) holds then Lf = L∗f for each
f ∈ C2

c (G). To see this it is sufficient to observe that for all σ ∈ G,
∫

G−{e}
(f(στ)− 2f(σ) + f(στ−1))ν(dτ) =

∫

G−{e}
(Rτ − 2I + Rτ−1)f(σ)ν(dτ)

=

∫

G−{e}
(Rτ − 2I + R∗

τ )f(σ)ν(dτ),

where Rτf(σ) = f(στ) for each τ ∈ G. By a density argument in C0(G)

we then deduce that Lf = L̃f for each f ∈ C2(G). Now since by Theorem

2.1, L|C2(G) uniquely determines (µt, t ≥ 0) and L̃
∣∣∣
C2(G)

uniquely determines

(µ̃t, t ≥ 0), we deduce that µt = µ̃t for all t ≥ 0, as was required. ¤
In Theorem 2.2 we always assumed that the operator L was the generator

of a Hunt semigroup. We weaken this assumption in the next theorem.

Theorem 2.3 If L is a linear operator defined on C2
c (G) which has the form

(2.4) then it extends to the generator of a unique symmetric convolution
semigroup.
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Proof. For all f ∈ C2
c (G), σ ∈ G we have

1

2

∫

G−{e}
(f(στ)− 2f(σ) + f(στ−1))ν(dτ)

=
1

2

(∫

G−{e}
(f(στ)− f(σ)− xi(τ)Xif(σ))ν(dτ)

+

∫

G−{e}
(f(στ−1)− f(σ) + xi(τ)Xif(σ))ν(dτ)

)

=

∫

G−{e}
(f(στ)− f(σ)− xi(τ)Xif(σ))νs(dτ).

Since νs := 1
2
(ν + ν̃) is a Lévy measure it follows by Theorem 2.1 (after

first extending the action of the operator to C2(G)) that L extends to the
generator of a unique convolution semigroup and by Theorem 2.2 that the
measures are symmetric. ¤

Now suppose that L is a self-adjoint Hunt generator in L2(G,m). The
next result gives a classical Beurling-Deny representation for the Dirichlet
form E associated to L by the prescription

E(f, g) := −〈f,Lg〉,

for each f, g ∈ Dom(L).

Theorem 2.4 For each f, g ∈ C2
c (G),

E(f, g) = aij

∫

G

(Xif)(σ)(Xjg)(σ)dσ+

∫

(G×G)−D

(f(ρ)−f(σ))(g(ρ)−g(σ))µ(dρ, dσ),

where D := {(σ, σ), σ ∈ G} and µ(dρ, dσ) := ν(σ−1dρ)dσ.

Proof. This is easily verified and is essentially contained in Proposition
2.1 of [15]. ¤

We remark that if the Haar measure m is both left and right invariant,
which holds if e.g. G is abelian, compact, semi-simple or both connected
and nilpotent (see Proposition 1.6 of [12]) then the Dirichlet form E is left-
invariant. Indeed in this case Lσ is a unitary operator in L2(G) for each
σ ∈ G and so for all f, g ∈ Dom(L) we have

E(Lσf, Lσg) = −〈Lσf,LLσg〉 = −〈Lσf, LσLg〉 = E(f, g).
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3 Trace Class Properties

In this section we seek to obtain conditions which ensure that the Hunt
semigroup Tt is trace-class for all t > 0. First we establish a valuable fact
about general semigroups of linear operators.

Proposition 3.1 If (Rt, t ≥ 0) is a semigroup of bounded operators on a
(real or complex) separable Hilbert space with R0 = I then Rt is trace-class
for all t > 0 if and only if Rt is Hilbert-Schmidt for all t > 0.

Proof. If Rt is trace class for some t > 0 it is also Hilbert-Schmidt as the
trace-class operators are a subset of the Hilbert-Schmidt ones. Conversely if
Rt is Hilbert-Schmidt for all t > 0 we write each Rt = R t

2
R t

2
and use the

fact that the product of two Hilbert-Schmidt operators is trace-class (see e.g.
Theorem VI.22(h) in [18].) ¤.

Note. In fact Proposition 3.1 may be generalised to the effect that Rt is
trace-class for all t > 0 if and only if Rt is in some von-Neumann Schatten
ideal for all t > 0. See Proposition 3.3 in [20] for details.

We now return to the study of Hunt semigroups (Tt, t ≥ 0) acting in L2(G)
where G is now a locally compact group equipped with a left-invariant Haar
measure.

Theorem 3.1 Tt is a Hilbert-Schmidt operator for all t > 0 if and only if µt

has a square-integrable density gt for all t > 0. Moreover in this case

Ttf(σ) =

∫

G

f(τ)gt(σ
−1τ)dτ, (3.5)

and

||Tt||22 =

∫

G

|gt(τ)|2dτ.

Proof. By e.g. Theorem VI.23 in [18] we see that Tt is Hilbert-Schmidt if
and only if there exists kt ∈ L2(G×G) such that (Ttf)(σ) =

∫
G

f(τ)kt(σ, τ)dτ
for all f ∈ L2(G). If µt has a density gt ∈ L2(G) we simply define kt(σ, τ) :=
gt(σ

−1τ) and it follows that Tt is Hilbert-Schmidt for all t > 0. Conversely
if we assume the Hilbert-Schmidt property for the semigroup then for all
t > 0, A ∈ B(G) we have

µt(A) = Tt1A(e) =

∫

A

kt(e, τ)dτ,
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from which it follows that µt is absolutely continuous with respect to Haar
measure with density gt(τ) = kt(e, τ). Writing µt(dτ) = gt(τ)dτ in (2.1), we
see that for t > 0, σ ∈ G, f ∈ L2(G),

Ttf(σ) =

∫

G

f(στ)gt(τ)dτ =

∫

G

f(τ)gt(σ
−1τ)dτ.

From this and the kernel representation we have
∫

G
f(τ)(kt(σ, τ)−gt(σ

−1τ))dτ =
0 for all f ∈ L2(G), σ ∈ G and so kt(σ, τ) = gt(σ

−1τ) (a.e. m). The prescrip-
tion for ||Tt||22 then follows from Theorem VI.23 in [18]. ¤

By Theorem 3.1 and Proposition 3.1 we conclude that if (Tt, t ≥ 0) is a
Hunt semigroup then Tt is trace-class for all t > 0 if and only if µt has a
square-integrable density gt for all t > 0.

We remark that necessary and sufficient conditions for an arbitrary prob-
ability measure on a compact Lie group to have a density have been found
in [3] by using Peter-Weyl theory. Some specific classes of convolution semi-
groups that have a square-integrable density for all t > 0 have been obtained
by Liao [16] (see Theorems 4.1, 4.3 and 4.4 therein.) They require G to be
connected as well as compact and can be summarised as requiring that one
of the following holds:

(i) det(a) > 0 and ν is finite.

(ii) Ll is hypoelliptic and (µt, t ≥ 0) is symmetric.

(iii) Ll is hypoelliptic and (µt, t ≥ 0) is conjugate-invariant.

We now give an example of a convolution semigroup that cannot have a
density. Fix λ > 0 and let ρ be a given probability measure on G. We take
(µt, t ≥ 0) to be the associated compound Poisson semigroup which is defined

by µt := e−λtδe + e−λt
∑∞

n=1

(λt)n

n!
ρ∗

n

, for t > 0 where ρ∗
0

:= δe. Clearly the

presence of the Dirac mass at e is an obstacle to absolute continuity. To
explore this a little further, we define λt := µt − e−λtδe, for each t > 0. Now
suppose that ρ has a density h, In this case it is easily verified that for each

t > 0, λt has a density gt := e−λt
∑∞

n=1

(λt)n

n!
h∗

n

. We then have the Lebesgue

decomposition µt = e−λtδe + λt for each t > 0.

We now return to the consideration of general convolution semigroups on
Lie groups and focus on some specific cases where the spectrum of L can be
explicitly computed.

Case 1: The n-dimensional torus
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Let (µt, t ≥ 0) be a convolution semigroup on R. It is well known that
there exists a continuous, hermitian, negative definite function η : Rn → C
for which η(0) = 0 such that

∫

Rn

eiu·xµt(dx) = e−tη(u),

for each u ∈ Rn, t ≥ 0. The generic form of η is given by the Lévy-Khinchine
formula

η(u) = ib · u + u · au +

∫

Rn−{0}
(1− eiu·y + iu · y1B1(y))ν(dy), (3.6)

where (b, a, ν) are the characteristics of the semigroup (µt, t ≥ 0) and B1

is the unit ball in Rn that is centered on the origin. In this case we may
write the Hunt generator with respect to the basis {∂1, . . . , ∂n} of first order
partial differential operators corresponding to the natural basis in Rn and so
for each f ∈ C2(Rn), x ∈ Rn

Lf(x) = bi∂if(x) + aij∂i∂jf(x) +

+

∫

Rn−{0}
[f(x + y)− f(x)− yi∂if(x)1B1(y)]ν(dy). (3.7)

Now consider the n-dimensional torus Πn = Rn/(2πZ)n and let γ : Rn →
Πn be the canonical surjection. We obtain a convolution semigroup of mea-
sures on Πn by the prescription µγ

t = µt ◦ γ−1 and the corresponding Hunt
semigroup is given by T γ

t f = Tt(f ◦γ−1) for t ≥ 0, f ∈ C(Πn). The generator
of (T γ

t , t ≥ 0) is denoted Lγ and Lγf = L(f ◦ γ−1) for all f ∈ C2(Πn). We
identify functions on Πn with periodic functions on Rn in the usual way. The
characters {em,m ∈ Zn} where em(y) = eim·y for each y ∈ Πn form a com-
plete orthonormal basis of eigenfunctions for the action of Lγ in L2(Πn,C).
Indeed a straightforward computation using (3.7) yields

Lγem = −η(m)em,

for each m ∈ Zn. It follows that T γ
t is trace-class for t > 0 if and only if

∑

m∈Zn

|e−tη(m))| =
∑

m∈Zn

e−t<(η(m)) < ∞.

We have shown that Tt is trace-class if and only if µt has a square-
integrable density. Some examples where the latter holds have been explicitly
calculated in section 4 of [3] and we refer the reader to that paper for the
proof of the assertion given in the following proposition as well as precise
definitions of all terms that are employed.
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Proposition 3.2 Tt is trace-class for t > 0 if any of the following conditions
hold:

(i) The matrix a is non-singular.

(ii) n = 1 and (µt, t ≥ 0) is α-stable with 0 < α < 2.

(iii) n > 1 and (µt, t ≥ 0) is rotationally invariant and α-stable with 0 <
α < 2.

(iv) The Lévy measure ν is asymptotic at the origin to that of an α-stable
Lévy measure.

We now make some comments on the structure of the spectrum in the
important case where we have self-adjointness. If (µt, t ≥ 0) is symmetric
then so is (µγ

t , t ≥ 0) and hence Lγ is self-adjoint by Theorem 2.24. In this
case

η(m) = m · am +

∫

Rn−{0}
(1− cos(m · y))ν(dy), (3.8)

for all m ∈ Zn and so Lγ has a discrete non-negative spectrum. Clearly if
m 6= 0, η(m) = η(−m) and it is easily deduced that if

(m1+m2)·a(m1−m2)+2

∫

Rn−{0}
sin

(
(m1 −m2) · y

2

)
sin

(
(m1 + m2) · y

2

)
ν(dy) 6= 0

whenever m1 6= m2 then Lγ has the Hodge property (see Theorem 1.2.9 in
[19]) that all its eigenvalues have multiplicity two with the exception of zero.

Taking n = 1 and a 6= 0 in (3.8) it may be of interest to study the

function of a complex variable given by z 7→
∞∑

m=1

1

η(m)z
. It is not difficult

to verify that this series is absolutely convergent when <(z) > 1
2

and that
the corresponding function is holomorphic in this region. In the case where
ν ≡ 0 and a = 1 we obtain the Riemann zeta function evaluated at z

2
.

Case 2: Compact Symmetric Pairs

Let G be a compact, connected semisimple Lie group and K be a closed
subgroup of G. We assume that the pair (G,K) form a Riemannian sym-
metric pair of compact type. This means (in particular) that G/K is a
compact globally Riemannian symmetric space. Full details can be found
in [11]. Let π be an irreducible unitary representation of G so that for each
g ∈ G, π(g) is a unitary matrix acting in a complex finite-dimensional Hilbert
space Hπ with dimension dπ. IrrK(G) will denote the set of all (equivalence
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classes) of irreducible representations of G which are spherical in the sense
that if π ∈ IrrK(G) then there exists ψπ ∈ Hπ such that πkψπ = ψπ for all
k ∈ K. We note that IrrK(G) is a countable set. For each π ∈ IrrK(G) define
φπ ∈ C(G) by

φπ(σ) =

∫

K

tr(π(σ−1k))dk,

for all σ ∈ G. These are precisely the spherical functions on (G,K) i.e. the
unique mappings f ∈ C(G,C) for which

∫

K

f(σkτ)dk = f(σ)f(τ), (3.9)

for all σ, τ ∈ G. We refer the reader to [12] for general facts about spher-
ical functions. We shall make use of the well-known fact that {√dπφπ, π ∈
IrrK(G)} is a complete orthonormal basis for the Hilbert space L2

K(G) :=
{f ∈ L2(G), f(k1σk2) = f(σ), for all k1, k2 ∈ K and almost all σ ∈ G}.

Now let (µt, t ≥ 0) be a spherical convolution semigroup on G i.e. µt(k1Ak2) =
µt(A) for all t > 0, k1, k2 ∈ K and all A ∈ B(G). We choose our basis
{X1, . . . , Xn} of g to be orthonormal with respect to the inner product given
by minus the Killing form on g. Following Liao [16] (equation 2.16, p.40) we
may also choose the functions xi(1 ≤ i ≤ n) to be such that

xi(kσ)Xi = xi(σ)Ad(k)Xi, (3.10)

for each σ ∈ G, k ∈ K where Ad is the adjoint representation of G. It follows
from work of Gangolli [10] (see also [17] and [1]) that b = 0, the matrix
a = cI where c ≥ 0 and ν is a spherical measure i.e. that ν(k1Ak2) = ν(A)
for all k1, k2 ∈ K and all A ∈ B(G). Now if we write L = L1 + L2 where L1

is the second order differential operator part of L then L1 is right-invariant
for the action of K as well as being left-invariant under that of G and hence,
by properties of spherical functions [12], for each π ∈ IrrK(G)

L1φπ = −βπφπ, (3.11)

for some βπ ≥ 0. We also have Gangolli’s Lévy-Khinchine formula ([10],
[17]): ∫

G

φπ(σ)µt(dσ) = exp{−tηπ},

where ηπ = βπ +

∫

G

(1− φπ(τ))ν(dτ). (3.12)

Since φπ ∈ C∞(G) we may compute the action of the Hunt generator L on
spherical functions. This is carried out in the following theorem
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Theorem 3.2 For each π ∈ IrrK(G),

Lφπ = −ηπφπ. (3.13)

Proof. We fix a Cartan involution Θ of g and we let k and p be the
eigenspaces of Θ corresponding to eigenvalues 1 and −1 (respectively). Then
k is the Lie algebra of K and we have the Cartan decomposition g = k ⊕
p. Suppose that dim(k) = m and choose the basis {X1, . . . , Xn} so that
X1, . . . , Xm ∈ k and Xm+1, . . . , Xn ∈ p. For each π ∈ IrrK(G), φπ is K-bi-
invariant and hence for each X ∈ k, σ ∈ G,

Xφπ(σ) =
d

da
φπ(σ exp aX)

∣∣∣∣
a=0

=
d

da
φπ(σ)

∣∣∣∣
a=0

= 0.

Consequently using the fact that ν is spherical and Fubini’s theorem we have

L2φπ(σ) =

∫

G−{e}
[φπ(στ)− φπ(e)−

n∑
j=m+1

xj(τ)Xjφπ(σ)]ν(dτ)

=

∫

G−{e}

[∫

K

φπ(σkτ)dk − 1−
n∑

j=m+1

∫

K

xj(kτ)Xjφπ(σ)dk

]
ν(dτ).

Now for each τ ∈ G, let Yτ =
∑n

j=m+1

∫
K

xj(kτ)Xjdk. Then Yτ ∈ p.
Furthermore for each l ∈ K, we have by (3.10)

Ad(l)Yτ =
n∑

j=m+1

∫

K

xj(τ)(Ad(l) ◦ Ad(k))Xjdk

=
n∑

j=m+1

∫

K

xj(τ)(Ad(lk))Xjdk

=
n∑

j=m+1

∫

K

xj(lkτ)Xjdk = Yτ ,

and so Yτ = 0 by Theorem 2 of [17]. Using (3.9) we hence deduce that

L2φπ(σ) =

(∫

G−{e}
(φπ(τ)− 1)ν(dτ)

)
φπ(σ),

and the required result follows from this result and (3.11) via (3.12). ¤
Note It is conjectured that a similar result to (3.13) holds in the more

general context of convolution semigroups in Gelfand pairs (G, K) where G
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is compact (see [13]) and in an appropriate class of commutative hypergroups
(see section 4.5 in [7]).

We immediately deduce from Theorem 3.2 that Tt is trace class for all
t > 0 (in the Hilbert space L2

K(G)) if and only if

∑

π∈IrrK(G)

|e−tηπ | < ∞. (3.14)

Let π be the canonical surjection from G to G/K. There is a one to one
correspondence between convolution semigroups (µt, t ≥ 0) of spherical mea-
sures on G and convolution semigroups (κt, t ≥ 0) of K-invariant measures
on G/K (in the sense of [17]) given by κt = µt ◦ π−1 for t > 0. The corre-
sponding C0-semigroup (Qt, t ≥ 0) on C(G/K) is given by Qtf ◦π = Tt(f ◦π)
for each t ≥ 0, f ∈ C(G/K). Every spherical function ψ on G/K is induced
by a spherical function φ on G so that φ = ψ ◦ π. The normalised Haar
measure on G projects to a G-invariant measure on G/K and there is a
canonical isomorphism between the Hilbert spaces L2

K(G) and L2
K(G/K) :=

{f ∈ L2(G/K); f(kσK) = f(σK) for all k ∈ K and almost all σ ∈ G}. The
upshot of these facts is that

∫

G

φπ(σ)µt(dσ) =

∫

G/K

ψπ(y)κt(dy),

for each π ∈ IrrK(G) and that Qt is trace-class in L2
K(G/K) if and only if Tt

is trace class in L2
K(G) for each t > 0.

Example Spherical convolution semigroups on SO(d + 1)

Here we take G = SO(d + 1) and H = SO(d) so that G/K is the d-
sphere Sd. The spherical functions are of the form r → Pn,d(cos(r)) for
n ∈ Z+ where Pn,d is the nth degree ultraspherical (Gegenbauer) polynomial
and r is the geodesic distance from the north pole o = π(e). In this case we
have for each n ∈ Z+

η(n) = cn(n + d− 1) +

∫ ∞

0

(1− Pn,d(cos(r)))ω(dr), (3.15)

where
∫∞

0
r2ω(dr) < ∞ (see [13]). Since |Pn,d(cos(r))| ≤ 1 for all 0 ≤ r < ∞,

we see that a sufficient condition for Tt to be trace-class for t > 0 is that
c > 0 since in this case

∞∑
n=0

|e−tη(n)| ≤
∞∑

n=0

e−cn(n+d−1)t < ∞.
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We now consider a class of “non-Gaussian” Hunt semigroups on SO(d+1).
Let (µt, t ≥ 0) correspond to “ spherical c-Brownian motion” so that η(n) =
cn(n + d − 1) for all n ∈ Z+ where c > 0. Now let (ρα

t , t ≥ 0) be an α-
stable subordinator on R+ where 0 < α < 1, so that its characteristics are

(0, 0, λα) where λα(dx) =
α

Γ(1− α)

dx

x1+α
. We form a new convolution semi-

group (µα
t , t ≥ 0) of spherical measures on SO(d + 1) by the prescription

µα
t (A) =

∫
(0,∞)

µs(A)ρα
t (ds) for each A ∈ B(SO(d + 1)), t ≥ 0. Further-

more the characteristics of (µα
t , t ≥ 0) are (0, 0,mα

λ,µ) where mα
λ,µ(B) =∫

(0,∞)
µs(B)λα(ds) for B ∈ B(SO(d + 1) − {0}) (see [2] for details). If

{X1, . . . , Xd+1} is the given basis for the Lie algebra so(d + 1) then the
Hunt generator of (µα

t , t ≥ 0) may be written as −cα(−X2
1 − · · · − X2

d+1)
α

and (3.15) takes the form ηα(n) = −cαnα(n + d− 1)α. By similar arguments
to those used to establish Proposition 3.2 (ii) we can easily verify that for all
0 < α < 1, the Hunt semigroup is trace-class for all t > 0.
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mannian, Lecture Notes in Mathematics Vol 194, Springer-Verlag
Berlin, Heidelberg, New York (1971)

14



[6] J-M.Bismut, Probability and geometry in Probability and analysis
(Varenna, 1985), 1-60, Lecture Notes in Math. 1206, Springer-Verlag
Berlin (1986)

[7] W. R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on
Hypergroups, de Gruyter (1995).
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