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Abstract

We review and extend Lindsay’s work on abstract gradient and diver-
gence operators in Fock space over a general complex Hilbert space. Pre-
cise expressions for the domains are given, the L2-equivalence of norms is
proved and an abstract version of the Itô-Skorohod isometry is established.
We then outline a new proof of Itô’s chaos expansion of complex Lévy-Itô
space in terms of multiple Wiener-Lévy integrals based on Brownian mo-
tion and a compensated Poisson random measure. The duality transform
now identifies Lévy-Itô space as a Fock space. We can then easily obtain
key properties of the gradient and divergence of a general Lévy process.
In particular we establish maximal domains of these operators and obtain
the Itô-Skorohod isometry on its maximal domain.

Key words and phrases. Fock space, exponential vector, universal
annihilation and creation operators, number operator, Lindsay-Malliavin
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tion theorem, chaos decomposition, duality transform, stochastic (Doléans-
Dade) exponential, gradient, divergence, Malliavin derivative, Itô-Skorohod
isometry.

MSC 2000: 60H07, 81S25, 28C20, 60G51

1 Introduction

Malliavin calculus is one of the deepest and most important areas within con-
temporary stochastic analysis. It was originally developed as a new probabilistic
technique to find smooth densities for solutions of stochastic differential equa-
tions (SDEs). At a more fundamental level it provides an intrinsic differential
calculus in Gaussian probability spaces based on two mutually adjoint linear
operators - the gradient and the divergence (see e.g. [39], [42], [30], [26], [53] for
monograph accounts). More recently it has enabled the developments of new
techniques in mathematical finance (see [40] and references therein).

Ever since the early days of the subject there has been plenty of activity in
widening the scope of Malliavin calculus to include jump processes and [10] is
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a monograph dedicated to this theme. More recently there has been increased
interest in these ideas - partly due to new progress in finding smooth densities
for special classes of SDEs driven by Lévy processes (see e.g. [31], [27]) but also
for the need to extend the calculus to financial models based on jump processes
(see e.g. [34], [13], [47] and the forthcoming monograph [17]).

Fock space has long been known to be intimately connected with probability
theory. Indeed if the natural L2-space of a process has a chaotic decomposition
then it is automatically isomorphic to a Fock space over the Cameron-Martin
space (in probabilistic language) or one-particle space (in physical terms). The
first direct use of Fock space ideas in Malliavin calculus seems to have been by
Dermoune, Krée and Wu [15] in work on non-anticipating stochastic calculus
(including a generalised Itô formula) for the Poisson process. These ideas were
then taken up by Nualart and Vives who defined the gradient and divergence for
the Poisson process directly in Fock space [43] and Dermoune [14] who extended
the work of [15] to general Lévy processes.

In a separate development, Hudson and Parthasarathy [25] realised that
Fock space is the natural setting for a quantum stochastic calculus based on
a non-commutative splitting of Brownian motion and the Poisson process into
constituent annihilation, creation and conservation noise processes (see also [46],
[41], [37]). Parthasarathy (see [46] p.155-8) also showed that Lévy processes
may be represented in Fock space and the corresponding extended quantum
stochastic calculus was developed in [1], [3]. A key paper by Lindsay [36] brought
Malliavin calculus directly into the non-commutative framework to devise a non-
anticipating quantum stochastic calculus. This built on and developed ideas
appear in the works of Belavkin (see e.g. [6, 5, 7]). More recent developments
in this area can be found in [4]. A fully quantised Malliavin calculus based on
the Wigner density is due to Franz, Léandre and Schott [21], [22].

The goal in the first part of this paper is to begin to develop a universal
Malliavin calculus in Fock space over a general separable Hilbert space (see
also Privault and Wu [51]). There is no probability content (either classical or
quantum) in the theory at this stage. We work in an abstract Hilbert space and
we focus our studies on two operators originally introduced by Lindsay [36] in
the context of a Fock-Guichardet space [24] and called abstract gradient and
divergence therein. We prefer to call them universal annihilation and creation
operators as they can be transformed into the usual annihilation and creation
operators indexed by a given vector in one-particle space after composition with
a suitable Dirac bra or ket operator. Following Privault [50] (see also Privault
and Wu [51]) we denote these by ∇− and ∇+ respectively. The aim of universal
Malliavin calculus can be summed up succinctly as follows - given a process
having a chaos decomposition, map ∇− and ∇+ unitarily into the L2-space of
the process where they become the gradient D and divergence δ. Then structural
properties of ∇− and ∇+ are automatically transferred to D and δ with little
additional effort. In this paper we illustrate this technique through application
to a Lévy process, but it could easily be applied to any other process having a
chaotic representation, such as the Azéma martingale [20] or the Dunkl process
[23].

The results obtained for ∇− and ∇+ in [36] were extended to Fock space
over an abstract separable Hilbert space by Lindsay in Proposition 3.1 of [37].
He established three key properties of these operators:
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(1) The maximal domain of ∇−.

(2) The factorisation of the number operator N = ∇+∇−.

(3) An isometry-type property for ∇+ which generalises the key Itô-Skorohod
isometry that lies at the heart of non-anticipating stochastic calculus (a
result of this kind was also established independently by Privault and Wu
[51]).

The proofs of these results were outlined in [36]. We give full proofs in
section 3 of this paper for the sake of completeness. The approach presented
here is different and we reformulate the result of (1) in a way that will be more
familiar to probabilists. We also extend the theory by obtaining a result on
the L2-equivalence of norms which is the first step towards a theory of infinite
dimensional Sobolev spaces at this level.

In section 4 we turn to probability theory and study the chaotic represen-
tation of a Lévy process. This result, originally due to Itô [28], shows that
the natural L2-space H of the process (called Lévy-Itô space herein) is natu-
rally isomorphic to the infinite direct sum of the chaoses generated by multiple
Wiener-Lévy integrals constructed from the Brownian motion B and compen-
sated Poisson measure Ñ associated to the process through its Lévy-Itô decom-
position. More straightforward proofs of this result have recently been found by
Løkka [38] for square integrable processes and Petrou [47] in the general case.
Their approach is to iterate the Itô representation of the process whereby any
element of H is a constant plus an Itô stochastic integral with respect to B and
Ñ . The Itô representation is itself proved by a density argument using a class
of exponential martingales of Wiener-Lévy stochastic integrals of deterministic
functions. We briefly outline a generalisation of these results. The main dif-
ference for us is that H is complex and this allows a simpler proof of the Itô
representation using a more natural class of exponential martingales. We only
give outline proofs here as the methodology is well-known and a full account
will appear shortly in [2] (ii) (similar ideas are employed in Bichteler [9], p.259.)

The chaotic representation induces a unitary isomorphism called the duality
transform between H and a certain Fock space. In section 4 we also prove that
the image of the exponential vectors under this isomorphism is the stochastic
or Doléans-Dade exponentials. A general result of this type was hinted at by
Meyer in [41] p.71 but he only explicitly considered the Wiener space case. These
vectors and their chaos expansions have recently found interesting applications
to interest-rate modelling [11].

In the last part of the paper we apply the duality transform to the results
(1) to (5) of section 1 to obtain the Lévy process versions of these for D and δ.
Our main results are

1. The maximal domains of D and δ expressed in terms of chaos expansions.

2. The full Itô-Skorohod isometry on a maximal domain.

We note that the Itô-Skorohod isometry has also recently been investigated
in [16] using white noise analysis techniques but these authors were restricted to
using a pure jump square integrable Lévy process without drift and no explicit
domain was given. A white noise approach is also developed in [33] but under
the constraint that the Lévy measure has moments to all orders (see also [32]).
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In this paper we have only made the first few steps in the direction of a
universal Malliavin calculus. A defect of the theory as it stands is that it
only works at the Hilbert space level and so there are, for example, no direct
analogues of the full range of infinite dimensional Sobolev spaces which require
Lp structure when p 6= 2. It may be that this can be remedied by using a
Banach-Fock space as in section 6 of [8].

Some related work on Malliavin calculus for Lévy processes has recently been
presented in [54]. The key novel ingredient here is the development of a new
canonical construction for pure jump Lévy processes which facilitates the study
of the Malliavin derivative through its representation as a difference quotient.

Notation: All inner products in complex Hilbert spaces are conjugate linear
on the left. The algebraic tensor product of two vector spaces V1 and V2 will be
denoted V1⊗V2. If T is a closable operator in a Hilbert space, we will throughout
this paper use the same notation T for its closure on the larger domain. Dom(T )
will always denote the maximal domain of T . If S is a topological space then
B(S) is its Borel σ-algebra.

2 Fock Space Preliminaries

In this section we define some key operators in Fock space. Full proofs of all
results mentioned here can be found in [46], [41] or [37].

Let H be a complex separable Hilbert space and H⊗n

be its n-fold tensor
product. We denote by H⊗n

s the closed subspace of H⊗n

comprising symmetric
tensors. H¯n

s is the image of H⊗n

s under the bijection ψ →
√

n!ψ and is regarded
as a Hilbert space with respect to the inner product 〈·, ·〉H¯n

s
= n!〈·, ·〉H⊗n

s
. We

write f¯
n

:=
√

n!f⊗
n

. If g ∈ H we define the symmetrisation of f¯
n

and g to
be the vector Symm(f¯

n

, g) ∈ H¯n+1

s defined by

Symm(f¯
n

, g) :=

√
n!

n + 1

n∑
r=0

f⊗
n−r ⊗ g ⊗ f⊗

r

.

Note that the choice of normalisation ensures that Symm(f¯
n

, f) = f¯
n+1

.
Symmetric Fock space over H is Γ(H) :=

⊕∞
n=0 H⊗n

s , where by convention
H⊗0

s := C and H⊗1

s := H. We also define Γ̂(H) :=
⊕∞

n=0 H¯n

s . Of course
Γ̂(H) and Γ(H) are naturally isomorphic (see below) and we will freely move
between these spaces in the sequel. We will often identify H⊗n

s with its natural
embedding in Γ(H) whereby each fn ∈ H⊗n

s is mapped to (0, . . . , 0, fn, 0, . . .).
The exponential vector e(f) ∈ Γ(H) corresponding to f ∈ H is defined

by e(f) =
(
1, f, f⊗f√

2!
, . . . , f⊗

n

√
n!

, . . .
)
. We have 〈e(f), e(g)〉 = e〈f,g〉, for each

f, g ∈ H. The mapping f → e(f) from H to Γ(H) is analytic.
If D ⊆ H we define E(D) to be the linear span of {e(f), f ∈ D}. In particular

if D is a dense linear manifold in H then E(D) is dense in Γ(H). We define E :=
E(H). If f ∈ H, the corresponding annihilation operator a(f), creation operator
a†(f), exponential annihilation operator U(f) and exponential creation operator
U†(f) are defined on E by linear extension of the following prescriptions:

a(f)e(g) = 〈f, g〉e(g), (2.1)
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a†(f)e(g) =
d

dt
e(g + tf)

∣∣∣∣
t=0

, (2.2)

U(f)e(g) = e〈f,g〉e(g), (2.3)

U†(f)e(g) = e(g + f), (2.4)

for all g ∈ H. Each of these operators is closable, indeed a†(f) ⊆ a(f)∗, U †(f) ⊆
U(f)∗, for each f ∈ H. We also have the canonical commutation relations

a(f)a†(g)ψ − a†(g)a(f)ψ = 〈f, g〉ψ, (2.5)

for all f, g ∈ H, ψ ∈ E .
If T is a contraction in H then its second quantisation Γ(T ) is the contraction

in Γ(H) whose action on E is given by linear extension of

Γ(T )e(f) = e(Tf). (2.6)

In particular if T is unitary, then so is Γ(T ). If A is a bounded self-adjoint
operator in H we define the associated conservation operator Λ(A) to be the
infinitesimal generator of the one-parameter unitary group (Γ(eitA), t ∈ R). It
is easily checked that E ⊆ Dom(Λ(A)) and we have the useful identity

〈e(f), Λ(A)e(g)〉 = 〈f, Ag〉〈e(f), e(g)〉, (2.7)

for all f, g ∈ H.
The number operator is defined by N := Λ(I). Its domain is Dom(N) ={

(fn, n ∈ Z+) ∈ Γ(H);
∑∞

n=1 n2||fn||2 < ∞}
. The associated contraction semi-

group is (Tt, t ≥ 0) where for each t ≥ 0

Tt := e−tN =
∞∑

n=0

e−tnPn,

and where Pn denotes the orthogonal projection from Γ(H) to H⊗n

s .
The unitary isomorphism from Γ(H) to Γ̂(H) which we employ to identify

these spaces is (N !)−
1
2 .

Using the analyticity of exponential vectors, we can easily check that finite
particle vectors are in the domains of annihilation and creation operators and
we deduce the following:

a(f)g¯
n

= n〈f, g〉g¯n−1
, (2.8)

a†(f)g¯
n

= Symm(g¯
n

, f), (2.9)

for all f, g ∈ H.
If H = H1 ⊕H2 we may identify Γ(H) with Γ(H1)⊗ Γ(H2) via the natural

isomorphism which maps e(f) to e(f1) ⊗ e(f2) for each f = (f1, f2) ∈ H. In
this context we will always denote the linear span of the exponential vectors in
Hi by Ei(i = 1, 2).
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3 Universal Annihilation and Creation Opera-
tors

For each t ∈ R we define linear operators Vt : Γ(H) → Γ(H) ⊗ Γ(H) and
V †

t : Γ(H)⊗Γ(H) → Γ(H) on the dense domains E and E ⊗ E (respectively) by
linear extension of the following prescriptions:

Vte(f) = e(f)⊗ e(tf), (3.10)

V †
t (e(f)⊗ e(g)) = U(tg)†e(f) = e(f + tg), (3.11)

for all f, g ∈ H.

Proposition 3.1 For each t ∈ R, Vt and V †
t are closable with V †

t ⊆ V ∗
t .

Proof. The result will follow if we can show that these operators are mutually
adjoint. Now for all f, g, h ∈ H, t ∈ R,

〈Vte(f), e(g)⊗ e(h)〉 = 〈e(f)⊗ e(tf), e(g)⊗ e(h)〉
= 〈e(f), e(g)〉〈e(tf), e(h)〉
= 〈et〈h,f〉e(f), e(g)〉
= 〈U(th)e(f), e(g)〉 (by 2.3)
= 〈e(f), U(th)†e(g)〉
= 〈e(f), V †

t e(g)⊗ e(h)〉.

¤
We define linear operators ∇− : Γ(H) → Γ(H)⊗H and ∇+ : Γ(H)⊗H →

Γ(H) on the dense domains E and E ⊗H (respectively) by linear extension of
the following prescriptions, for each f, g ∈ H:

∇−e(f) =
d

dt
Vte(f)

∣∣∣∣
t=0

,

so by (3.10)
∇−e(f) = e(f)⊗ f, (3.12)

and ∇+(e(f)⊗ g) =
d

dt
V †

t e(f)⊗ e(g)
∣∣∣∣
t=0

,

so by (3.11)
∇+(e(f)⊗ g) = a†(g)e(f). (3.13)

Proposition 3.2 ∇− and ∇+ are closable with ∇+ ⊆ (∇−)∗.

Proof. The fact that ∇− and ∇+ are mutually adjoint follows from differ-
entiation of the adjunction relation between Vt and V †

t and the result follows.
¤

We call ∇− and ∇+ universal annihilation and universal creation operators
(respectively) for as will be shown below (Proposition 3.3) they generate all
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of the “usual” creation and annihilation operators which depend on a choice
of vector in H. For each n ∈ Z+ we denote the restrictions of ∇− and ∇+

to H¯n

s and H¯n

s ⊗ H (respectively) by ∇−n and ∇+
n . Using the analyticity

of exponential vectors, we can easily deduce that Ran(∇−n ) ⊆ H¯n

s ⊗ H and
Ran(∇+

n ) ⊆ H¯n+1

s and obtain the following analogues of (2.8) and (2.9) (c.f.
[50]):

∇−n f¯
n

= nf¯
n−1 ⊗ f (3.14)

∇+
n f¯

n ⊗ g = Symm(f¯
n

, g), (3.15)

for each f, g ∈ H.

Lemma 3.1 For each n ∈ Z+, ∇−n and ∇+
n are bounded operators with ||∇−n || =√

n and ||∇+
n || =

√
n + 1.

Proof. For each f ∈ H,

||∇−n f¯
n || = n||f¯n−1 ⊗ f ||

= n
√

(n− 1)!||f ||n =
√

n||f¯n ||H¯n
s

.

The result for ∇−n follows from the fact that the linear span of {f¯n

, f ∈ H} is
dense in H¯n

s .
For each f, g ∈ H,

||∇+
n (f¯

n ⊗ g)|| =

∣∣∣∣∣

∣∣∣∣∣

√
n!

n + 1

n∑
r=0

f⊗
n−r ⊗ g ⊗ f⊗

r

∣∣∣∣∣

∣∣∣∣∣
≤

√
(n + 1)!||f ||n||g||

=
√

n + 1||f¯n ⊗ g||H¯n
s ⊗H .

Since the linear span of {f¯n ⊗g, f, g ∈ H} is dense in H¯n

s ⊗H, it follows that
∇+

n is bounded. To see that the bound is obtained, observe that for all f ∈ H,

∇+
n (f¯

n ⊗ f) = Symm(f¯
n

, f) =
√

n + 1f¯
n ⊗ f. ¤

If φn ∈ H¯n

s ⊗H, there exist sequences (fn,r, r ∈ N) and (gr, r ∈ N) where
each fn,r ∈ H¯n

s and gr ∈ H such that φn =
∑∞

r=1 fn,r ⊗ gr. We define

φ̃n := ∇+
n φn =

∞∑
r=1

Symm(fn,r, gr).

In the next theorem we will find it convenient to identify Γ̂(H) ⊗ H with⊕∞
n=0(H

¯n

s ⊗H).

Theorem 3.1 1. Dom(∇−) =
{

ψ = (ψn, n ∈ Z+) ∈ Γ̂(H);
∑∞

n=1 nn!||ψn||2 < ∞
}

.

2. Dom(∇+) =
{

φ = (φn, n ∈ Z+) ∈ Γ̂(H)⊗H;
∑∞

n=0 ||φ̃n||2 < ∞
}

.

Proof.
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1. (Sufficiency)

Let ψ ∈ Γ̂(H) be such that
∑∞

n=1 nn!||ψn||2 < ∞ and for each M ∈ Z+,
define ψ(M) = (ψ0, ψ1, . . . , ψM , 0, 0, . . .). Clearly ψ(M) → ψ as M → ∞.
Using Lemma 3.1 we see that for each M, N ∈ N, N > M

||∇−ψN −∇−ψM ||2 =
N∑

n=M+1

nn!||ψn||2 → 0 as N, M →∞.

Hence (∇−ψN , N ∈ N) converges to a vector φ in Γ̂(H)⊗H. Since ∇− is
closed, we deduce that φ = ∇−ψ and so ψ ∈ Dom(∇−).

(Necessity) Suppose that ψ = (ψn, n ∈ Z+) ∈ Dom(∇−), then ∇−ψ =
(∇−n ψn, n ∈ Z+) and again using Lemma 3.1 we obtain

||∇−ψ||2 =
∞∑

n=0

||∇−n ψn||2

=
∞∑

n=1

nn!||ψn||2 < ∞.

2. This is proved by exactly the same argument as (1). ¤

Clearly, as an operator on Γ̂(H), Dom(∇−) = Dom(
√

N) (see [37], [36]). To
some extent, Theorem 3.1 (2) tells us less than (1) (although it is sufficient for
applications in probability). Another approach to ∇+ is given by J.M.Lindsay
in [37]. Let Φ(H) be the full Fock space over H. Then since Γ(H) ⊗ H =⊕∞

n=0(H
⊗n

s ⊗ H) ⊆ Φ(H) we can regard ∇+ as an operator from Φ(H) to
Γ(H). In fact it is not difficult to verify that in this case ∇+ =

√
NPs where

Ps is the orthogonal projection from Φ(H) to Γ(H).

Now suppose that H = H1⊕H2, then as previously remarked we may identify
Γ(H) with Γ(H1)⊗Γ(H2). We may also identify Γ(H)⊗H with [(Γ(H1)⊗H1)⊗
Γ(H2)] ⊕ [Γ(H1) ⊗ (Γ(H2) ⊗H2)] in an obvious way. For i = 1, 2 ∇±i denotes
the universal annihilation/creation operators associated to each Hi and πi are
the isometric embeddings of Hi into H1 ⊕ H2, so for example if f ∈ H1 then
π(f) = (f, 0). Note that π∗1((f1, f2)) = f1 for all fi ∈ Hi. For simplicity, we will
continue to use the notation πi and π∗i when these operators are tensored with
the identity to act in tensor products.

Using the identifications given above, it is not difficult to verify that

∇− = π1(∇−1 ⊗ I) + π2(I ⊗∇−2 ), (3.16)

on Dom(∇−1 )⊗Dom(∇−2 ), and

∇+ = (∇+
1 ⊗ I)π∗1 + (I ⊗∇+

2 )π∗2 , (3.17)

on Dom(∇+
1 )⊕Dom(∇+

2 ) (c.f. [46], p.150).

It is useful to think of ∇− as a “gradient” and ∇+ as a “divergence” and we
will make these correspondences precise later. In this respect, we should define

8



associated “directional derivatives”. For this purpose we introduce the Dirac
“bra” and “ket” operators εf : H → C and ε†f : C→ H by

εf (g) = 〈f, g〉, ε†f (α) = αf,

for each f, g ∈ H, α ∈ C (c.f. [18]). These operators are clearly linear, bounded
and mutually adjoint with each ||εf || = ||ε†f || = ||f ||. The nature of the “direc-
tional derivative” operators is revealed in the following result:

Proposition 3.3 For each f ∈ H,

1. (I ⊗ εf ) ◦ ∇− = a(f),

2. ∇+ ◦ (I ⊗ ε†f ) = a†(f), 1

on E(H).

Proof.

1. For each f, g ∈ H,

(I ⊗ εf ) ◦ ∇−e(g) = (I ⊗ εf )(e(g)⊗ g) = 〈f, g〉e(g) = a(f)e(g).

2. follows by taking adjoints in (1).

¤
Using a density argument, it is easily verified that Proposition 3.3 (1) extends

to Dom(∇−). Moreover it follows that Dom(∇−) is the maximal domain for all
a(f), f ∈ H.

We will now give a noncommutative factorisation of the number operator
(see [50]) for a different factorisation in the additive sense). First, for each
n ∈ N, we define a linear operator Wn from H¯n

to H¯n−1 ⊗H by

Wn =
1√
n
∇−n .

We also define W : Γ̂(H) → Γ̂(H)⊗H by W =
⊕∞

n=0 Wn where W0 := 1.

Theorem 3.2 1. Wn is unitary for each n ∈ Z+.

2. W is unitary.

3. On their maximal domains,

∇− = W
√

N = (
√

N + 1⊗ I)W,

∇+ =
√

NW ∗ = W ∗(
√

N + 1⊗ I).

4. On Dom(N),
N = ∇+∇−.

Proof.
1Here we are identifying H with H ⊗ C.
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1. Let f ∈ H then Wnf¯
n

=
√

nf¯
n−1 ⊗ f and so

||Wnf¯
n || =

√
n||f¯n−1 ||.||f ||

=
√

n!||f ||n = ||f¯n ||.
Hence Wn is an isometry between total sets and so extends to a unitary
operator by linearity and continuity.

2. Follows immediately from (1).

3. ∇− = W
√

N on Dom(∇−) = Dom(
√

N) is immediate. Since W ∗
n =

1√
n
∇+

n it follows that W ∗ = N− 1
2∇+ and hence W ∗(Dom(∇+)) ⊆ Dom(

√
N).

So ∇+ =
√

NW ∗ on Dom(∇+). The other results are proved similarly.

4. This follows immediately from (3) and (2). ¤

Dom(∇−) becomes a complex Hilbert space with respect to the inner product
〈·, ·〉1 where for each ψ1, ψ2 ∈ Dom(∇−),

〈ψ1, ψ2〉1 = 〈ψ1, ψ2〉+ 〈∇−ψ1,∇−ψ2〉.

Consider the self-adjoint linear operator Q := (1+N)−
1
2 = π−

1
2

∫∞
0

t−
1
2 e−tTtdt,

(see Lemma 3.12 in [26] for the last identity).
It is easy to check that Q is a bounded operator on Γ(H) and that QDom(∇−) ⊆

Dom(N).

Theorem 3.3 Q is a unitary isomorphism between (Γ(H), ||·||) and (Dom(∇−), ||·
||1).

Proof. (c.f. the proof of Proposition 3.14 in [26]). Let ψ1, ψ2 ∈ Dom(∇−),
then by Theorem 3.2

〈ψ1, ψ2〉 = 〈Q−1Qψ1, Q
−1Qψ2〉

= 〈Q−2Qψ1, Qψ2〉
= 〈Qψ1, Qψ2〉+ 〈NQψ1, Qψ2〉
= 〈Qψ1, Qψ2〉+ 〈∇−Qψ1,∇−Qψ2〉
= 〈Qψ1, Qψ2〉1.

Hence Q is an isometric embedding of (Γ(H), || · ||) in (Dom(∇−), || · ||1). The
result follows from the fact that Ran(Q) is dense in (Dom(∇−), || · ||1). To see
this let D be the linear space comprising those sequences (ψn, n ∈ N) ∈ Γ(H)
where ψn = 0 for all but finitely many n. Clearly D is dense in Dom(∇−).
However QD = D and the result follows. ¤

From now on we will use Ξ to denote the Hilbert space Dom(∇−) equipped
with the inner product 〈·, ·〉1. In the sequel we will also want to work with
the closed linear operator ∇− ⊗ I acting in Γ(H) ⊗ H. The Hilbert space
Dom(∇− ⊗ I) equipped with the graph norm is precisely Ξ⊗H.

Let τ be the tensor shift on H ⊗H so that τ is the closed linear extension
of the map τ(f ⊗ g) = g ⊗ f for each f, g ∈ H. It is easily verified that τ is
self-adjoint and unitary (in physicists’ language, τ is an example of a “parity
operator”).
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Our next result is an abstract version of the “Itô-Skorohod isometry”. Note
however that the presence of the operator τ ensures that the isometry property
does not in fact hold.

Theorem 3.4 For all ψi ∈ Ξ⊗H(i = 1, 2)

〈∇+ψ1,∇+ψ2〉 = 〈ψ1, ψ2〉+ 〈(I ⊗ τ)(∇− ⊗ I)ψ1, (∇− ⊗ I)ψ2〉. (3.18)

Furthermore ∇+ is a contraction from Ξ⊗H into Γ(H).

Proof. To establish (3.18), let fi, gi ∈ H(i = 1, 2). We then find that for
each n ∈ N,

〈∇+
n f¯

n

1 ⊗ g1,∇+
n f¯

n

2 ⊗ g2〉 =
n!

n + 1

n∑
r=0

n∑
s=0

〈f⊗n−r

1 ⊗ g1 ⊗ f⊗
r

1 , f⊗
n−s

2 ⊗ g2 ⊗ f⊗
s

2 〉

= 〈f¯n

1 ⊗ g1, f
¯n

2 ⊗ g2〉+ n2〈f¯n−1

1 , f¯
n−1

2 〉〈g1, f2〉〈f1, g2〉
= 〈f¯n

1 ⊗ g1, f
¯n

2 ⊗ g2〉
+ 〈(I ⊗ τ)(∇−n ⊗ I)f¯

n

1 ⊗ g1, (∇−n ⊗ I)f¯
n

2 ⊗ g2〉.

The required result follows from here by linearity and continuity. To establish
the contraction property, we have from (3.18) that for all ψ ∈ Ξ⊗H,

||∇+ψ||2 = ||ψ||2 + 〈(I ⊗ τ)(∇− ⊗ I)ψ, (∇− ⊗ I)ψ〉,

and the result follows easily from this by using the Cauchy-Schwarz inequality
and the isometry property of I ⊗ τ. ¤

The last result is closely related to the canonical commutation relations (2.5).
This is not so clear from the argument in the proof of Theorem 3.4 however it
is instructive to compute actions on exponential vectors. If fi, gi ∈ H(i = 1, 2),
we find that

〈∇+e(f1)⊗ g1,∇+e(f2)⊗ g2〉 = 〈a†(g1)e(f1), a†(g2)e(f2)〉
= 〈e(f1), e(f2)〉〈g1, g2〉+ 〈a(g2)e(f1), a(g1)e(f2)〉
= 〈e(f1)⊗ g1, e(f2)⊗ g2〉
+ 〈(I ⊗ τ)(∇− ⊗ I)e(f1)⊗ g1, (∇− ⊗ I)e(f2)⊗ g2〉.

Now let H = L2(S,S, µ) where S is a locally compact topological space,
S is its Borel σ-algebra and µ is a Borel measure defined on (S,S). In this
case Γ(H) ⊗ H = L2(S,S, µ; Γ(H)). If ψn ∈ H¯n

, ψn−1(·, s) will denote the
symmetric function of n − 1 variables obtained by fixing s ∈ S. We then have
for all ψ = (ψn, n ∈ Z+) ∈ Dom(∇−),

||∇−ψ||2 =
∫

S

||∇−s ψ||2Γ(H)µ(ds),

where for µ-almost all s ∈ S

∇−s ψ := (nψn−1(·, s), n ∈ N). (3.19)

11



We call ∇−s ψ the Lindsay-Malliavin transform of ψ at s. Note that ∇−s is not
a bona fide operator since the right hand side of (3.19) depends on the choice
of a sequence of functions from the equivalence class of ψ.

If µ is a regular measure (so that compact sets have finite mass) then the
space D of continuous functions with compact support is a dense subspace of
H. In this case the Lindsay-Malliavin transform is a genuine linear operator
whose action on E(D) is given by

∇−s e(f) = f(s)e(f),

for all f ∈ D. So each ∇−s is densely defined on E(D); however it is well known
that these operators are not closable (see e.g. [35]).

Even when µ fails to be regular we can rewrite the result of Theorem 3.4
by using the Lindsay-Malliavin transform. First we observe that Ξ ⊗ H =
L2(S,S, µ; Ξ) and elements of this space may be regarded as equivalence classes
of mappings from S to Ξ. Note that ∇− ⊗ I : L2(S,S, µ; Ξ) → L2(S2,S⊗2

, µ×
µ; Γ(H)).

Corollary 3.1 If X, Y ∈ L2(S,S, µ; Ξ), then

〈∇+X,∇+Y 〉 =
∫

S

〈X(s), Y (s)〉µ(ds) +
∫

S

∫

S

〈∇−t X(s),∇−s Y (t)〉µ(ds)µ(dt).

(3.20)

Proof We use the same notation as in the proof of Theorem3.4. It is sufficient
to consider the case where X(t) = f¯

n

1 g1(t) and Y (t) = f¯
n

2 g2(t) for each t ∈ S.
Using (3.19) we obtain

〈(I ⊗ τ)(∇−n ⊗ I)f¯
n

1 ⊗ g1, (∇−n ⊗ I)f¯
n

2 ⊗ g2〉
= n2〈f¯n−1

1 , f¯
n−1

2 〉〈g1, f2〉〈f1, g2〉
= n2〈f¯n−1

1 , f¯
n−1

2 〉
∫

S

g1(s)f2(s)µ(ds)
∫

S

f1(t)g2(t)µ(ds)

=
∫

S

∫

S

〈∇−t X(s),∇−s Y (t)〉µ(ds)µ(dt),

and the result follows. ¤
Remark. Some of the main results of this section - Theorems 3.1, 3.2 (4),

3.4 and Corollary 3.1 are all given, at least in outline in [37] Propositions 3.1
and 3.2 (see also [36] for the Guichardet space version). A similar result to
Theorem 3.4 is also established in [51] - see Proposition 1 therein.

4 The Chaos Decomposition of Lévy-Itô Space

4.1 Preliminaries on Lévy Processes [2]

Let (Ω,F , (Ft, t ≥ 0), P ) be a stochastic base wherein the filtration (Ft, t ≥ 0)
satisfies the usual hypotheses of completeness and right continuity. Let X =
(X(t), t ≥ 0) be an adapted real-valued Lévy process defined on (Ω,F , P ) so
that X(0) = 0 (a.s.), X has stationary increments and strongly independent
increments (in the sense that X(t)−X(s) is independent of Fs for all 0 ≤ s <

12



t < ∞), X is stochastically continuous and its paths are a.s. càdlàg. We have
the Lévy-Khintchine formula

E(eiuX(t)) = e−tη(u),

for all t ≥ 0, u ∈ R, where η : R→ C is a continuous, hermitian negative definite
mapping for which η(0) = 0. It has the canonical form

η(u) = −ibu +
1
2
σ2u2

+
∫

R−{0}
(1− eiuy + iuy1B1(y))ν(dy),

where b ∈ R, σ ≥ 0 and ν is a Lévy measure on R−{0}, i.e. ν is a Borel measure
for which

∫
R−{0}(1∧ |y|2)ν(dy) < ∞. Information about the sample paths of X

is given by the Lévy-Itô decomposition:

X(t) = bt + σB(t) +
∫

|x|<1

xÑ(t, dx) +
∫

|x|≥1

xN(t, dx). (4.21)

Here N is the Poisson random measure on R+ × (R− {0}) defined by

N(t, A) := #{0 ≤ s ≤ t,∆X(s) ∈ A},

for each t ≥ 0, A ∈ B(R− {0}), Ñ is the compensated random measure defined
by

Ñ(t, A) = N(t, A)− tν(A),

and B = (B(t), t ≥ 0) is a standard Brownian motion which is independent of
N .

4.2 The Itô Representation Theorem

In this and the next section, we briefly outline proofs of results which are given
more fully in [2](ii).

We fix T > 0 and let f ∈ L2([0, T ),R). We may then form the Wiener-Itô
integral Xf (t) =

∫ t

0
f(s)dX(s), for each 0 ≤ t ≤ T . We define

Mf (t) := exp
{

iXf (t) +
∫ t

0

η(f(s))ds

}
.

Lemma 4.1 For each f ∈ L2([0, T ]), u ∈ R, t ∈ [0, T ],

1. E(eiuXf (t)) = exp
{
− ∫ t

0
η(uf(s))ds

}
.

2. (Mf (t), t ∈ [0, T ]) is a complex-valued square-integrable martingale with
stochastic differential

dMf (t) = iσf(t)Mf (t−)dB(t) + (eif(t)x − 1)Mf (t−)Ñ(dt, dx). (4.22)
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Proof. These are both straightforward applications of Itô’s formula applied
to the processes (eiuXf (t), 0 ≤ t ≤ T ) and (Mf (t), 0 ≤ t ≤ T ), respectively. ¤

From now on, for each 0 ≤ t ≤ T , we require that Ft = σ{X(s), 0 ≤
s ≤ t}. We define Lévy-Itô space to be the complex separable Hilbert space
H := L2(Ω,FT , P ;C). PT will denote the predictable σ-algebra generated by
processes defined on [0, T ]× Ω.

Lemma 4.2 {Mf (T ), f ∈ L2([0, T ])} is total in H.

Proof. This is a consequence of the injectivity of the Fourier transform. The
proof is similar to that of Lemma 4.3.2 in [45]. ¤

LetH(B)
2 (T ) be the complex Hilbert space of all complex predictable processes

satisfying
∫ T

0
E(|F (t)|2)dt < ∞ and H(N)

2 (T ) be the complex Hilbert space of
all PT × B(R − {0}) measurable mappings G : [0, T ] × (R − {0}) × Ω → C for
which

∫ T

0

∫
R−{0} E(|G(t, x)|2)ν(dx)dt < ∞.

Theorem 4.1 [The Itô Representation]
If F ∈ H, then there exists unique ψ0 ∈ H(B)

2 (T ) and ψ1 ∈ H(N)
2 (T ) such

that

F = E(F ) + σ

∫ T

0

ψ0(s)dB(s) +
∫ T

0

∫

R−{0}
ψ1(s, x)Ñ(ds, dx). (4.23)

Proof. The result holds for F = Mf (T ) by (4.22) and is easily extended to
finite linear combinations of such random variables. The extension to arbitrary
F is by approximation using Lemma 4.2 (see the proof of Theorem 4.3.3. in
[45], Proposition 3 in [38]) and Proposition 2.1 in [47].) ¤

4.3 Multiple Wiener-Lévy Integrals and the Chaos De-
composition

Let X be a Lévy process with associated Lévy-Itô decomposition (4.21). Let
S = [0, T ]×R. We consider the associated martingale-valued measure M defined
on (S, I) by the prescription

M([0, t]×A) = Ñ(t, A− {0}) + σB(t)δ0(A)

for each t ∈ [0, T ], A ∈ B(R) where I is the ring comprising finite unions of
sets of the form I×A where A ∈ B(R) and I is itself a finite union of intervals (see
e.g. [2] for more information about martingale-valued measures). The associated
“control measure” is the σ-finite measure µ = λ×ρ, where λ is Lebesgue measure
on [0, T ] and ρ is defined on (R,B(R)) by ρ(A) = σ2δ0(A) + ν(A− {0}) for all
A ∈ B(R). We can easily compute

E(M([0, t]×A)2) = µ([0, t]×A) = tρ(A),

for each t ∈ [0, T ], A ∈ B(R).
Returning to the set-up of section 1, we take H = L2(S,B(S), µ;C) so that

for each n ∈ N, H⊗n

= L2(Sn,B(Sn), µn;C) and H⊗n

s comprises symmetric

14



complex-valued square-integrable functions on Sn. Fix n ∈ N and define D(n)

to be the linear space of all functions fn ∈ H⊗n

which take the form

fn =
N∑

j1,...,jn=1

aj1,...,jn
1Aj1×···×Ajn

, (4.24)

where N ∈ N, each aj1,...,jn ∈ C, and is zero whenever two or more of the indices
j1, . . . , jn coincide and A1, . . . , AN ∈ B(S), with Ai of the form Ji × Bi where
Ji is an interval in [0, T ] and Bi ∈ B(R) with ρ(Bi) < ∞, for each 1 ≤ i ≤ N .
It is shown as in Proposition 1.6 of Huang and Yan [26] that D(n) is dense in
H⊗n

. It then follows that D(n)
s is dense in H⊗n

s where D(n)
s := D(n) ∩H⊗n

s .
For each fn ∈ D(n) we define its multiple Wiener-Lévy integral by

In(fn) =
N∑

j1,...,jn=1

aj1,...,jn
M(Aj1) · · ·M(Ajn

). (4.25)

The mapping fn → In(fn) is easily seen to be linear. For each fn ∈ D(n),
In(fn) = In(f̂n), where f̂n is the symmetrisation of fn.

The next result is due to Itô ([28]). The special case where M is a Brownian
motion is proved in many textbooks (see e.g. [42], [26]) and the general case
proceeds along similar lines.

Theorem 4.2 For each fm ∈ D(m)
s , gn ∈ D(n)

s ,m, n ∈ N

E(Im(fm)) = 0, E(Im(fm)In(gn)) = n!〈fm, gn〉δmn.

So for each n ∈ N, In is an isometry from D(n)
s (equipped with the inner

product 〈〈·, ·〉〉 := n!〈·, ·〉) into H. It hence extends to an isometry which is
defined on the whole of H¯n

s . We continue to denote this mapping by In and
for each fn ∈ H¯n

s , we call In(fn) the multiple Wiener-Lévy integral of fn. By
continuity and Theorem 4.2, we obtain

E(Im(fm)) = 0, E(Im(fm)In(gn)) = n!〈fm, gn〉δmn, (4.26)

for each fm ∈ H¯m

s , gn ∈ H¯n

s ,m, n ∈ N.

We introduce the n-simplex ∆n in [0, T ] so

∆n = {0 < t1 < · · · < tn < T}

and define the iterated stochastic integral

Jn(fn) : =
∫

∆n×Rn

fn(w1, . . . , wn)M(dw1) · · ·M(dwn)

=
∫ T

0

∫

R

∫ tn−

0

∫

R
· · ·

∫ t2−

0

∫

R
fn(t1, x1, . . . , tn, xn)M(dt1, dx1) · · ·M(dtn, dxn),

for each fn ∈ H⊗n

. Then if fn ∈ H¯n

s , we have

In(fn) = n!Jn(fn). (4.27)

15



This is established by exactly the same argument as the case where M is a
Brownian motion (see e.g. [42]) i.e. first establish the result when fn ∈ D(n)

s by
a direct (but messy) calculation and then pass to the general case by means of
an approximation.

The final result in this section is the celebrated chaos decomposition which
is again due to Itô [28].

Theorem 4.3

H = C⊕
∞⊕

n=1

Ran(In). (4.28)

Proof. This follows by iteration of the Itô representation as in Theorem 4 of
[38]. ¤

We use U to denote the mapping
⊕∞

n=0 In from Γ̂(H) to H, where I0(f0) :=
f0 for all f0 ∈ C. U is sometimes called the duality transform. The next result
dates back to Segal [52] in its Gaussian version. The extension to Lévy processes
first seems to have been made explicit by Dermoune [14].

Corollary 4.1 [Wiener-Segal-Itô Isomorphism] U is a unitary isomorphism be-
tween Γ̂(H) and H.

Proof. It follows from (4.26) that U is an isometry. By (4.28), if F ∈ H, there
exists a sequence (fn, n ∈ N) with each fn ∈ H¯n

s , such that F =
∑∞

n=0 In(fn).
Thus we see that U is surjective, and hence is unitary. ¤

4.4 The Role of Stochastic Exponentials

We have seen in section 1 that exponential vectors play an important structural
role in Fock space (see also [37], [41], [46]). In this section we will find the
analogous vectors in Lévy-Itô space.

Let Y = (Y (t), 0 ≤ t ≤ T ) be a complex valued semimartingale defined on
(Ω,F , (Ft, t ≥ 0), P ) so that each Y (t) = Y (1)(t) + iY (2)(t), where Y (1) and
Y (2) are real valued semimartingales. The unique solution to the stochastic
differential equation (SDE)

dZ(t) = Z(t−)dY (t), (4.29)

with initial condition Z(0) = 1 (a.s.) is given by the stochastic exponential
or Doléans-Dade exponential,

Z(t) = exp
{

Y (t)− Y (0)− 1
2
[Y (1)

c , Y (1)
c ](t) +

1
2
[Y (2)

c , Y (2)
c ](t)− i[Y (1)

c , Y (2)
c ](t)

}

×
∏

0≤s≤t

[
1 + ∆Y (s)

]
e−∆Y (s) (4.30)

for each 0 ≤ t ≤ T . Details can be found in [19] or [29]. Here [·, ·] is the
quadratic variation and Y j

c is the continuous part of Y j for j = 1, 2. Henceforth
we will write each Z(t) := EY (t).
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For each f ∈ H, we introduce the square-integrable martingales (Yf (t), 0 ≤
t ≤ T ) defined by

Yf (t) =
∫ t

0

f(s, x)M(ds, dx) = σ

∫ t

0

f(s)dB(s) +
∫ t

0

∫

R−{0}
f(s, x)Ñ(ds, dx),

where f(s) := f(s, 0), for all 0 ≤ s ≤ T .

Theorem 4.4 For all f ∈ H,

Ue(f) = EYf
(T ).

Proof. Iterating the SDE (4.29) as in [19], p. 189 and using (4.27) we obtain
for each f ∈ H,

EYf
(T ) = 1 +

∞∑
n=1

Jn(f⊗
n

)

=
∞∑

n=0

1
n!

In(f⊗
n

).

Now by Corollary 4.1, we have

Uf¯
n

= In(f⊗
n

) ⇒ U

(
f⊗

n

√
n!

)
=

1
n!

In(f⊗
n

),

and the result follows on using the strong continuity of U . ¤

Corollary 4.2 The linear span of {EYf
(T ), f ∈ H} is dense in H.

Proof. This follows immediately from Theorem 4.4 and the fact that expo-
nential vectors are total in Γ(H). ¤

Example 1 Brownian Motion

In this case X(t) = σB(t) for each t ≥ 0 and it is sufficient to take S = [0, T ],
so H = L2([0, T ]) and each Yf (t) = σ

∫ t

0
f(s)dB(s). Combining Theorem 4.4

with (4.30) we obtain the well known result:

Ue(f) = exp

{
σ

∫ T

0

f(s)dB(s)− σ2

2

∫ T

0

|f(s)2|ds

}
,

see e.g. [46], example 19.9, p.130.

Example 2 The Poisson Process

Let (N(t), t ≥ 0) be a Poisson process having intensity λ > 0. In this case
σ = 0 and ν = λδ1. There is then a unique isomorphism V between H =
L2(S, µ) and L2([0, T ]) given by (V f)(s, x) = f(s,1)√

λ
, for each s ∈ [0, T ], x ∈ R.

Writing W := Γ(V )UΓ(V −1), we find from (4.30) that for all g ∈ L2([0, T ]),
taking Ig(t) = 1√

λ

∫ t

0
g(s)dN(s) −

√
λ

∫ t

0
g(s)ds = 1√

λ

∑
0≤s≤t g(s)∆N(s) −√

λ
∫ t

0
g(s)ds, we obtain

We(g) = exp

{
−
√

λ

∫ T

0

g(s)ds

} ∏

0≤s≤T

(
1 +

∆N(s)√
λ

g(s)
)

(c.f. [46], Example 19.11, p.131).
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5 Malliavin Calculus in Lévy-Itô Space

In this section we will work with operators on the Lévy-Itô space H which
are unitary transforms (in the sense of the duality transform) of those defined
in Γ(H) in section 1, so H = L2(S,B(S), µ;C) where S = [0, T ] × R. We will
frequently use the following result. Let H1 and H2 be complex separable Hilbert
spaces and let V and W be unitary isomorphisms between H1 and H2. Let T
be a densely defined closed linear operator on H1 with domain D. Then it is
easily verified that V TW−1 is closed on the dense domain WD.

5.1 The Gradient

We define the gradient D inH by D := (U⊗I)∇−U−1 on the domain UDom(∇−).
Then by Theorems 3.1 and 4.3 we see that

Dom(D) =

{ ∞∑
n=0

In(fn);
∞∑

n=1

nn!||fn||2 < ∞
}

.

The spaces UΞ and (U ⊗ I)Ξ ⊗ H are infinite dimensional Sobolev spaces
which are usually denoted D2

1 and D2
1(H) (respectively) in this context (see e.g.

[26]). For each f ∈ H, ψ ∈ Dom(∇−), Ua(f)ψ = DfUψ where Df := (I ⊗ εf )D
is the directional gradient operator. For each s = (t, x) ∈ S, the Malliavin
derivative Ds is obtained by writing D = (Ds, s ∈ S) and for each ψ ∈ Dom(∇−)
we have U∇−s ψ = DsUψ (µ a.e.)

In particular, if Ef (T ) is the stochastic exponential of f ∈ H then we have

DsEf (T ) = f(s)Ef (T ),

for all s ∈ S except for a set of µ-measure zero (c.f. [15], formula (I.17)) and
from (3.19) we see that if ψ =

∑∞
n=0 In(fn) ∈ Dom(D), then

Dsψ(·) =
∞∑

n=1

nIn−1(fn(·, s)) µ a.e.,

where fn(·, t) is the symmetric function of n − 1 variables obtained by fixing
s ∈ S.

5.2 The Divergence

We define the divergence δ in H ⊗ H = L2(S,S, µ;H) by the prescription
δ = U∇+(U−1⊗ I) on the domain (U ⊗ I)Dom(∇+). Elements of H¯n ⊗H are
sequences (gn+1, n ∈ Z+) where each gn+1 is a measurable function of n+1 vari-
ables which is symmetric in the first n of these. We denote the symmetrisation
of gn+1 by g̃n+1 so that for each s1, . . . , sn, sn+1 ∈ S,

g̃n+1(s1, . . . , sn, sn+1) =
1

n + 1
(gn+1(s1, . . . , sn, sn+1)

+
n∑

j=1

gn+1(s1, . . . , sj−1, sn+1, sj+1, . . . , sn, sj)


 .
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In the following, we will use the standard notation In(gn+1) := (In ⊗ I)(gn+1)
so the multiple Wiener-Lévy integral only acts on the symmetric part of the
function.

We then have the following characterisation of Dom(δ).

Theorem 5.1 X =
∑∞

n=0 In(gn+1) ∈ Dom(δ) if and only if∑∞
n=0(n + 1)!||g̃n+1||2 < ∞. We then have

δ(X) =
∞∑

n=0

In+1(g̃n+1).

Proof. It is sufficient to take gn+1 = f¯
n⊗h, then for each s1, . . . , sn, sn+1 ∈

S,

Symm(f¯
n

, h)(s1, . . . , sn, sn+1)

=

(√
n!

n + 1

n∑
r=0

f⊗
n−r ⊗ h⊗ f⊗

r

)
(s1, . . . , sn, sn+1)

=

√
n!

n + 1


f(s1) · · · f(sn)h(sn+1) +

n∑

j=1

f(s1) · · · f(sj−1)h(sj)f(sj+1) · · · f(sn)f(sj)




=
√

(n + 1)!g̃n+1(s1, . . . , sn, sn+1).

The result follows easily from here. ¤
For each f ∈ H we define the directional divergence operator δf on UE by

δf := δ ◦ (I ⊗ ε†f ), then δfψ = a†(f)U−1ψ for all ψ ∈ UE .
Arguing as in Theorem 3 of [44] (see also Proposition 3.2 of [16]) it follows

that δ(X) is a non-anticipating extension of the Itô integral
∫

S
X(w)M(dw)

which is defined in the case where X is predictable (see e.g. [2]). We may now
rewrite equation (3.20) as the well-known Itô-Skorohod isometry:

E(δ(X)δ(Y )) =
∫

S

E(X(s)Y (s))µ(ds) +
∫

S

∫

S

E(DtX(s)DsY (t))µ(ds)µ(dt),

(5.31)
for all X, Y ∈ D2

1(H) (c.f. Theorem3.14 in [16]).

5.3 Independence Structure

For each f ∈ H, write f = f1 +f2, where f1(t, x) :=
{

f(t, 0) if x = 0
0 if x 6= 0

}
and

f2(t, x) :=
{

0 if x = 0
f(t, x) if x 6= 0

}
. We thus obtain a canonical isomorphism

between H and H1 ⊕ H2 where H1 = L2([0, T ], λσ) (λσ := σ2λ is rescaled
Lebesgue measure) and H2 = L2(E, λ⊗ ν) where E := [0, T ]× (R− {0}). Now
suppose that (Ω,F , P ) is of the form (Ω1×Ω2,F1⊗F2, P1×P2). The canonical
example of this is called Lévy space in [14] and Wiener-Poisson space in [27]. In
this set-up Ω1 is the space of continuous functions which vanish at zero equipped
with Wiener measure P1 on the σ-algebra F1 generated by the cylinder sets.
Ω2 is the set of all Ẑ+-valued measures on E (where Ẑ+ := Z+ ∪∞). F2 is the
smallest σ-algebra of subsets of Ω2 which permits all evaluations of measures
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on Borel sets in E to be measurable and P2 is taken to be a Poisson measure
on (Ω2,F2) with intensity λ× ν.

Let F1,T := σ{B(s), 0 ≤ s ≤ T} and F2,T := σ
{∫
R−{0} xÑ(s, dx), 0 ≤ s ≤ T

}

so Fi,T are sub-σ-algebras of Fi for i = 1, 2. Applying Corollary 4.1 separately
in H1 and H2 we see that the duality transform factorises as U = U1⊗U2 where
Ui is the duality transform between Γ(Hi) and L2(Ωi,Fi,T , Pi) for i = 1, 2.
Applying this to the tensor decompositions (3.16) and (3.17) We then obtain

D = π1(DB ⊗ I) + π2(I ⊗DN ),

on Dom(DB)⊗Dom(DN ), and

δ = (δB ⊗ I)π∗1 + (I ⊗ δN )π∗2 ,

on Dom(δB)⊕Dom(δN ). Here DB and δB are the usual gradient and divergence
associated to Brownian motion (see e.g. [26], [39], [42], [53]) while DN and δN

are the gradient and divergence associated to Poisson random measures (see e.g.
[16], [38], [43], [44], [48], [49]).

5.4 Number Operator

The number operator in Lévy-Itô space is N = UNU−1 and the corresponding
semigroup is (Tt, t ≥ 0) where Tt = UTtU

−1 for each t ≥ 0. We observe that by
Theorem 3.2 we have

δD = N ,

on Dom(N ) and by Theorem 3.3 we obtain the L2-equivalence of norms whereby
the operator (I +N )−

1
2 is a unitary isomorphism between H and D2

1.
If we employ the independence structure we have

N = NB ⊗ I + I ⊗NN ,

on Dom(NB)⊗Dom(NN ), and

Tt = T B
t ⊗ T N

t ,

for all t ≥ 0, where the sub/superscripts B and N refer to the Brownian and
Poisson components in the obvious way.

−NB is the well-known infinite-dimensional Ornstein-Uhlenbeck operator
which enjoys the hypercontractivity property. Surgailis [55] has shown that
−NP does not have this property. Furthermore in Theorem 5.1 of [56], Surgailis
proves that if (Rt, t ≥ 0) is a contraction semigroup in L2(E, λ × µ) then the
contraction semigroup (Rt, t ≥ 0) where each Rt = U2Γ(Rt)U−1

2 is positivity
preserving if and only if (Rt, t ≥ 0) is doubly Markovian. In this latter case,
(Rt, t ≥ 0) is itself Markovian. So we can assert the Markovianity of (T N

t , t ≥ 0)
and hence of (Tt, t ≥ 0). Further studies of the semigroup (T N

t , t ≥ 0) can be
found in [12] and [57].

We finish this article with a word of warning. The universal Malliavin
calculus that we have described here shows great promise for obtaining more
wideranging properties which hold generally for processes which enjoy a chaos
decomposition. However there will be local features of the calculus which are
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particular to the process under consideration and which cannot be obtained
through the Fock space isomorphism. For an example, see formula (I.25) in [15]
for an algebraic relation between the divergence and the gradient where there
is an extra term in the Poisson case which is absent in Gaussian spaces.
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