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We investigate a scenario where quantum correlations affect the gravitational field. We show that 
quantum correlations between particles occupying different positions have an effect on the gravitational 
field. We find that the small perturbations induced by the entanglement depend on the amount of 
entanglement and vanish for vanishing quantum correlations. Our results suggest that there is a form of 
entanglement that has a weight, since it affects the gravitational field. This conclusion may lead towards 
a new understanding of the role of quantum correlations within the overlap of relativistic and quantum 
theories.

 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Does entanglement have a weight? A positive answer to this ques-
tion would have far reaching consequences, since entanglement is 
the core resource of some of the most exciting applications of the 
field of quantum information. For example, entanglement can be 
used for teleportation [1], quantum key distribution [2] and quan-
tum computing [3] to name a few. More importantly, a positive 
answer would also help us deepen our understanding of the over-
lap of relativistic and quantum theories.

Quantum entanglement is a type of correlation that, to date, is 
not known to interact with gravity. The role of quantum correla-
tions in gravitational scenarios has been so far ignored, most likely 
due to the fact that overwhelming experimental evidence shows 
that entanglement can be well established between different sys-
tems in the presence of a gravitational field apparently without 
noticeable consequences [4]. However, experiments are reaching 
regimes where small modifications introduced by the mutual ef-
fects of entanglement and gravity might be measured [5,6]. There-
fore, in the last decade attention has been given to understand the 
effects of gravity on entanglement [7]. Most approaches indicate 
that effects of gravity on entanglement should exist, although we 
lack the theory of quantum gravity that can naturally predict this. 
Unfortunately, the effects predicted by this body of work do not 
arise because of a direct coupling between gravity and quantum 
correlations. In particular, it cannot be shown that entanglement 
will affect gravity, the necessary step to conclude that gravity and 
entanglement interact with each other.

E-mail address: david.edward.bruschi@gmail.com.

In this work, we establish that quantum correlations affect the 
gravitational field and that small perturbations in the metric are 
induced by the presence of quantum coherence. We employ Ein-
stein’s equations and semiclassical theory to show that, for low 
energy (few particle) states, a small control parameter naturally 
arises and is uniquely determined by the energy scales of the prob-
lem. We then find that small changes in the metric depend on the 
amount of entanglement present in the state, as measured by the 
logarithmic negativity (and, additionally, by the concurrence), and 
vanish for vanishing quantum correlations. These effects are “radi-
ated away” for times larger than the decoherence time, which we 
show is proportional to the “size” of the particle. Furthermore, the 
relative phase of the coherences has a direct influence on the mag-

nitude of the effects. Our results are complementary to previous 
work which investigated the stability of coherent superpositions of 
different energy states in the presence of gravity [8]. They are also 
related, for example, to previous work that investigated sponta-
neous collapse of the wave function due to gravity [9], to stochastic 
gravity [10] and the role of coherent superpositions [11]. However, 
contrary to most of this body of work, we are not interested here 
in the effects of gravity on quantum states (i.e., collapse of the 
wave function) but rather on the back-reaction of quantum co-
herence on gravity. Finally, we argue that the regimes considered 
in this work are well within the limits of validity of semiclassical 
gravity [12,13].

We believe that our results have important implications for 
both quantum and relativistic theories, in particular they aid the-
oretical and experimental research to look for phenomena which 
might challenge our current understanding of nature.

http://dx.doi.org/10.1016/j.physletb.2016.01.034
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2. Background

2.1. Quantum field theory in curved spacetime

In this work particles are excitations of quantum fields that 
propagate on a classical spacetime. We consider for simplicity a 
massive scalar quantum field φ(xµ) with mass m in (3 + 1)-dimen-

sional spacetime [14] with metric gµν (see [15]). The equation of 
motion of the field is (� + m2)φ = 0, where the d’Alambertian is 
� ≡ (

√−g)−1∂µ[√−ggµν∂ν ] (a standard reference is [14]).
The field can be decomposed in any orthonormal basis of solu-

tions uk(x
µ) to the Klein–Gordon equation as φ =

∫

d3k[akuk +
a
†
k
u∗
k
], with annihilation and creation operators ak , a

†
k

that sat-

isfy the canonical commutation relations [ak, a†k′ ] = δ3(k − k′) and 
all other vanish. The annihilation operators ak define the vacuum 
state |0〉 through ak|0〉 = 0 ∀ k. In general, it is convenient to 
choose the set of modes {uk} if it satisfies (at least asymptoti-

cally) an eigenvalue equation of the form i ∂τ uk = ω uk , where ∂τ

is some (possibly global) time-like Killing vector and ω := ωk =√
k · k+m2 is a real eigenvalue [14].
We assume that the spacetime is essentially flat Minkowski 

with metric gµν = ηµν = diag(−1, 1, 1, 1) and perturb the flat 
spacetime metric in the following way

gµν = ηµν + ξ hµν , (1)

where we have introduced the small control parameter ξ i.e., 
ξ ≪ 1. In this work we will consider only effects that are propor-
tional to ξ i.e., we ignore O(ξ2) contributions. Here hµν depends 
on the spacetime coordinates xσ and evolves dynamically via Ein-
stein equations. The expansion (1) is known as linearised (or lin-
ear) gravity, which has been successfully employed, for example, 
to predict the existence of gravitational waves [16]. The role of the 
parameter ξ is pivotal and we will show in the following that it is 
uniquely determined by the relevant physical energy scales.

2.2. Semiclassical gravity

We wish to take into account the back reaction of the quantum 
field on the metric, in other words, we wish to take into account 
the fact that a single excitation of the field is responsible for the 
perturbation hµν . This can be done within the framework of semi-

classical gravity, which has been successfully applied [17–19] but 
has its own domain of validity [12,13]. Since our work involves 
only considering mean energy, which is a quantity that can be ex-
perimentally measured, the scenario considered in this work falls 
within this domain of validity and we will comment on this later 
[11].

In this framework, back reaction is implemented through Ein-
stein’s semiclassical equations

Gµν = −8π GN 〈Tµν〉Ren, (2)

where Gµν is Einstein’s tensor, GN is Newton’s constant, Tµν is 
the stress energy tensor of the quantum field and “Ren” stands for 
some choice of renormalisation of the stress energy tensor [14]. 
The average 〈·〉 is intended over some chosen initial state ρ of the 
field. Einstein’s tensor contains second derivatives of the metric, 
which account for its dynamics. However, one needs to be care-
ful with correctly identifying the source of the gravitational field, a 
process called renormalisation. That care needs to be taken into 
account in curved spacetime is a well known issue [14]. Many 
methods have been proposed and employed with different degrees 
of success [20,21]. However, in this work we will analyse the back 
reaction of single particle excitations on flat Minkowski spacetime. 
We believe it is natural to assume that in this case it is sufficient 

to subtract the (infinite) zero point energy of the Minkowski vac-
uum, a procedure known as normal ordering [14]. We therefore 
have 〈Tµν〉Ren ≡ 〈: Tµν :〉, where the symbol : · : stands for normal 
ordering [14].

The metric is coupled to the field via the semiclassical Einstein 
equation (2). In order to exploit this relation we need to compute 
stress energy tensor Tµν which is readily found in literature [14]
as Tµν = ∂µφ∂νφ − 1

2
gµν [∂ρφ∂ρφ − m2φ2]. The field φ satisfies 

the equation of motion (� + m2)φ = 0 with the full metric gµν

in (1).

Since we choose to look at effects at lowest order in ξ we 
can expand the field as φ = φ(0) + ξ φ(1) , where φ(0) satisfies 
(∂ρ∂ρ + m2)φ(0) = 0 defined with the flat metric ηµν . We there-

fore find that φ(0) =
∫

d3k[akuk + a
†
k
u∗
k
], where the plane wave 

modes uk take the form uk = (2 π )−3/2 ω−1/2 exp[i kµ xµ] and 
kµ xµ = −ω t+k ·x. The correction φ(1) to the field satisfies a more 
complicated differential equation but turns out to be irrelevant for 
our purposes. Furthermore, we notice that the state does not de-
pend directly on ξ . It will become evident that the parameter ξ
appears in the right hand side of (2) only through the average of 
the stress energy tensor over the initial state.

By considering a small coupling to gravity it is easy to show 
that the first order contributions to the semiclassical Einstein equa-
tion (2) satisfy the following equation

G̃
(1)
µν = −8π 〈: T̃ (0)

µν :〉, (3)

where the dimensionless tensors G̃(1)
µν and T̃ (0)

µν are obtained from 
the dimensional Einstein tensor Gµν and stress energy tensor Tµν

respectively.

2.3. Relevant initial states and physical control parameters

We now wish to determine the parameter ξ in terms of the 
relevant (energy) scales of the problem. We choose to work in the 
Heisenberg picture and will analyse the following two-parameter 
family of initial states

ρ(α, β) =α |01〉〈01| + (1− α) |10〉〈10| + β |10〉〈01|
+ β |01〉〈10|, (4)

where 0 ≤ α ≤ 1, the parameter −1/2 ≤ β ≤ 1/2 is real without 
loss of generality and (α − 1/2)2 + β2 ≤ 1/4 in order for ρ(α, β)

to represent a physical state. Notice that for α = 1/2 and β = 0

one has a maximally mixed state while for α = β = 1/2 one has 
a maximally entangled state. Furthermore, we underline that the 
sign of the parameter β might play an important role in the final 
effects and we will comment on this later.

We note here that the state (4) is the most general state 
that obeys the “superselection rule” greatly discussed in literature 
[8], i.e., that it is not possible to superpose states with different 
masses. In fact, the terms in (4) are the only one particle state 
terms that have the same (average) energy. Terms such as |0〉〈0| or 
|11〉〈11| clearly have a different (average) energy.

Here we define the normalised single particle states |01〉 and 
|10〉 as excitations over the Minkowski vacuum of the same particle 
in different positions in the following way

|01〉 :=
∫

d3k Fk0
(k) e−i L·k a†

k
|0〉

|10〉 :=
∫

d3k Fk0
(k) ei L·k a†

k
|0〉, (5)

where we have introduced the peaked functions Fk0
(k), the con-

stant k0 defines the location of the peak in momentum space 
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(aligned along the z-direction without loss of generality, i.e. k0 =
(0, 0, k0)), the vector ±L defines the location of the peak in posi-
tion space which are located at a distance of 2L := 2 

√
L · L, (again, 

along the z-direction without loss of generality, L = (0, 0, L)). The 
creation operators a†

k
are the flat spacetime Minkowski operators 

associated with the zero order field φ(0) . Furthermore, normalisa-

tion implies that 
∫

d3k |Fk0
(k)|2 = 1.

We need to make sure that the particle states (4) are or-
thogonal (at least to good approximation) in order for the con-
cept of entanglement between the two excitations to have a 
proper meaning. We can choose between two different profile 
functions. One choice is a Gaussian profile function Fk0

(k) =
(

4
√
8π2 σ 2 σ )−1 exp[− (k−k0)

2

4 σ 2 ], where σ is the width of the pro-
file and is assumed to be large, which makes the excitation very 
localised in position space. We can compute the overlap of the par-
ticle states and find |〈10|01〉| = | 

∫

d3k |Fk0
(k)|2 exp[−2 i L · k]| ∝

exp[−2 σ 2 L2] which is negligible for large separations com-

pared to the spread of the wave packet i.e., σ L ≫ 1. This 
choice might lead to problems when one wishes to look at 
states with higher numbers of particles. In that case, the over-
lap of the new states can become larger, which might lead 
to question the meaning of the following work. We therefore 
turn to a second choice, the box profile function i.e., F ′

k0
(k) =

(
√
8σσ )−1 Rect(

kx−k0,x
2 σ ) Rect( ky−k0,y

2 σ ) Rect( kz−k0,z
2 σ ) where Rect(x) is 

the rectangle function. In this case, we can choose L = (0, 0, n π/σ )

with n ∈ Z which guarantees orthogonality between the particle 
states i.e., 〈10|01〉 ≡ 0.

We then notice that the parameter σ acts as a natural scale 
for energies (or equivalently lengths in natural units). In order 
to understand the interplay of the energy scales of the problem 
we introduce the dimensionless wave numbers k̃ := k/σ and the 
dimensionless coordinates x̃µ := σ xµ . We then notice that Ein-
stein’s tensor Gµν to first order can be written as a combination 
of second derivatives of the metric. We can therefore introduce 
G̃µν := Gµν/σ 2 , where the dimensionless tensor G̃µν = ξ G̃

(1)
µν ap-

pears in (3). Without loss of generality and to obtain analytical 
results, we focus on two interesting regimes for the field exci-
tations: that of extremely massive static particles (m/σ ≫ 1 and 
k0 = 0) and that of massless particles with high momentum (m = 0

and k0/σ ≫ 1). It follows that the average of the stress energy 
tensor of a particle excitation will be, to good approximation, pro-
portional to m σ 3 or k0 σ 3 respectively (this can be found from a 
straightforward computation of stress energy tensor components 
i.e., 〈: T (0)

00 :〉). We therefore have 〈: T (0)
µν :〉 = E0 σ 3 〈: T̃ (0)

µν :〉, where 
E0 is proportional to m or k0 depending on the regime. Putting all 
together in (2) we have

ξ G̃
(1)
µν = −8π GN E0 σ 〈: T̃ (0)

µν :〉 +O(GN E0 σ ξ). (6)

We conclude that (6) identifies ξ = GN E0 σ ≪ 1 and confirms that 
(3) holds to lowest order. Higher order terms on the right hand 
side contain first order correction to the stress energy tensor and 
do not contribute to the effects of interest here. However, effects 
to this order would include the direct coupling of quantum corre-
lations with gravity.

3. Interplay of gravity and entanglement

3.1. First order contribution to the curvature

We now proceed to outline our main results. The semiclassical 
Einstein equation (3) for the initial state ρ(α, β) is

G̃
(1)
µν =α 〈01| : T̃ (0)

µν : |01〉 + (1− α) 〈10| : T̃ (0)
µν : |10〉

+ 2β ℜ (〈01| : T̃ (0)
µν : |10〉). (7)

We conclude from (7) that the Einstein tensor G(1)
µν has a con-

tribution that comes purely from quantum coherence. The term 
β ℜ (〈01| : T̃ (0)

µν : |10〉) is responsible for such difference and its con-
tribution to the metric is therefore proportional to β . We quantify 
the entanglement present in the state ρ(α, β) by employing the 
logarithmic negativity EN which is bound by 0 ≤ EN ≤ 1 (see 
[22]). This is a well known measure of entanglement and is de-
fined as EN = log2(2 N + 1), where the negativity N is defined 
as N =

∑

n(|λn| − λn)/2 and λn are the eigenvalues of the par-
tial transpose of the state ρ(α, β). We find that |β| = (2EN − 1)/2

which proves that the last term in (7) contributes only when there 
are some quantum correlations i.e., EN �= 0. The greatest contribu-
tion from this term occurs when EN = 1 i.e., α = β = 1/2 and the 
state ρ(1/2, 1/2) is maximally entangled.

Finally, given that (4) is the most general state we can consider, 
and that the system effectively behaves as a system of two qubits, 
we are in the position of computing the concurrence C for this sys-
tem and, if desired, the entanglement of formation EoF [23]. The 
entanglement of formation, which can be computed in our case as 
a simple function of the concurrence, captures all of the correla-
tions and enjoys an important information-theoretical and practi-
cal interpretation: it quantifies the minimum number of copies of 
maximally entangled states of qubits necessary to prepare the state 
with only Local Operations and Classical Communications (LOCC) 
[23]. For states like ours, the concurrence has been already com-

puted and has the simple expression C = 2 |β|. This corroborates 
our claim that quantum correlations are responsible for the effects 
described in this work.

We could now proceed to compute all (ten independent) terms 
in (7). This can be done explicitly however, since the main aim 
of this work is to show that an effect exists in the first place, we 
find it more convenient to compute the Ricci scalar R := −Gµ

µ

which gives a more compact result and measures the strength of 
the curvature locally at each point. To achieve this goal, we note 
that it is sufficient to compute D01

µ
µ := 〈01| : T̃ (0)

µ
µ : |01〉 (or 

equivalently any other of the terms) since all other terms can be 
obtained by D01

µ
µ with simple modifications. We find

D
01

µ
µ =−

1

σ 2

∫

d3kd3k′ ei L·(k
′−k) Fk0

(k)Fk0
(k′)

×
[

k′
µ kµ + 2m2

]

u∗
kuk′ . (8)

It is straightforward to show that the other diagonal term

D10
µ

µ := 〈10| : T̃ (0)
µ

µ : |10〉 can be obtained from (8) by re-
placing L → −L in the integrand and the off diagonal term 
D0110

µ
µ := 〈01| : T̃ (0)

µ
µ : |10〉 can be obtained from (8) by re-

placing k̃ − k̃′ → k̃+ k̃′ in the exponent inside the integrand.
We continue by discussing the contribution of all these terms 

to the time evolution of the curvature (i.e., Ricci scalar). We 
start by noticing that all terms contain a factor of the form 
exp[± i (ω−ω′)t]. When σ 2h̄ t/m ≫ 1 for extremely massive fields, 
or σ t ≫ 1 for massless fields, all terms on the right hand side of 
(7) vanish due to Riemann–Lebesgue lemma. We understand this 
is a consequence of the spreading of the wave packets Fk0

(k) with 
time [24].

Focusing on the initial time t = 0, one can show that the 
term D10

µ
µ has the expansion D10(x, y, z) + O(( σ

m
)2) for mas-

sive static particles and D10(x, y, z) + O( σ
k0

) for massless parti-
cles with high momentum. It is possible to compute the function 
D10(x, y, z) for the box wave-packets and we find D10(x, y, z) ∼
sinc2(σ x) sinc2(σ y) sinc2(σ (z − L)). In this case, the term

D01(x, y, z) can be found by the previous one by replacing z − L

with z+ L and the term D0110(x, y, z) by replacing sinc2(σ (z− L))

with sin2(σ z)/(L2 − z2). Note that here we have used the fact that 
sin(L σ ) = sin(π n) = 0.
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The off diagonal terms D0110
µ

µ do contribute to Einstein’s ten-
sor in the fashion described above and to the same order in σ /m

or σ /k0 as the diagonal terms. If one is interested in obtaining the 
metric itself, one can integrate equation (7) with similar contribu-
tions as determined above and obtain the form of the perturbation 
hµν for all states, which we have shown will depend on α and β . 
This could be done numerically however, we are not interested in 
doing so here, as the aim of this work is to prove that an effect 
exists in the first place.

3.2. Physical regimes

We have shown that correlations affect gravity and that, for 
small perturbations of flat spacetime, the coupling is governed 
by the dimensionless parameter ξ . Furthermore, this parameter is 
fully determined by the relevant physical scales of the scenario i.e., 
energy scales. Let us now restore dimensions in order to under-
stand which is the magnitude of the effects governed by ξ and the 
time τ it takes for the gravitational field to completely “wash out” 
all the effects. We start by looking at the control parameter ξ . We 
have

ξ =
GN E0 σ

c4
, (9)

where we have noted that E0 = m c2 for massive static particles 
and E0 = h̄ k0 c for massless particles with high momentum. For 
a single massive particle whose rest mass m ∼ 10−21 kg is much 
larger its “size”, of the order of 1/σ ∼ 10−22 m (see [25]), we 
see that ξ ∼ 10−26 . For a single massless particle with high mo-

mentum (frequency) ω0 ∼ 1014 Hz compared to its spread σ c ∼
109 Hz we find ξ ∼ 10−63 , which is extremely small. However, for 
much heavier particles, for ultra-energetic massless particles or for 
states with a high number of excitations (i.e., N00N states, which 
have already been employed to greatly enhance estimation of pa-
rameters due to their “high” quantum nature [26]), one could hope 
to increase the above result by several orders of magnitude. This 
could in principle make the effect measurable.

We notice that, for a very massive and static particle, the 
parameter ξ can be re-written as ξ = rS/r, where rS := 2 GN m

c2

is the Schwarzschild radius of a particle of mass m and “size” 
r = 2/σ . The predictions of this work become unreliable when the 
Schwarzschild radius of the particle becomes comparable and ex-
ceeds the size of the particle.

Let us turn to the time τ it takes for these effects to become 
negligible. We have seen that the components of Einstein’s tensor 
vanish after times that depend on the particle being massive (τm) 
or massless (τk0 ). In particular

τm :=
m

σ 2 h̄
, τk0 :=

1

σ c
. (10)

Given the numbers considered above we have τm ∼ 10−32 s and 
τk0 ∼ 10−31 s respectively. A possible way to increase the lifetime 
of the contributions would be to consider particles that have very 
well defined momentum i.e., lower σ .

Surprisingly, it appears that the sign of β affects the results and 
can make the final effect (slightly) bigger or smaller. This can be 
generalised to complex β . Furthermore, notice that although the 
timescale is independent of the parameter β , the vanishing effect 
occurs equally to all for first order contributions. There is no such 
behaviour for zero order contributions to the off diagonal terms. 
Finally, we notice that the magnitude of the effects, or changes, 
depends on the amount of entanglement (on the absolute value 
of β), while the direction of the contribution (an increase or de-
crease) depends on the phase (equivalently, the sign of β).

We now comment on the consistency of the methods and the 
results. It has been argued that criteria for the validity of semi-

classical gravity should depend on the state considered and on the 
scales probed [12,13]. In particular it has been showed that, for 
Minkowski space and lower than Planck scales [13] and smeared 
fields (as the ones considered here) which do not probe scales 
much smaller than the smearing size [12], the semiclassical treat-
ment is valid and should give correct predictions. As a consistency 
check on the results, we note that if E0 = 0 or GN = 0 the effects 
described in this work vanish. This is to be expected since in this 
case there would be no excitations to produce the perturbation of 
the metric or no dynamical gravity.

3.3. Considerations on the scope and validity of the results

A few final comments are in place. First, we have analysed 
states that do not have coherent superpositions or mixtures of sin-
gle particle states with different mass (energy). This property is 
crucial to our results. On the one hand, our results are not affected 
by arguments that suggest that gravity should collapse states that 
are coherent superpositions of states with different energy (in line 
with [8]). On the other, it guarantees that the states (4) are the 
most general one particle states that we can consider. This in turns 
guarantees that entanglement is directly responsible for the effects 
described in this work. Second, we note that not all entanglement 
affects gravity. For example, we could look at states of particles en-
tangled in the spin degree of freedom. In the absence of magnetic 
fields, spin up and spin down are both eigenstates of the same 
hamiltonian operator (i.e., the energy levels are degenerate in the 
spin degree of freedom). In this case, entanglement between spins 
would not interact with gravity. Third, it may be tempting to draw 
an analogy between the semiclassical equations used here and, for 
example, semiclassical electromagnetism. One might seek for a di-
rect analogy between equation (2) and, for example,

∂µFµν =
µ0 q

c
〈: Jν :〉, (11)

where Fµν := ∂µAν − ∂ν Aµ is the classical Faraday tensor, Aµ is 
the classical four-vector potential, Jν := −i[φ ∂νφ† − ∂νφ φ†] is the 
current of the now charged scalar field φ, the constant µ0 is the 
magnetic permeability of the vacuum and q is the charge of the 
field excitations. In the same fashion as done in this work, one 
seeks to expand four potential and current as Aµ = A

(0)
µ + ξ A

(1)
µ

and Jµ = J
(0)
µ + ξ J

(1)
µ respectively, where ξ ≪ 1 is a parame-

ter to be determined. Note that, in order to compare with the 
gravitational case, we consider a perturbation of the vector poten-
tial around the zero order A(0)

ν which satisfies the homogeneous

Maxwell equation ∂µ∂µA
(0)
ν −∂µ∂ν A

(0)
µ = 0. This allows us to com-

pare this scenario with the gravitational case, where the zero order 
component of the metric (i.e., the Minkowski metric ηµν ) satisfies 
Gµν = 0. One then looks for the dimensionless version of ∂µ Fµν =
µ0 q
c

〈: Jν :〉 and wishes to obtain the analogous of equation (3). 
However, since both vector potential and current are dimensional, 
after simple algebra one finds ξ [∂µ∂µ Ã

(1)
ν − ∂µ∂ν Ã

(1)
µ ] = 〈: J̃

(0)
ν :〉. 

Here quantities with a tilde are dimensionless and the derivates 
are with respect to a normalised coordinate. The expansion param-

eter ξ is arbitrary and is not fixed by the physics of the problem. 
Furthermore Ã(1)

ν and 〈: J̃
(0)
ν :〉 are independent of ξ . Therefore, the 

relation ξ [∂µ∂µ Ã
(1)
ν − ∂µ∂ν Ã

(1)
µ ] = 〈: J̃

(0)
ν :〉 cannot be satisfied and 

this perturbative expansion is inconsistent. We conclude that, al-
though the main equations of these two semiclassical theories are 
formally similar, the physics they describe are essentially different 
and cannot be compared. We understand that this difference is a 
consequence of the universality of gravity, which couples to all en-
ergy, while the electromagnetic field couples only to charge.
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Finally, our results suggest that entanglement is responsible for 
the effects described in this work. The initial state (4) is the most 
general one-particle state that can be conceived given the con-
straint that superpositions of different masses (or energies) are not 
allowed [8]. Entanglement in this state is always present when off 
diagonal terms are, which corroborates our claims.

4. Discussion

To summarize, we have shown that entanglement can affect the 
gravitational field. This suggests that entanglement “has a weight”. 
The perturbations in the gravitational field depend on the amount 
of entanglement and vanish for vanishing quantum correlations. 
The effects studied in this work decay with a time scale pro-
portional to the characteristic “size” of the particle but that does 
not depend on the amount of entanglement. Furthermore, relative 
phase of the coherence term seems to directly affect the strength 
of the effect. A prospective theory of quantum gravity must be able 
to account for this phenomenon and explain its origin.

Experiments designed to measure these effects will have to 
carefully balance the different parameters, in particular the dis-
tance at which the entanglement is established and the energy 
of the particle. We believe that our results can help in better 
understanding the overlap of relativity and gravity theories and, 
ultimately, in the quest of a theory of quantum gravity.
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