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Weight Reduction for Mod ℓ Bianchi Modular Forms

Mehmet Haluk Şengün and Seyfi Türkelli

Abstract

Let K be an imaginary quadratic field with class number one. We prove that mod ℓ, a system
of Hecke eigenvalues occurring in the first cohomology group of some congruence subgroup Γ
of SL2(ØK) can be realized, up to twist, in the first cohomology with trivial coefficients after
increasing the level of Γ by (ℓ).

1. Motivation and Summary

Let G be a connected semisimple algebraic group defined over Q. Let K be a maximal compact
subgroup of the group of real points G = G(R) of G and denote by X = G/K the associated
global Riemannian symmetric space. A torsion-free arithmetic subgroup Γ of G acts properly
and freely on X . In this case, the the locally symmetric space Γ\X is an Eilenberg-MacLane
space for Γ and the cohomology of Γ is equal to the cohomology of Γ\X . That is

H∗(Γ, E) ≃ H∗(Γ\X, Ẽ)

where E is a rational finite dimensional representation of G over C and Ẽ is the local system
that E induces on Γ\X . A theorem of Franke [Fr] describes the cohomology spaces H∗(Γ, E) in
terms of the automorphic forms attached to G. If we take G = SL2, then the Eichler-Shimura
theorem [Sh, Chapter 8] says that the automorphic forms that appear in the cohomology spaces
H1(Γ, E) are the classical modular forms.

Motivated by the above paragraph, we define a Bianchi modular form over an imaginary
quadratic field K as an automorphic form attached to G = ResK/Q(SL2) that appears in some
H1(Γ, E(C)) where Γ is a congruence subgroup of SL2(ØK) (the level) and E(C) is a rational
finite-dimensional representation of GL2(C) over C (the weight).

Harris-Soudry-Taylor, Taylor and Berger-Harcos [HST, Ta1, BH], under some hypothesis,
were able to attach compatible families of λ-adic Galois representations of K to Bianchi modular
forms in accordance with Langlands philosophy. In the reverse direction, it is natural to ask if
mod ℓ Galois representations of K arise from mod ℓ Bianchi modular forms. We define a mod ℓ
Bianchi modular form as a cohomology class in some H1(Γ, E⊗Fℓ) where E is a rational finite-
dimensional representation of GL2(ØK/(ℓ)) over Fℓ. Unlike the case of the classical modular
forms, mod ℓ Bianchi modular forms are not merely reductions of the (char 0) Bianchi modular
forms. This is due to the possible torsion in the cohomology with coefficients over ØK , see
Taylor’s thesis [Ta2].

Elstrod-Grunewald-Mennicke [EGM] were the first investigators of the connection between
mod ℓ Bianchi modular forms and mod ℓ Galois representations of imaginary quadratic fields.
In his paper [Fi], Figueiredo considered an analogue of Serre’s conjecture in this setting but he
only considered mod ℓ Bianchi modular forms in cohomology spaces with trivial coefficients.
Motivated by a result of Ash and Stevens [AS2] for the classical modular forms, he assumed
that a Hecke eigenvalue system attached to a mod ℓ Bianchi modular form, after increasing the
level, would be attached, up to twist, to another form with trivial weight.
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In this paper, we prove that what Figueiredo assumed is true following the technique used
by Ash and Stevens in [AS2]. Our main corollary is as follows

Corollary 1.1. Let K be an imaginary quadratic field of class number one and Ø be its ring
of integers. Let a be an ideal of Ø that is prime to the ideal (ℓ) where ℓ is a rational prime that
is split in Ø. Let Φ be a Hecke eigenvalue system occuring in H1(Γ1(a), E) where E is a finite
dimensional Fℓ[GL2(Ø/(ℓ))]-module. Then Φ occurs in H1(Γ1(aℓ), Fℓ), up to twist.

As an immediate corollary of the above, we get

Corollary 1.2. Mod ℓ, there are only finitely many eigenvalue systems with fixed level.

Note that due to the possible existence of torsion in the second cohomology with integral
coefficients, we cannot in general lift mod ℓ forms to characteristic 0. So this result does not
immediately imply mod ℓ congruences between Bianchi modular forms.

Acknowledgements We thank Gebhard Boeckle and Gabor Wiese for the very helpful comments
and discussions. The first author was partially supported by the SFB/TR 45 ‘Periods, Moduli
Spaces and Arithmetic of Algebraic Varieties’ of the German Research Foundation (DFG).

Notation Once and for all, fix a quadratic imaginary field K of class number one and an ideal
a of Ø = ØK . Also fix a rational prime ℓ that is coprime to a and splits in Ø as ℓ = λλ̄ . Let b

be an arbitrary ideal. We use the following notation:

M2(Ø) : matrices in GL2(K) with entries in Ø

Γ0(b) :
{

(

a b
c d

)

∈ SL2(Ø) : c ≡ 0 mod b

}

Γ1(b) :
{

(

a b
c d

)

∈ SL2(Ø) : c ≡ d − 1 ≡ 0 mod a

}

∆ :
{

(

a b
c d

)

∈ M2(Ø) : c ≡ 0 mod a

}

∆(b) :
{

(

a b
c d

)

∈ M2(Ø) : c ≡ 0 mod ab

}

P (b) :
{

g ∈ Γ1(a) : g ≡
(

1 0
0 1

)

mod b

}

Γ : Γ1(a)
Γ(b) : Γ1(a · b)

Γ0(b) : Γ1(a) ∩ Γ0(b)

2. Hecke Operators on Cohomology

In this section, we describe the Hecke operators on the cohomology. Let R be a ring and
α̃ =

(

α 0
0 1

)

where α is a prime element of Ø. We follow the standart notations and put Γα :=
Γ ∩ α̃−1Γα̃ and Γα := Γ ∩ α̃Γα̃−1.

Let V be a right R[M2(Ø)]-module. We define the Hecke operator Tα on the cohomology as
the composition

H1(Γ, V )

res

��

H1(Γ, V )

H1(Γα, V )
α̂ // H1(Γα, V )

cores

OO

where the map α̂ is defined by
c 7→ (g 7→ c(α−1gα) · αι)

where c is a cocycle in H1(Γα, V ) and αι = det(α)α−1.

One can describe Hecke operators Tα explicitly: suppose ΓαΓ =
⊔

m

i=1
γiΓ. Given g ∈ Γ and

γi, there is a unique γj(i) such that γ−1
j(i)gγi ∈ Γ. Then

(Tαc)(g) =
∑

1≤i≤m

c(γ−1
j(i)gγi) · γι

i
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for all cocycles c in H1(Γ, V ) and g ∈ Γ. We note that this formula agrees with the one given
in [AS1, p.194].

We define the Hecke algebra H as the subalgebra of the endomorphisms algebra of H1(Γ, V )
that is generated by the Tπ’s where π is a prime. Note that H is a commutative algebra.

The induced module Ind(V ) = Ind(Γ, Γ(b), V ) is the set of Γ(b)-invariant maps from Γ to
V , that is

Ind(V ) = {f : Γ → V | f(gh) = f(g) · h for all h ∈ Γ(b)}.
Then Ind(V ) is a right Γ-module with the action (f ·y)(x) = f(yx) for x, y ∈ Γ and f ∈ Ind(V ).

We can extend the Γ-action on Ind(V ) to a right ∆-action in the following way. Let α ∈ ∆
and f ∈ Ind(V ) and x ∈ Γ, then there are β ∈ ∆(b) and y ∈ Γ such that αx = yβ. We define

(f · α)(x) = f(y) · β.

A key tool is Shapiro’s lemma:

Proposition 2.1. There is an isomorphism

θ : H1(Γ, Ind(V )) → H1(Γ(b), V )

given by f 7→ f(I) for every cocycle f in H1(Γ, Ind(V )) where I denotes the identity matrix.
Moreover, the Hecke operators commute with the Shapiro map θ.

The fact that the Hecke operators commute with the Shapiro isomorphism θ was proved in
a more general setting in [AS1]. See also [Wi] for a proof in the case of PSL2(Z) using the same
construction as ours for the Hecke operators.

A system of eigenvalues of H with values in a ring R is a ring homomorphism Φ : H → R.
We say that an eigenvalue system Φ occurs in the RH-module A if there is a nonzero element
a ∈ A such that Ta = Φ(T )a for all T in H.

The following lemma is proved in [AS1, Lemma 2.1].

Lemma 2.2. Let F be a field and V be a F∆-module which is finite dimensional over F . If
an eigenvalue system Φ : H → F occurs in Hn(Γ, V ), then Φ occurs in Hn(Γ, W ) for some
irreducible F∆-subquotient W of V .

Thus it is enough to investigate the cohomology with irreducible coefficient modules if we are
only interested in the eigenvalue systems. In the next two sections, we discuss the irreducible
Fℓ[GL2(Ø/(ℓ))]-modules.

3. The Irreducible Modules

For a nonnegative integer k, we are interested in the right representation Ẽk of GL2 on
Symk(A2) where A2 is the affine plane. Another model of this representation is given as
follows. Given a commutative a ring R, we have Ek(R) ≃ R[x, y]k where the latter is the space
of homogeneous degree k polynomials in two variables over R. Note that {Xk−iY i : 0 ≤ i ≤ k}
is an R-basis of Ek(R).

For a polynomial P (X, Y ) in Ek(Ø) and a matrix
(

a b
c d

)

in M2(Ø), the above mentioned
representation is defined as

(

P ·
(

a b
c d

))(

X, Y
)

= P
((

a b
c d

)(

X
Y

))

= P
(

aX + bY, cX + dY
)

.

The quotients rings Ø/λ and Ø/λ̄ are canonically isomorphic to Fℓ. Then M2(Ø) acts on
Ek(Fℓ) in two different ways: through reduction by λ and by λ̄.

In this note, we are interested in the absolutely irreducible representations of GL2(Ø/(ℓ))
over Fℓ. Given nonnegative a, r, put

Ea
r (Fℓ) := deta ⊗Fℓ

Er(Fℓ)
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It follows from a result of Brauer and Nesbitt [BN] that the absolutely irreducible representations
of GL2(Ø/(ℓ)) = GL2(Ø/λ) × GL2(Ø/λ̄) over Fℓ are

Ea,b
r,s (Fℓ) := Ea

r (Fℓ) ⊗Fℓ
Eb

s(Fℓ) , 0 ≤ r, s ≤ ℓ − 1, 0 ≤ a, b ≤ l − 2

These are M2(Ø) modules as well: M2(Ø) acts on the first module through reduction by λ
and on the second through reduction by λ̄. For the rest of the paper, we will work over Fℓ. So
we simply write Ea,b

r,s . Moreover, we write Er,s when a = b = 0.

Let E be a Fℓ[M2(Ø)]-module. Given 0 ≤ a, b ≤ l − 2, we mean by

H∗(Γ, E)(a,b)

the cohomology group H∗(Γ, E) twisted as a Hecke module. More precisely, let v be an element
of H∗(Γ, E). Denote it as v′ when viewed as an element of H∗(Γ, E)(a,b). Let τ1, τ2 be the
reduction maps from Ø to Fℓ by λ and λ̄ respectively. Given a Hecke operator Tπ, we have

Tπ(v′) = τ1(π)aτ2(π)bTπ(v)

As SL2(Ø)-modules Ea,b
r,s is the same as Er,s. The difference occurs when they are considered

as Hecke modules. The following observation is immediate.

Lemma 3.1. We have

H∗(Γ, Ea,b
r,s ) ≃ H∗(Γ, Er,s)

(a,b)

as Hecke modules.

4. Induced Modules

As we announced in the introduction we want to go down to trivial weight by increasing the
level by ℓ. Thus we are interested in the Hecke module H1(Γ(ℓ), Fℓ). We investigate these in
this section.

Let χ : Γ0(ℓ)/Γ(ℓ) → F∗
ℓ be a homomorphism. For any Fℓ[∆]-module E, we define H∗(Γ(ℓ), χ, E)

as the submodule of all v ∈ H∗(Γ(ℓ), E) such that v ·
(

a b
c d

)

= v · χ(d) for every
(

a b
c d

)

∈ Γ0(ℓ).
We have

H1(Γ(ℓ), Fℓ) ≃
⊕

χ

H1(Γ(ℓ), χ, Fℓ) ≃
⊕

χ

H1(Γ0(ℓ), (Fℓ)
χ)

where (Fℓ)
χ is the rank one Fℓ-module on which Γ0(ℓ) acts via χ. The last isomorphism follows

from Lemma 1.1.5 of [AS1]. Using Shapiro’s lemma, we relate these to the cohomology of Γ.

H1(Γ(ℓ), Fℓ) ≃
⊕

χ

H1(Γ, Ind(Γ0(ℓ), Γ, (Fℓ)
χ)).

We follow Ash and Stevens and use the following space of functions in order to study the
module Ind(Γ0(ℓ), Γ, (Fℓ)

χ). Let I be the set of Fℓ valued functions on F2
ℓ which vanish at the

origin. The semigroup ∆ acts on I both by reduction by λ and by λ̄. The action is given by

(f · M)(a, b) = f((a, b)M t)

for f ∈ I, (a, b) ∈ F2
ℓ and M ∈ ∆.

For each integer n, let In be the ∆-submodule of I consisting of homogeneous functions of
degree n, that is, the collection of functions f ∈ I such that f((xa, xb)) = xnf((a, b)). Observe
that Ik = Ik+l−1. A function f ∈ In is determined by its values on the set {(1, 0), ..., (1, ℓ −
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1), (0, 1)} , which can be identified with P1(Fℓ). Thus every In is ℓ + 1 dimensional. We have
the decomposition

I ≃
ℓ−2
⊕

n=0

In.

Let χ1 : (Ø/λ)∗ → F∗
ℓ and χ2 : (Ø/λ̄)∗ → F∗

ℓ be the restrictions of the canonical isomorphisms
to the units. We have the following isomorphisms of ∆-modules

Ind(Γ0(λ), Γ, (Fℓ)
χk

1 ) ≃ Ik

and
Ind(Γ0(λ̄), Γ, (Fℓ)

χk

2 ) ≃ Ik

for 0 ≤ k ≤ l − 2. Of course, in the first case ∆ acts on Ik via reduction through λ and in the
second case via reduction through λ̄.

As the quotient Γ0(ℓ)/Γ(ℓ) is isomorphic to (Ø/ℓ)∗ ≃ (Ø/λ)∗ × (Ø/λ̄)∗, any homomorphism
χ : Γ0(ℓ)/Γ(ℓ) → F∗

ℓ can be written uniquely as a product χr
1 · χs

2 for some 0 ≤ r, s ≤ l − 1. In
this case, we denote χ as χ(r, s).

The following is a straightforward generalization of Lemma 2.6 of [AS2].

Lemma 4.1. Let 0 ≤ r, s,≤ l − 1. Then

H1(Γ, Ir ⊗Fℓ
Is) ≃ H1(Γ(ℓ), χ(r, s), Fℓ)

as Hecke modules.

Proof. As before, we have

H1(Γ(ℓ), χ(r, s), Fℓ)) ≃ H1(Γ0(ℓ), (Fℓ)
χ(r,s)) ≃ H1(Γ, Ind(Γ0(ℓ), Γ, (Fℓ)

χ(r,s))).

So it suffices to show that

Ind(Γ0(ℓ), Γ, (Fℓ)
χ(r,s)) ≃ Ind(Γ0(λ), Γ, (Fℓ)

χr

1 ) ⊗ Ind(Γ0(λ̄), Γ, (Fℓ)
χs

2).

Observe that P (ℓ), the intersection of the principal congruence subgroup of level ℓ and Γ, acts
trivially on (Fℓ)

χ(r,s). Thus after factoring, we get

Ind(Γ0(ℓ), Γ, (Fℓ)
χ(r,s)) ≃ Ind(B(Ø/ℓ), SL2(Ø/ℓ), (Fℓ)

χ(r,s))

where B(Ø/ℓ) is the subgroup of upper triangular matrices in SL2(Ø/ℓ). Notice that we have
B(Ø/ℓ) ≃ B(Ø/λ) × B(Ø/λ̄) and SL2(Ø/ℓ) ≃ SL2(Ø/λ) × SL2(Ø/λ̄). This gives

Ind(B(Ø/ℓ), SL2(Ø/ℓ), (Fℓ)
χ(r,s)) ≃ Ind(B(Ø/λ), SL2(Ø/λ), (Fℓ)

χr

1 )⊗Ind(B(Ø/λ̄), SL2(Ø/λ̄), (Fℓ)
χs

2).

The claim follows easily from here.

5. Exact Sequences

We will need the following two facts, see [AS2, Section 3].

Lemma 5.1. For 0 ≤ r ≤ ℓ − 1, there are SL2(Ø)-invariant perfect pairings

(1) Er × Er → Fℓ

(2) Ir × Iℓ−1−r → Fℓ
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Let 0 ≤ r ≤ ℓ − 1. As in [AS2], we consider the following SL2(Ø)-invariant maps. Each
polynomial in Er can be seen as a function on F2

ℓ . This gives us a morphism αr : Eg → Ir. Let
βr : Ir → Er

ℓ−1−r be given by

βr(f) =
∑

(a,b)∈F2

ℓ

f(a, b)(bX − aY )ℓ−1−r.

Lemma 5.2. For 0 ≤ r ≤ ℓ − 1, we have the following exact sequence of ∆-modules

0 // Er
αr // Ir

βr // Er
ℓ−1−r

// 0

Remark 5.3. Lemma 5.2 shows that the semisimplification of Ir is Er ⊕ Er
ℓ−1−r. There is

another way to see this. As we explained in the proof of Lemma 4.1, Ir is the induction of the
one dimensional representation χr of the Borel subgroup of SL2(Fℓ) to all of SL2(Fℓ). One can
identify the semisimplification of this ℓ+1 dimensional representation by a calculation of Brauer
characters. This has been done by Diamond in [Di, Prop 1.1.].

Definition 5.4. For given nonnegative integers r, s, we define the following ∆-modules where
∆ acts on the components of every tensor product through reduction by λ and λ̄ respectively.

1. Ir,s := Ir ⊗ Is;

2. Ur,s := [Er
ℓ−1−r ⊗ Is] ⊕ [Ir ⊗ Es

ℓ−1−s];

3. Vr,s := Er
ℓ−1−r ⊗ Es

ℓ−1−s.

We have ∆-module morphisms

π : Ir,s → Ur,s defined by π := [βr ⊗ id] ⊕ [id ⊗ βs]

and
π′ : Ur,s → Vr,s defined by π′ := id ⊗ βs − βr ⊗ id.

Lemma 5.5. Let the notation be as above. Let 0 ≤ r ≤ ℓ − 1 and 0 ≤ s ≤ ℓ − 1. We have the
following exact sequence ∆-modules:

0 // Er,s
ι // Ir,s

π // Ur,s
π′

// Vr,s // 0 .

Proof. Note that ∆-modules in question are flat since they are also Fℓ-vector spaces. So, by
Lemma 5.2, ι is injective. One can easily see that Im(ι) ⊆ Ker(π) and π′ is surjective. Thus,
in order to complete the proof, it suffices to show that dim(Im(π)) = (ℓ + 1)2 − (r + 1)(s + 1);
this is what we do below.

Identifying Er with its image in Ir, we can write the vector space decomposition Ir = Er ⊕
Eℓ−1−r. Now, it is evident that dim(π(Er⊗Is)) = (r+1)(ℓ−s) and that dim(π(Eℓ−1−r⊗Is)) =
(ℓ − r)(ℓ + 1). Elementary linear algebra shows that these images have trivial intersection and
this gives us the desired dimension.

Setting Wr,s := ker(π′ : Ur,s → Vr,s), by Lemma 5.5, we get two short exact sequences

0 // Er,s
ι // Ir,s

π // Wr,s // 0 (1)

and

0 // Wr,s
i // Ur,s

π′

// Vr,s // 0 . (2)
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6. Invariants

For convenience, we will write Fℓ(g) for the module Eg,g
0,0 which we defined in Section 3.

Lemma 6.1. For any nonnegative integers r, s, we we have the following isomorphism of Hecke
modules

H0(Γ, Ir,s) ∼=
{

Fℓ(ℓ − 1) if r ≡ s ≡ 0 (mod ℓ − 1)
0 otherwise

Proof. By Shapiro’s Lemma, we have H0(Γ, Ir,s) ≃ H0(Γ0(ℓ), (Fℓ)
χ(r,s)). In action of Γ0(ℓ) on

Fell through χ(r, s), either there are no nontrivial invariants or the whole space is fixed which
means that χ(r, s) acts trivially. By the Chinese Remainder Theorem, this is possible if and
only if χr

1 and χs
2 act trivially. Hence the congruence conditon of the claim. One can directly

check that the Hecke action is as described.

Lemma 6.2. Assume 0 ≤ r, s ≤ ℓ − 1. Then, we have the following isomorphism of Hecke
modules

H0(Γ, Er,s) =
{

Fℓ if r = s = 0
0 otherwise

Proof. The claim is obvious when (r, s) = (0, 0). Assume (r, s) 6= (0, 0) and (r, s) 6= (ℓ−1, ℓ−1).
Then, the exact sequence (1) induces the following exact sequence

0 → H0(Γ, Er,s) → H0(Γ, Ir,s).

By Proposition 6.1, H0(Γ, Ir,s) = 0 and so is H0(Γ, Er,s).
Assume (r, s) = (ℓ − 1, ℓ − 1). We have the isomorphism Eℓ−1,ℓ−1

∼= (Ø/ℓ)[x, y]ℓ−1. On the

other hand, in [Ds], Dickson showed that Γ invariants of Ẽ∗ is generated by XℓY − XY ℓand
∑ℓ

i=0(X
ℓ−iY i)ℓ−1. This implies that H0(Γ, Eℓ−1,ℓ−1) = 0.

Lemma 6.3. Let 0 ≤ r, s ≤ ℓ − 1. Then, we have the following isomorphism of Hecke modules

H0(Γ, Ur,s) =
{

Fℓ(ℓ − 1) ⊕ Fℓ(ℓ − 1) if (r, s) = (ℓ − 1, ℓ − 1)
Fℓ(ℓ − 1) if (r, s) = (0, ℓ − 1) or (ℓ − 1, 0)
0 otherwise

Proof. Set U1 := Eℓ−1−r(r) ⊗ Is and U2 = Ir ⊗ Eℓ−1−s(s). Then, Ur,s = U1 ⊕ U2 and
H0(Γ, U1) ⊕ H0(Γ, U2).

Assume (r, s) is not of (ℓ − 1, ℓ − 1), (0, ℓ − 1) and (ℓ − 1, 0). Then, tensoring the exact
sequence in Lemma 5.2 with Eℓ−1−r(r), we get the following short exact sequence

0 // Eℓ−1−r(r) ⊗ Es
// U1 // Vr,s // 0 .

This induces the following long exact sequence

0 // H0(Γ, Eℓ−1−r(r) ⊗ Es) // H0(Γ, U1) // H0(Γ, Vr,s).

Since Vr,s
∼= Eℓ−1−r,ℓ−1−s as Γ-modules, by Lemma 6.2, H0(Γ, Vr,s) = 0. On the other hand,

by Lemma 6.2, H0(Γ, Eℓ−1−r(r) ⊗ Es) = 0 and H0(Γ, U1) = 0. Likewise, one tensors the
exact sequence in Lemma 5.2 with Eℓ−1−s(s) and gets H0(Γ, U2) = 0, hence the vanishing of
H0(Γ, Ur,s).
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Now, assume (r, s) = (ℓ − 1, 0). Then, by Lemma 6.2, H0(Γ, Eℓ−1−r(r) ⊗ Es) ∼= Fℓ and
H0(Γ, Vr,s) = 0. Using the exact sequence of cohomology groups above, we conclude that
H0(Γ, U1) ∼= Fℓ as vector spaces. Likewise, one gets H0(Γ, U2) = 0.

In case (r, s) = (0, ℓ − 1), one proceeds exactly as above and gets H0(Γ, U1) = 0 and
H0(Γ, U2) = Fℓ.

Finally assume (r, s) = (ℓ−1, ℓ−1). In this case, H0(Γ, Eℓ−1−r(r)⊗Ēs) = 0 and H0(Γ, Vr,s) ∼=
Fℓ by Lemma 6.2. One can easily see that π′|U1 : U1 → Vr,s is surjective and so H0(Γ, U1) ∼= Fℓ

as vector spaces. Exactly in the same way, one gets H0(Γ, U2) ∼= Fℓ (as vector spaces). One
checks the action of the Hecke algebra and completes the proof.

Lemma 6.4. Let 0 ≤ r, s ≤ ℓ − 1. Then, we we have the following isomorphism of Hecke
modules

H0(Γ, Wr,s) =
{

Fℓ if (r, s) = (ℓ − 1, ℓ − 1), (0, ℓ − 1) or (ℓ − 1, 0)
0 otherwise

Proof. First of all, the exact sequence (2) above induces the following long exact sequence of
Hecke modules in cohomology

0 // H0(Γ, Wr,s)
i∗ // H0(Γ, Ur,s)

π′

∗ // H0(Γ, Vr,s) // H1(Γ, Wr,s) .

Assume (r, s) = (0, ℓ − 1) or (ℓ − 1, 0). Then, by Lemma 6.2, H0(Γ, Vr,s) = 0. The proof
immediately follows from Lemma 6.3.

Assume (r, s) = (ℓ − 1, ℓ − 1). Then, by Lemma 6.2, H0(Γ, Vr,s) ∼= Fℓ and, by Lemma 6.3,
H0(Γ, Ur,s) ∼= Fℓ ⊕ Fℓ. Using the definition, one can easily see that π′

∗ is surjective and gets the
desired result using the exact sequence of cohomology groups above.

Finally, assume (r, s) is not equal to one of (0, ℓ − 1), (ℓ − 1, 0) and (ℓ − 1, ℓ − 1). Then, by
Lemma 6.3, H0(Γ, Ur,s) = 0 and, using the exact sequence above, we complete the proof.

Remark 6.5. One can compute the above invariants using the following approach which was
suggested by Gebhard Boeckle. As P (ℓ) acts trivially on Er,s, Ir,s and the direct summands of
Ur,s, we get, for instance, H0(Γ, Er,s) ≃ H0(SL2(Ø/λ) × SL2(Ø/λ̄), Er,s). Since we are taking
invariants, we get

H0(Γ/(P (ℓ) ∩ Γ), Er,s) ≃ H0(SL2(Ø/λ), Er) ⊗ H0(SL2(Ø/λ̄), Es).

This gives
H0(Γ, Er,s) ≃ H0(Γ, Er) ⊗ H0(Γ, Es).

Now one can follow the proof of Lemma 3.3 of [AS2] to compute these invariants. Same approach
applies to Lemmas 6.3 and 6.4 as well.

7. Proof Of The Theorem

We are now ready to prove our main result:

Theorem 7.1. Let Φ be a Hecke eigenvalue system occuring in H1(Γ, Ea,b
r,s ) for some 0 ≤ a, b ≤

l − 2 and 0 ≤ r, s ≤ l − 1. Then Φ occurs in H1(Γ2, χ(r, s), Fℓ)
(a,b).
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Proof. By Lemma 3.1, we have H1(Γ, Ea,b
r,s ) ≃ H1(Γ, Er,s)

(a,b). Exact sequence (1) induces the
following long exact sequence of H-modules

0 → H0(Γ, Er,s)
(a,b) ι∗−→ H0(Γ, Ir,s)

(a,b) π′

∗−→ H0(Γ, Wr,s)
(a,b) → H1(Γ, Er,s)

(a,b) → H1(Γ, Ir,s)
(a,b)

We claim that the map H1(Γ, Er,s) → H1(Γ, Ir,s) is injective. Assume that (r, s) is equal to
one of the tuples (0, ℓ− 1), (ℓ− 1, 0) or (ℓ − 1, ℓ− 1). Then, by Lemma 6.2, H0(Γ, Er,s) = 0; by
Lemma 6.1, H0(Γ, Ir,s) ∼= Fℓ and, by Lemma 6.4, H0(Γ, Wr,s) ∼= Fℓ (as vector spaces). By the
definition, π′

∗ is surjective and thus we get the claim. Otherwise, by Lemma 6.4, H0(Γ, Wr,s) = 0.
Now the result follows from Proposition 4.1

Let Φ be a Hecke eigenvalue system occuring in H1(Γ, E) where E is some rational finite
dimensional Fℓ[GL2(Ø/(ℓ))]-module. Then Lemma 2.2 tells us that Φ can be realized in some
H1(Γ, Ea,b

r,s ) with 0 ≤ a, b ≤ l − 2 and 0 ≤ r, s ≤ l − 1. Thus our main theorem implies the
followings as we announced in the introduction.

Corollary 7.2. Let Φ be a Hecke eigenvalue system occuring in H1(Γ1(a), E) where E is a
finite dimensional Fℓ[GL2(Ø/(ℓ))]-module. Then Φ occurs in H1(Γ1(aℓ), Fℓ), up to determinant
twist.

For congurence subgroups of SL2(Z), the following was first proved by Tate-Serre for level
1 (unpublished), by Jochnowitz [J] for prime levels less than 19 and for arbitrary levels by
Ash-Stevens [AS2].

Corollary 7.3. The set of Hecke eigenvalue systems occuring in H1(Γ1(a), E) for fixed a and
varying E, where E is a rational finite dimensional Fℓ[GL2(Ø/(ℓ))]-module, is finite.

It is natural to ask whether increasing the level by (ℓ) is optimal. In other words, are there
eigenvalue systems with nontrivial weight which have no twists that occur with trivial weight
when the level is increased by (λ) or (λ̄). One can see, by the methods we used in this note,
that the answer to this question is positive if r = 0 or s = 0. It looks like this is the only case
where the answer is positive. We present a numerical example to support this speculation.

Example 7.4. Let Ø = Z(ω) where ω =
√
−2. Using the programs developed by the first

author in his doctoral thesis [Sen], we find an eigenform v in H1(PSL2(Ø), E10,10(F11)). The
following table gives eigenvalues Φα of v for the first few Hecke operators Tα.

α ω 1 + ω 1 − ω 3 + 2ω 3 − 2ω 1 + 3ω 1 − 3ω 3 + 4ω 3 − 4ω

Φα 9 10 10 9 9 0 0 5 5

Note that we have 11 = (3 + ω)(3 − ω). The spaces H1(Γ0(3 + ω), F11) and H1(Γ0(3 − ω), F11)
are isomorphic and they are two dimensional. Our eigenvalue system Φ does not occur in these
spaces. Next, we examine H1(Γ0(11), F11). We find an eigenvalue system that is the reduction
of a characteristic 0 system. Indeed, we find an eigenvector in H1(Γ0(11), Ø) with the following
eigenvalues Ψα.

α ω 1 + ω 1 − ω 3 + 2ω 3 − 2ω 1 + 3ω 1 − 3ω 3 + 4ω 3 − 4ω

Ψα -2 -1 -1 -2 -2 0 0 -6 -6

Reducing these eigenvalues mod 11, we get an eigenvalue system in H1(Γ0(11), F11) that matches
(we computed only the first 20 split primes) our level 1 weight (10, 10) eigenvalue system Φ.
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(1998), no. 2, 181–279.

[HST] M.Harris, D.Soudry, R.Taylor ; ℓ-adic representations associated to modular forms over
imaginary quadratic fields. I. Lifting to GSp4(Q). Invent. Math. 112 (1993), no. 2,
377–411.

[J] N. Jochnowitz ; Congurences between systems of eigenvalues of modular forms, Trans.
Amer. math. Soc. 270 (1982), 269-285.

[Sen] M. H. Sengun ; Serre’s conejcture over imaginary quadratic fields, PhD thesis, UW-
Madison, 2008

[Sh] G.Shimura ; Introduction to the arithmetic theory of automorphic functions. Publica-
tions of the Mathematical Society of Japan, 11. Kanô Memorial Lectures, 1. Princeton
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