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THE NONEXISTENCE OF CERTAIN REPRESENTATIONS OF

THE ABSOLUTE GALOIS GROUP OF QUADRATIC FIELDS

Mehmet Haluk Şengün

Abstract

For a quadratic field K, we investigate continuous mod p representations of Gal(K/K) that

are unramified away from {p,∞}. We prove that for certain (K, p), there are no such irreducible

representations. We also list some imaginary quadratic fields for which such irreducible repre-

sentations exist. As an application, we look at elliptic curves with good reduction away from 2

over quadratic fields.

1 Introduction and Main Results

A famous conjecture of Serre [16] relates in a precise way the irreducible continuous odd rep-

resentations of Gal(Q/Q) into GL2(Fp) to cuspidal modular forms over Q. In particular, the

conjecture implies that for p < 11, such a representation does not exist if it is ramified only at p.

On the other hand, again as predicted by the conjecture, such a representation that is ramified

only at 11 does exist for p = 11 due to the elliptic curve of conductor 11. In support of the

conjecture, Tate [18] and Serre [15] showed the nonexistence for p = 2 and p = 3 respectively.

Partial nonexistence results have been proved by Brueggeman [1] for p = 5 and by Moon and

Taguchi [10] for p = 7. Recently, the ”odd level” case of the conjecture has been proved by

Khare et al. Thus the nonexistence has been proved for p < 11.

Let K be a number field and p be a rational prime. We say that the pair (K, p) satisfies (†), if
there is no irreducible continuous representation of Gal(K/K) into GL2(Fp) that is unramified

away from (p,∞). There have been studies to formulate an analogue of Serre’s conjecture over

totally real fields [3] and over imaginary quadratic fields [5]. A natural problem related to these

studies is to know which pairs (K, p) satisfy (†) and which pairs do not.

Let ρ : Gal(K/K) → GL2(Fp) be continuous and unramified away from {p,∞}. Then the

field L corresponding to Ker(ρ) is a finite extension of K unramified away from {p,∞} and

we get an embedding of Gal(L/K) into some GL2(Fpa). In this paper we investigate the case

where K is quadratic and p = 2, 3.

In Section 2, we look at the case where p = 2 and the extension L/K is nonsolvable. Let

dK/Q denote the discriminant of K over Q.

Theorem A. Let K = Q(
√
d) be a quadratic field and let L/K be a nonsolvable Galois ex-

tension unramified over every odd prime whose Galois group embeds into some GL2(F2a). If

d = 6, 5, 3, 2,−1,−2,−3,−5,−6 then no such L exists.
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Brueggeman [2] proved Theorem A for d = −2,−1, 2. In Section 3, we treat the case where

p = 2 and L/K is solvable for the fields reported in Theorem A.

Theorem B. Let K = Q(
√
d) be a quadratic field and let L/K be a solvable Galois extension

unramified over every odd prime. Assume that there is an embedding ρ : Gal(L/K) →֒ GL2(F2a)

for some a. If d = 6, 5, 3, 2,−1,−2,−3,−5,−6 then the embedding ρ is reducible.

Putting these two theorems together, we get the following result.

Corollary. For d = 6, 5, 3, 2,−1,−2,−3,−5,−6, the pair (Q(
√
d), 2) satisfies (†).

In Section 4, we focus on p = 3.

Theorem C. The pair (Q(
√
−3), 3) satisfies (†).

We follow ideas of Tate [18] to prove the theorems. The proof of Theorem A is based

on comparing upper and lower bounds of discriminants. Using a discriminant upper bound

of Moon[9], one proves Theorem A for fields d = 5, 3, 2,−1,−2,−3. To also get the fields

d = 6,−5,−6, we use part of a sharp upper bound calculation of Moon and Taguchi who studied

the same problem for p = 2 in their preprint [11]. For Theorem B, we use class field theory

and the computer algebra system MAGMA. In Section 4, we prove Theorem C by applying

the methods of the first two theorems to p = 3. In Section 5, we present a list of imaginary

quadratic fields K such that (K, 2) does not satisfy (†). In Section 6, we use Theorem B to show

the nonexistence of elliptic curves with good reduction everywhere over certain quadratic fields.

Acknowledgements I am grateful to Nigel Boston for suggesting this problem and for his

constant support throughout this project. It is a pleasure to thank Yuichiro Taguchi for his

important comments on the preliminary version of this paper, especially on Section 2, and

Seyfi Türkelli for the careful reading of the final version of this paper. Last but certainly not

least, I sincerely thank the referee for patiently examining the paper and for his/her very useful

comments, and Ken Ono for his attention and support.

2 Nonsolvable Case, p = 2

We start with the discriminant upper bound of Moon[9].

Lemma 1. Let F be a finite extension of Qp with ramification index e. Suppose E/F is a

finite extension with an elementary p-abelian Galois group of order pm where m ≥ 1. Then the

different DE/F of E/F divides (p)c where

c ≤
(

1 +
α

e

)(

1− 1

pm

)

and α =
[

e
p−1

]

+ 1. (here [x] denotes the maximal integer ≤ x)

Observe that for p = 2, the above upper bound takes a simple form: c ≤
(

2+1/e)(1−1/2m).

Corollary 1. Let F be the unramified extension of Q2. Let E/F be a finite Galois extension

with ramification index e2m with e odd and m ≥ 1. Assume that the Galois group G of E/F

embeds into GL2(F2a) for some a. Then the different DE/F of E/F divides (2)c where

c ≤ 3− 1

2m−1
− 1

e2m
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Proof. Let E1 (resp. E0) be the maximal tamely ramified (resp. unramified) subextension of

E/F . Normalize the valuation so that v(2) = 1. It is well known that v(DE1/E0
) = (e − 1)/e.

As the 2-Sylow subgroups of GL2(F2a) are elemantary 2-abelian, so is the Galois group of the

extension E/E1. Now by Lemma 1 we have

v(DE/E1
) ≤

(

2 +
1

e

)(

1− 1

2m

)

Combining the two differents we get

v(DE/F ) ≤
(

2 +
1

e

)(

1− 1

2m

)

+

(

e − 1

e

)

≤ 3− 1

2m−1
− 1

e2m

For ramified case, we will use the following upper bound calculated by Moon and Taguchi

in [11].

Lemma 2. Let F be a ramified quadratic extension of Q2. Let E/F be a finite Galois extension

with ramification index e2m with e odd and m ≥ 1. Assume that the Galois group G of E/F

embeds into GL2(F2a) for some a. Then the different DE/F of E/F divides (2)c where

c ≤ 9

4
− 1

2m−1

Proposition 1. Let K be a quadratic number field and L be a finite Galois extension of K of

degree n which is unramified over every odd prime with wild ramification index 2m with m ≥ 1.

Assume Gal(L/K) embeds into GL2(F2a) for some a. Then |dL/Q| ≤ |dK/Q|n22cn where

(a) if 2 is ramified in K, then c ≤ 9

4
− 1

2m−1

(b) if 2 is inert K, then c ≤ 3− 1

2m−1
− 1

e2m

Proof. We take a place p of K over 2 and a place q of L over p. We complete K and L at p and

q respectively and get an extension of local fields. We apply Corollary 1 or Lemma 2 to this

local extension depending on the ramification of 2 in K/Q. The claim follows by passing from

local to global discriminant and by the fact that dL/Q = (dK/Q)
[L:K] NormK/Q(dL/K). Note

that NormK/Q(2) = 22 in both cases.

For lower bounds on discriminants we will use the Odlyzko-Poitou bounds [14]. Let L/Q be

of degree m. Then

γ + log (4π)− 6.860404m−2/3 ≤ 1

m
log (|dL/Q|)

where γ is the Euler constant.

We compare these upper and lower bounds in the nonsolvable case now. Let K be a quadratic

field and let L/K be a nonsolvable Galois extension ramified only over {2,∞} whose Galois group

G embeds into GL2(F2a) for some a. Let n be the degree of L/K. Note that the degree of L/Q

is 2n.
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Assume that 2 is ramified in K/Q. If L/K is at most tamely ramified, then dL/K divides pn

where p is a place of K over 2. Since the norm of p is 2, |dL/Q| ≤ |dK/Q|n2n . Thus

2(γ + log (4π)− 6.860404(2n)−2/3) ≤ log |dK/Q|+ log 2

As G is nonsolvable, n ≥ 60. For |dK/Q| ≤ 2128, this inequality gives a contradiction for all

n ≥ 60.

Now assume that L/K is wildly ramified with ramification index 2m. Using Lemma 2, we

have

2(γ + log (4π)− 6.860404(2n)−2/3) ≤ log |dK/Q|+ 2c log 2

where c = 9
4 − 1

2m−1 .

As Tate observes in [18], we have n
2m−1 ≥ 30 because 2m divides n and n is divisible by at

least three distinct primes as it is the order of a nonsolvable group. Now we get

2

(

.5772 + 2.53102− 6.860404

22/3n2/3

)

≤ log |dK/Q|+ 1.386295

(

2.125− 30

n

)

6.216448− 8.64356

n2/3
≤ log |dK/Q|+ 2.94587− 41.588

n

3.27057 + f(n) ≤ log |dK/Q|

where f(x) = A−Bx1/3

x with A = 41.588 and B = 8.64356. The function f(x) decreases until

it reaches its minimum at x0 = ( 3A2B )3 ≈ 375.923 with minimum value fmin = −A
2x0

and then it

increases approaching 0 as x tends to infinity. So, if log |dK/Q| ≤ 3.27057+ fmin ≈ 3.21525, the

last inequality gives a contradiction for any n ≥ 60. Thus we get |dK/Q| < 24.9, proving the

claim for the fields K = Q(
√
d) with d = 6, 3, 2,−1,−2,−5,−6.

Now assume that 2 is inert in K/Q. As e2m is the order of the solvable local inertia group,

its index in nonsolvable G has to be at least 3, thus n
e2m ≥ 3. Using Corollary 1, we get

6.216448− 8.64356

n2/3
≤ log |dK/Q|+ 1.386295

(

3− 30

n
− 3

n

)

2.057563+ g(n) ≤ log |dK/Q|

where g(x) = A−Bx1/3

x with A = 45.7477 and B = 8.64356. The minimum value of g(x) is

attained at x0 ≈ 500.385. If log |dK/Q| ≤ 2.057563 + gmin ≈ 2.011863, the last inequality gives

a contradiction for any n ≥ 60. Thus we get |dK/Q| < 7.477, proving the claim for the fields

K = Q(
√
d) with d = −3, 5.

This completes the proof Theorem A.

3 Solvable Case, p = 2

Let L/K be a solvable Galois extension with Galois group G that is ramified only over {2,∞}.
Assume that there is an embedding ρ : G →֒ GL2(F2a) for some a. If we show that G is a 2-group

then a conjugate of the image of G will be inside the Sylow 2-subgroup T = {
(

1 x
0 1

)

| x ∈ F2a}
of GL2(F2a). Thus ρ will be reducible.
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Let S be a 2-Sylow subgroup of G. Then S is elementary 2-abelian as T is. Let G′ be the

commutator subgroup of G. To show that G is a 2-group, it is enough to show that G/G′ and

G′/G′′ are 2-groups. If they are, then G/G′′ is a 2-group and it is abelian as it is a homomorphic

image of S. Indeed, G/G′′
⋍ SG′′/G′′ = S/S ∩ G′′. Hence G′ = G′′. Since G is solvable, we

have G′ = 1 and thus G is a 2-group.

In the rest of this section, K = Q(
√
d) with d = 6, 5, 3, 2,−1,−2,−3,−5 or −6.

Observe that 2 is either inert (d = −3, 5) of ramified in K/Q. Let p denote the only place of

K above 2. We will prove that G/G′ and G′/G′′ are 2-groups.

Proposition 2. The ray class group of K with modulus pkm∞ is a 2-group for any k where

m∞ is the modulus of all the real archimedean places of K.

Proof. Let OK be the ring of integers of K and U be the group of units of OK . Let Cl(K) be

the ideal class group of K and let Cl(K, pkm∞) be the ray class group of K of modulus pkm∞

with fixed positive integer k.

We have the following exact sequence from class field theory

(∗) U → (OK/pk)∗ × |Z/2Z||m∞| → Cl(K, pkm∞) → Cl(K) → 1

It is known that the prime to 2 part of (OK/pk)∗ is Z/(2f − 1)Z where f is the residue

degree of p. Thus if 2 is ramified in K, then (OK/pk)∗ is a 2-group. Since the class numbers of

K’s are all powers of 2, the result follows in this case. If 2 is inert, there may be a non-trivial

3-part of the ray class group. Note that the 3-rank is the same for every k. For the two inert

fields, we verify with MAGMA that the ray class group with modulus (2)m∞ has 3-rank zero

for all d’s.

Let F be the fixed field of G′. Then F is an abelian extension of K that is ramified only

over {2,∞} and F is contained in a ray class field of K with modulus pkm∞ for some k. By

Proposition 2, such a ray class field has degree power of 2 over K. Thus G/G′ is a 2-group.

The group G′/G′′ corresponds to an abelian extension of F that is only ramified over {2,∞}
and thus is contained in a ray class field of F with modulus (2)km∞ for some k. Using MAGMA,

we will verify for each possible F that these ray class groups are 2-groups and conclude that

G′/G′′ is a 2-group. First, we use the following theorem of Nakagoshi [12] to find a field A which

contains all possible F ’s.

Theorem 1. Let N be a number field with ramification index e and residue degree f over

the rational prime p and let p be a prime ideal of the ring of integers O of N over p. Set

e1 =

[

e

p− 1

]

where [x] is the maximal integer ≤ x. Let Np denote the completion of N at p.

Then the p-rank Rn of (O/pn+1)∗ is given by

Rn =

(

n−
[

n

p

])

f, if 0 ≤ n < e+ e1

Rn = ef , if n ≥ e+ e1 and ζp 6∈ Np

Rn = ef + 1, if n ≥ e+ e1 and ζp ∈ Np

Combining this result with the exact sequence (∗), we see that the 2-ranks of ray class groups

of modulus (2)km∞ stabilize after k = 5 for every quadratic field. Thus there exists a maximal
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elementary 2-abelian extension A of K that is only ramified over {2,∞}. As G/G′ is elementary

2-abelian (it is a homomorphic image of S), F is a subfield of A. For every d, we list a defining

polynomial of A over Q, class number h of A and the decomposition (e, f, g) of 2 in A/Q.

d A h e,f,g

6 x16 + 4x12 + 15x8 + 4x4 + 1 1 8,2,1

5 x16 − 12x14 + 58x12 − 29x8 + 58x4 + 12x2 + 1 1 8,2,1

3 x16 + 4x14 + 56x12 + 36x10 + 542x8 + 636x6 + 248x4 + 28x2 + 1 1 8,2,1

2 x16 + 4x12 + 40x10 + 104x8 + 112x6 + 56x4 + 16x2 + 4 1 16,1,1

−1 x8 + 4x6 + 22x4 + 4x2 + 1 1 8,1,1

−2 x8 + 4x6 + 10x4 − 20x2 + 9 1 8,1,1

−3 x8 − 10x6 + 31x4 − 6x2 + 9 1 4,2,1

−5 x8 + 32x6 + 248x4 + 512x2 + 16 1 4,2,1

−6 x8 + 24x6 + 248x4 − 288x2 + 2704 1 4,2,1

Table 1

We compute the class numbers of all subfields of A for every d and see that they are all

powers of 2.

From Table 1, we see that residue degree f of 2 in A is either 1 or 2. We also observe that

each subfield of A has only one place over 2. By the exact sequence (∗), we see that for the

subfields of A with f = 1, the 3-rank of its ray class group with modulus (2)km∞ will be 0. For

the subfields of A with f = 2 which contain K, we check the 3-rank of their ray class groups

with modulus (2)m∞ and see that it is 0 in all instances. This shows that G′/G′′ is a 2-group

for all the quadratic fields listed in Theorem B and thus completes the proof of Theorem B.

4 The Case p = 3

We apply Lemma 1 to the case p = 3 and get the following:

Proposition 3. Let K be a quadratic field ramified over 3 and L be a finite Galois extension

of K of degree n which is unramified away from {3,∞}. Let the ramification index of L/K

be e3m with m ≥ 1 and (e, 3) = 1. Assume Gal(L/K) embeds into some GL2(F3a). Then

|dL/Q| ≤ |dK/Q|n32cn where

c ≤ 2− 1

2 · 3m−1
− 1

2e · 3m

Proof. Just as in the proof of Proposition 1, we look at the local differents. We suitably complete

K and L over 3 to get the local extension E/F . Let E1 (resp. E0) be the maximal tamely

ramified (resp. unramified) subextension of E/F . Normalize the valuation so that v(3) = 1.

We have v(DE1/E0
) = (e − 1)/2e. Gal(E/E1) is an elementary 3-abelian group and by Lemma

1, we see that DE/F divides (3)c where
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c ≤
(

1 +
α

2e

)(

1− 1

3m

)

+
e− 1

2e

≤
(

1 +
1

2
+

1

2e

)(

1− 1

3m

)

+
1

2
− 1

2e

≤ 3

2
+

1

2
− 1

2 · 3m−1
− 1

2e · 3m

We pass to the local and then to global discriminant and get the desired result.

We follow Section 2 and Section 3 to prove Theorem C. Let L/K be an extension satisfying

the hypothesis of Proposition 3. Assume that L/K is nonsolvable. Using the lower bound of

Section 2, we get

6.216448− 8.64356

n2/3
≤ log |dK/Q|+ 2.197225

(

2− 33

2n

)

1.82198+ h(n) ≤ log |dK/Q|

where h(x) = A−Bx1/3

x with A = 41.36.254 and B = 8.64356. The minimum is attained at

x0 ≈ 249.041. For log |dK/Q| < 1.82198+hmin ≈ 1.749, the last inequality gives a contradiction

for any n ≥ 60. Thus we get |dK/Q| < 5.7, only giving Q(
√
−3).

Now let L/Q(
√
−3) be a solvable extension satisfying the hypothesis of Proposition 3. Let

G be the Galois group of this extension. We want to show that G/G′ and G′/G′′ are both

3-groups following Section 3. By the exact sequence (∗) of Section 3, we see that any ray class

group of Q(
√
−3) with modulus (3)km∞ is a 3-group because the class number of Q(

√
−3) is 1

and it has no infinite places and residue degree of 3 is one. Thus G/G′ is a 3-group. Now let

A be the maximal elementary 3-abelian extension of Q(
√
−3) that is unramified over {3,∞}.

Using MAGMA, we find a defining polynomial for A over Q : x18 − 9x15 + 135x12 + 540x9 +

2673x6+1458x3+729. The decomposition of 3 in A/Q is (18, 1, 1) which means for any subfield

the residue degree of 3 is one as well. We verify that all subfields of A containing K have class

number 1 and have no real infinite places. As in Section 3, we conclude that G′/G′′ is a 3-group.

This proves Theorem C.

5 A List of Pairs Not Satisfying (†)

We now investigate the pairs (K, 2) for which (†) fails. The simplest case is a GL2(F2) ⋍ Sym(3)

extension L/K that is ramified only over {2,∞}. Using group theory with MAGMA, we have

searched the number fields database of J.Klüners and G.Malle [8] for Sym(3) extensions of

quadratic fields with little or no ramification. In Table 2, we list some of our findings for

imaginary K. In each case, L is the splitting field of the given polynomial over Q and the third

column is ramification of finite places in L/K.
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d f(x) ramification

−13 x6 + x4 + 4x3 + 36x2 − 24x+ 4 only over 2

−19 x6 − 8x5 + 23x4 − 24x3 + x2 + 14x+ 4 only over 2

−22 x6 − 2x5 + 5x4 + 8x3 + 47x2 + 90x+ 47 only over 2

−37 x6 + 4x5 + 23x4 − 4x3 + 71x2 − 288x+ 293 only over 2

−38 x6 + 6x5 + 33x4 + 60x3 + 89x2 − 258x+ 207 only over 2

−46 x6 + 6x5 + 21x4 + 52x3 + 291x2 + 326x+ 271 unramified

−58 x6 + 8x5 + 40x4 + 60x3 + 261x2 + 380x+ 382 only over 2

−62 x6 + 6x5 + 45x4 + 132x3 + 179x2 + 246x+ 423 unramified

−74 x6 + 6x5 + 41x4 + 32x3 + 101x2 − 654x+ 691 only over 2

−79 x6 − 3x5 + 14x4 − 4x3 + 40x2 + 64x+ 64 only over 2

Table 2

6 Application to Elliptic Curves over Quadratic Fields

Let K = Q(
√
d) be a quadratic field. Assume that E is an elliptic curve over K that has good

reduction away from 2. Let G be the Galois group of the finite extension K(E[2])/K where

K(E[2]) is the extension of K obtained by adjoining coordinates of points of E that are of order

2. It is well known that there is a continuous representation

ρ : G →֒ GL2(F2)

which is ramified away from 2. If d = 6, 5, 3, 2,−1,−2,−3,−5,−6 then by the proof of Theorem

B, G must be a 2-group. This implies that G is either trivial or it is Z/2. This is true only if E

has a K-rational point of order 2. Thus we showed that

Proposition 4. For d = 6, 5, 3, 2,−1,−2,−3,−5,−6, if E is an elliptic curve over K that has

good reduction away from 2 then E has a K-rational point of order 2.

This extends results of Pinch[13] and Kida[7].

An elliptic curve E over K is called admissible if the following conditions are satisified:

(1) E has good reduction everywhere over K

(2) E has a K-rational point of order 2

Comalada[4] showed that for 1 < d < 100, there exists an admissible elliptic curve over

Q(
√
d) if and only if d = 6, 7, 14, 22, 38, 41, 65, 77, 86. Setzer[17] showed that for d < 0, there

exists an admissible elliptic curve over Q(
√
d) if and only if d = 65d1 where d1 is a square modulo

5 and modulo 13 and 65 is a square modulo d1. Combining these two results with Proposition

4, we get

Corollary 3. For d = 5, 3, 2,−1,−2,−3,−5,−6, there is no elliptic curve with good reduction

everywhere over Q(
√
d).

Kagawa and Kida proved the nonexistence of elliptic curves with good reduction everywhere

over many small quadratic fields , including the ones listed in this corollary (see [6] and Kagawa’s

thesis). One may try to use our approach on the several other small ones quadratic fields not

covered by their methods.
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