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Droughts are intensifying across the globe
1,2

, with potentially devastating implications for 15 

freshwater ecosystems
3,4

. We used novel network science approaches to investigate drought impacts 16 

on stream food webs and explored potential consequences for web robustness to future 17 

perturbations. The substructure of the webs was characterised by a core of richly-connected species
5
 18 

surrounded by poorly-connected peripheral species. Although drought caused the partial collapse of 19 

the food webs
6
, the loss of the most extinction-prone peripheral species triggered a substantial 20 

rewiring of interactions within the networks’ cores. These shifts in species interactions in the core 21 

conserved the underlying core/periphery substructure and stability of the drought-impacted webs. 22 

When we subsequently perturbed the webs by simulating species loss in silico, the rewired drought 23 

webs were as robust as the larger, undisturbed webs. Our research unearths previously unknown 24 

compensatory dynamics arising from within the core that could underpin food web stability in the 25 

face of environmental perturbations.  26 

Many areas of the world are becoming increasingly prone to drought
1,2

 and declining precipitation 27 

coupled with rising demand for water could threaten the integrity of freshwater ecosystems across the 28 

globe
3,4

. In rivers and streams, the elimination of sensitive species could potentially undermine community 29 

structure and ecosystem functioning
7–9

, yet how this affects food web stability - at both substructural and 30 

whole-network levels
10

 - has yet to be fully elucidated. Responses to climate change are frequently 31 

interpreted autecologically, through analysis of individual species traits
11

, but these ignore the role of 32 

species interactions, foraging dynamics and potential compensatory mechanisms such as resource 33 

switching, that determine food web stability. Synecological approaches that can address changing species 34 

interactions in the context of the whole food web
12–14

, and hence the potential trophic mechanisms behind 35 

community-level responses
15,16

, remain scarce. In addition, there are non-random substructures in food 36 

webs which could underpin their responses to perturbations
17

. Recent advances in network science have 37 

linked the presence of a cohesive “core” of closely interacting nodes and a loosely connected 38 

“periphery”
5,18–20

 to the stability of complex (non-ecological) networks
21,22

. The significance of this for 39 

food web responses to an environmental perturbation - drought - is reported here for the first time.  40 

The network “core” is a cohesive group of highly connected nodes that governs the functional 41 

attributes of a wide range of complex systems
18

. It determines system robustness because densely 42 
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intertwined pathways within the substructure can provide redundancy by buffering external 43 

fluctuations
18,19

 without altering overall functioning
23

; such structures are absent in less robust, regular 44 

small-world networks
24

. Core size relative to the rest of the web indicates a network’s state
20–22

: large cores 45 

provide greater scope for redundancy of links and rewiring in the event of node and link failure, whilst 46 

small cores indicate vulnerability and systems being under stress.   47 

Here, we quantify experimentally how drought disturbance influences stream food web substructure 48 

and model how this then determines robustness to future perturbations. We analysed food webs from a 49 

stream mesocosm field experiment in which benthic communities subjected to a drought treatment for two 50 

years were compared with undisturbed controls (four replicates; eight food webs in total; see Methods). 51 

Food webs were constructed from gut contents analysis of all 3,643 individuals collected at the end of the 52 

experiment. These exceptionally well-resolved webs encompassed 783 pairwise trophic interactions 53 

among 74 trophic elements, consisting of detrital resources, primary producers and a taxonomically 54 

diverse array of invertebrate consumers (Supplementary Table S1). Local extinctions from ecological 55 

networks can trigger rippling effects due to the direct and indirect interdependency of consumers and 56 

resources; as a result, community fragility to disturbance can be influenced by structural properties, such 57 

as how trophic links are distributed among species
15,16

. We hypothesised that our experimental food webs 58 

were governed by a core/periphery structure, as detected recently in a range of non-ecological 59 

networks
5,19,20

. Highly connected core species are functionally important because they provide alternative 60 

routes for the flux of matter, and could therefore buffer the effects of perturbations and enhance network 61 

stability. Peripheral species are less integral in a topological sense, and changes in the food web 62 

composition and configuration are more likely to lead to their isolation (i.e. extinction), as has been 63 

observed recently in mutualistic networks
25

. Specialist consumers from the web periphery are especially 64 

vulnerable to extinction because they are more loosely connected and dependent on fewer resource 65 

species. Redundancy among the links within the core could, in theory, provide a means of withstanding the 66 

effect of species loss and rebalancing the structure of food webs, thereby conserving overall robustness.  67 

To test our hypotheses, we applied a novel graph profiling technique
5
 to characterise the cores of our 68 

eight highly-resolved replicate food webs
10,26

. To generate a graph profile for a web, nodes were ranked by 69 

their degree (number of links). Starting from the highest degree node, we examined the interconnectedness 70 

among the high degree nodes as those of a lower rank were included sequentially. A point is reached 71 
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whereby the connectivity among the high degree nodes peaks, reflecting the cohesiveness in the core and 72 

defining the core boundary, and which is followed by generally decreasing connectedness thereafter. The 73 

rest of the nodes form the periphery, which is only loosely connected to the core, and contains few or no 74 

links among its constituents. After characterising the core/periphery structure, we then measured the 75 

density of interactions within the core and across the web using the “rich-club” coefficient
27

. To gauge the 76 

level of organisation in the core/periphery structure between the drought and control treatments, we 77 

employed an ensemble of null networks, whereby links were reshuffled randomly while conserving 78 

network properties
28

. Graph profiles obtained from the null models represent network structures that would 79 

simply happen by chance, and they were used to benchmark the link patterns of the empirical webs. The 80 

further an empirical web deviates from its null models (i.e. a z-score greater or less than 0), the more 81 

significant, in statistical terms, are its link patterns, which also indicates the level of organisation that has 82 

taken place to generate the observed pattern. To examine the effectiveness of the compensatory 83 

mechanism provided by the core, we studied network robustness by measuring the rate at which the 84 

structural integrity of food webs collapsed
29

 under two commonly simulated species removal scenarios: i) 85 

random removal and ii) targeted removal of core species (i.e. high degree species).    86 

All eight food webs exhibited a clear core/periphery structure (Fig. 1), as revealed by a distinct 87 

peak in their core profiles and a step-change in interconnectedness from high to low-degree species 88 

(indicated by a vertical line in Fig. 1, at which the number of links ݇௥ା	is at its maximum, and after which 89 

it decreases steadily). The food web cores contained species from all trophic levels (Fig. 1; Supplementary 90 

Table S1) and accounted for (on average) 50% of the species. The proportion of core species was 91 

unchanged by drought (t-test, d.f.=3, p=0.16; Table 1), despite absolute species losses of 25%. Core size 92 

was large relative to non-ecological networks (5-30% of total network size
5,19

), suggesting that natural 93 

systems may possess far greater linkage redundancy. Species extinctions were greatest in the periphery 94 

(t-test, d.f.=3, p=0.01; Table 1), and as expected, species that fell into this category were mainly 95 

invertebrate consumers high in the food chain (Supplementary Table S3) which lost all their resources. 96 

Drought caused more species in the core to migrate into the periphery of the web via a reshuffling of 97 

interactions, than vice versa (t-test, d.f.=3, p=0.01, Table 1 and Fig. 2). Despite this drought-induced 98 

realignment of species, the preservation of the core/periphery structure (Fig. 2) and its relative size is 99 

suggestive of underlying inertia within the webs’ substructure.  100 
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Drought reduced the density of connections within the core (Fig. 3a), as shown by lower rich-club 101 

coefficients, ߶௥. This phenomenon in non-ecological networks is a common response to stress
21,22

, and in 102 

our case was a result of compensatory re-wiring as core species moved into the periphery: the density of 103 

connections in the latter was unaffected by drought, despite peripheral species loss. These changes in 104 

network structure reflect consumer-specific shifts in diet potentially resulting from physiological stress, 105 

changes in the abundance and distribution of resources and/or modified foraging in the drought-disturbed 106 

habitat (see Supplementary Fig. S4 for an example). All webs showed a marked deviation in connectivity 107 

from their respective null models within their cores, revealing a systematic, non-random substructure - the 108 

first time such a phenomenon has been detected in a manipulative field experiment (Fig. 3b). Drought 109 

resulted in a greater decrease in the z-score within the core: link density inside was significantly lower than 110 

what would be expected by chance, suggesting even more intense (re)organisation had taken place in 111 

response to the drought. This pronounced change in the core supports our hypothesis about its governing 112 

role in the re-structuring of food webs under this stressor.    113 

Food webs were robust to simulated random species removal, and this was unaffected by drought 114 

(Supplementary Fig. S5): the amount of primary extinction required for 50% species loss was comparable 115 

in both treatments (t-test, d.f.=3, p=0.89; Table 1). This can be explained by the conservation of the 116 

overall core/periphery structure and relative core size. Peripheral species loss would have affected the 117 

stability of the drought webs, but the observed movement of species from the core to the periphery 118 

rebalanced network structure, thereby conserving robustness to perturbations in silico. When the highly 119 

connected species were removed first, drought webs were just as robust to species removal as were the 120 

control webs (t-test, d.f.=3, p=0.17; Table 1). This suggests that although the density of connections 121 

within the core was altered by drought, overall network integrity and ability to withstand further 122 

perturbations was conserved by species re-alignment. It is conceivable that a threshold core connectance 123 

may exist, beyond which this redundancy is lost and the associated food web collapses, echoing ideas 124 

suggested by Dunne et al.
29

 and Krause et al.
30

. Identifying this threshold would allow us to better predict 125 

which communities are most at risk from environmental change. 126 

Our results demonstrate that drought disturbance triggered previously unknown substructural 127 

changes within real food webs, beyond the direct and obvious species losses that have been reported 128 

elsewhere when based on fixed autecological traits
6,10

. While the underlying core/periphery structure was 129 
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robust to perturbations, the composition and configuration of the food web substructures changed 130 

markedly, with a steep reduction in interactions among the remaining core species. The ability to predict 131 

which networks of species interactions are most vulnerable to anthropogenic pressures, and the 132 

identification of a core of species vital to the functioning and persistence of a community within an 133 

ecosystem, would greatly enhance our ability to direct conservation efforts more effectively in the face of 134 

environmental perturbations
15,16

. Traditional whole-network metrics, such as connectance, were far less 135 

sensitive
6
 than the novel measures applied in this study, and therefore offer less potential for gauging 136 

changes in food webs exposed to perturbations. Substructural approaches that capture the plastic 137 

synecological traits defined by species interactions could help to unearth compensatory shifts within 138 

ecological networks, and provide us with a major new way to detect and understand the effects of 139 

environmental change on ecological communities.  140 

 141 
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Figure Legends 250 

 251 

Figure 1 Core/periphery structure of control and drought food webs. Comparisons of one pair of 252 

control and drought core profiles (all webs shown in Supplementary Fig. S1). Nodes are ranked by their 253 

decreasing order of degree and plotted by the number of links with nodes of a higher rank, ݇௥ା. The 254 

control web is plotted alongside its respective drought web. Species were classified as Basal (circles), 255 

Intermediate (squares) or Top (triangles). The maximum of the curve ݇௥כା , defines the boundary of the 256 

core for the control and drought webs.  257 

 258 

Figure 2 Drought caused species re-alignment in substructures. Comparisons of one pair of control (a) 259 

and drought (b) food web structures (all web pairs shown in Supplementary Fig. S2). Core species in the 260 

inner ring are surrounded by peripheral species in the outer ring. In this web pair, drought caused 15 261 

species to go extinct (filled diamonds) and 11 core species to shift to the periphery (light circles). 262 

 263 

Figure 3 Drought reduced link density and caused further restructuring in the core. (a) The density 264 

of connections across the network measured by the rich-club coefficient, ߶௥, is shown for one pair of 265 

control and drought-disturbed mesocosms (all web pairs shown in Supplementary Fig. S3). Nodes were 266 

ordered by their degree which were then normalised by the size of the network. Boundaries of the cores 267 

are marked by vertical lines as in Fig. 1. (b) Comparisons of the web pair’s deviance in connection density 268 

from their respective null models and more negative z-scores indicate greater deviance from the null 269 

model.   270 
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Table 1 Statistics from two independent samples t-tests. The effects of drought on the relative core 271 

(Supplementary Table S2) and robustness (Supplementary Table S4) were tested using one-tailed t-test on 272 

arcsine transformed data. Two-tailed t-test on arcsine transformed data was applied to examine if 273 

peripheral species are more susceptible to extinction and if more core species realigned after drought 274 

(Supplementary Table S2). Significant effect/difference are indicated in bold (Further details described in 275 

Supplementary Table S5). 276 

 277 

 
Drought 

 Drought impacted 

substructures  

 
d.f. p 

 
d.f. p 

Relative core size 3 0.16 More extinction from periphery 3 0.01 

Robustness (random) 3 0.89 More species realigned from core 3 0.01 

Robustness (targeted) 3 0.17 
   

  278 
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METHODS 279 

Experimental design. Details of the experimental design and methods used to build the food webs are 280 

published elsewhere
10,31

. In brief, the experiment ran for two years (March 2000-February 2002) in 281 

outdoor stream mesocosms that consisted of four pairs of channels subjected to either control or drought 282 

conditions. All channels were subject to two months of constant flow before a drought treatment (6 days of 283 

dewatering per month) was applied to one channel per pair. During the simulated drying periods, surface 284 

flows ceased and drying of exposed substrata occurred in patches, whereas the interstices beneath the bed 285 

surface remained wet, and small pools persisted at intervals along the length of the dewatered channels
32

. 286 

Surfaces of exposed substrata dried at natural ambient rates such that the stress experienced by organisms 287 

stranded in the mesocosms was consistent with those in adjacent drying stream reaches
33

. This 288 

experimental design simulated periodic drying events occurring during a supra-seasonal drought. Stream 289 

drying events have occurred during major droughts in Europe
34

 and are expected to increase in frequency 290 

with climate change
35

. As with all mesocosm experiments, our design necessitated some trade-off between 291 

realism and replication
26,36

. Nevertheless, the simulated flows were consistent with multiyear droughts in 292 

Europe which occur in both summer and winter, and which are characterised by a fragmentary incidence 293 

of streamflow deficits through the year
34

. Our experiment may adequately capture the expected changes in 294 

the magnitude and frequency of drying in rivers under climate change but does not necessarily reflect the 295 

expected changes in seasonality of these events. At the end of the experiment all invertebrates were 296 

collected and identified prior to gut content analysis. All individuals and their gut contents were identified 297 

to genus or species level, where possible. The resultant eight food webs are among the most highly 298 

resolved to date, comprising 783 pairwise trophic interactions and 74 trophic elements in the aggregate 299 

web. Comparison of the control channel food webs to data collected for 82 ‘natural’ river food webs 300 

showed the mesocosm channels contained realistic webs, with consistent and similar size structures 301 

suggesting that patterns of energy flux between mesocosm consumers and resources were good analogues 302 

of those in natural systems
37

. Species were categorised into three trophic levels: Basal (B), Intermediate (I) 303 

and Top (T). A basal species was defined as a species with no prey; a top-level species was referred to as a 304 

species with no predators; and the rest were defined as intermediate species. 305 

 306 

Food web profiling. The core profiling method identifies a substructure of highly interconnected species 307 
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by ordering species with respect to the number of connections to other species and the extent to which 308 

those connections link to more highly connected species in the web
5
. Highly interconnected species 309 

constitute the web core, with less-connected nodes forming the periphery. Each food web was represented 310 

as a binary and undirected network with ܵ nodes (species) and ܧ links (the interactions between 311 

species). To obtain a core profile, nodes were ordered in descending order of their degree (i.e. number of 312 

links) and a node with a rank ݎ has degree ݇௥. The number of links that a node shares with nodes of a 313 

higher rank is ݇௥ା and the number of links with nodes of a lower rank is therefore ݇௥ െ ݇௥ା. Starting with 314 

the node with the highest rank, the value of ݇௥ା fluctuates as nodes from further down the rank are being 315 

included. There will be a point כݎ where ݇௥ା reaches its maximum and will always be less than ݇௥כା  316 

thereafter, marking the boundary of the core. To quantify the density of links inside the core, the rich-club 317 

coefficient
27

 was calculated, which is defined as:  318 

߶௥ ൌ 	 ݎሺݎʹ െ ͳሻ ෍ ݇௜ା௥
௜ୀଵ ൌ 	 ݎሺݎ௥ܧʹ െ ͳሻ 

where ܧ௥ is the number of links shared by the highest ranked r nodes and ݎሺݎ െ ͳሻȀʹ is the maximum 319 

number of possible links among these nodes. The connectivity of a core is given by ߶௥כ whereby a fully 320 

connected core has a value of ߶௥1 =כ and a fully disconnected core gives ߶௥0 =כ. Given that drought 321 

webs contain fewer species than their control counterparts, results could have been skewed by their 322 

reduced web size if their absolute values were used: to overcome this the species rank was normalised by 323 

the overall web size.  324 

 325 

Null model. A statistical null model was used to determine the probability of the connectivity observed in 326 

the empirical data. For each empirical food web, we applied a randomisation method
28 

to generate an 327 

ensemble of 100 networks by randomly reshuffling the links while conserving the properties of the 328 

empirical network, including the number of nodes, the number of links and the degree distribution. This 329 

allows us to assess the statistical significance of the patterns of interactions observed in the empirical webs 330 

with respect to patterns that would simply occur by chance. To quantify how the link density in the core 331 

differs from the random networks, we first referred the rich-club coefficient of the empirical food web and 332 

compared that to its null counterpart by calculating the z-score. A z-score of 0 means that the empirical 333 

data exhibits an organisation of links that is the same as what you would expect from a random case; a 334 
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value > 0 means that the empirical has a higher than expected density of links, and vice-versa. This 335 

effectively describes the degree of organisation of species interactions in the sense that the more 336 

improbable a configuration of links is, the more organisation is required to be in place to attain the 337 

observed pattern. Again, the rank of species was normalised to compensate for the effect of different web 338 

sizes when comparing the control and drought food web pairs. 339 

 340 

Network robustness. To assess this, we simulated primary species loss in all the food webs by manually 341 

removing species
29

. Firstly, species were chosen randomly and removed from the food web, together with 342 

all their associated links, in an iterative manner. We recorded the total species at each step, which accounts 343 

for both primary loss and secondary extinction (as a result of species isolation from resource). Robustness 344 

was quantified by the amount of primary extinction required for a total loss of 50% of the species. We 345 

repeated this for 100 times for each web and results were averaged. Secondly, species were removed in the 346 

descending order of degree which is often considered as the worst case scenario as the most important 347 

(connected) nodes are being targeted. Similarly, species were removed in an iterative manner, but the 348 

degree order of nodes was re-calculated after each species removal as removing a node and its links may 349 

impact on the degree order among the rest of the nodes. Again, robustness was evaluated by the total 350 

primary extinction required for a cumulative 50% species loss. 351 
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