
This is a repository copy of Planning in action language BC while learning action costs for 
mobile robots.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97763/

Version: Accepted Version

Proceedings Paper:
Khandelwal, P, Yang, F, Leonetti, M et al. (2 more authors) (2014) Planning in action 
language BC while learning action costs for mobile robots. In: Chien, S, Fern, A, Ruml, A 
and Do, M, (eds.) Proceedings of the 24th International Conference on Automated 
Planning and Scheduling. ICAPS '14, 21-26 Jun 2014, Portsmouth, New Hampshire, USA. 
Association for the Advancement of Artificial Intelligence (AAAI) , pp. 472-480. ISBN 
978-1-57735-660-8 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Planning in Action Language BC while Learning Action Costs
for Mobile Robots

Piyush Khandelwal, Fangkai Yang, Matteo Leonetti, Vladimir Lifschitz and Peter Stone
Department of Computer Science
The University of Texas at Austin

2317 Speedway, Stop D9500
Austin, TX 78712, USA

{piyushk,fkyang,matteo,vl,pstone}@cs.utexas.edu

Abstract

The action language BC provides an elegant way of for-
malizing dynamic domains which involve indirect ef-
fects of actions and recursively defined fluents. In com-
plex robot task planning domains, it may be necessary
for robots to plan with incomplete information, and rea-
son about indirect or recursive action effects. In this
paper, we demonstrate how BC can be used for robot
task planning to solve these issues. Additionally, action
costs are incorporated with planning to produce opti-
mal plans, and we estimate these costs from experience
making planning adaptive. This paper presents the first
application of BC on a real robot in a realistic domain,
which involves human-robot interaction for knowledge
acquisition, optimal plan generation to minimize navi-
gation time, and learning for adaptive planning.

Introduction

As robots deal with increasingly complex tasks, automated
planning systems can provide great flexibility over direct im-
plementation of behaviors. In mobile robotics, uncertainty
about the environment stems from many sources, which is
particularly true for domains inhabited by humans, where
the state of the environment can change outside the robot’s
control in ways that are difficult to predict. The qualitative
modeling of dynamic domains at a given abstraction level,
based on a formal language, allows for the generation of
provably correct plans. The brittleness owing to the preva-
lent uncertainty in the model can be overcome through exe-
cution monitoring and replanning, when the outcome of an
action deviates from the expected effect.

Action languages are attractive in robotic domains for the
reason that they solve the frame problem (McCarthy and
Hayes 1969), solve the ramification problem (Finger 1986)
by formalizing indirect effects of actions, and are elabo-
ration tolerant (McCarthy 1987). Existing tools such as
COALA (Gebser, Grote, and Schaub 2010) and CPLUS2ASP

(Babb and Lee 2013) allow us to translate action descrip-
tions into logic programs under answer set semantics (Gel-
fond and Lifschitz 1988; 1991), and planning can be accom-
plished using computational methods of Answer Set Pro-
gramming (ASP) (Marek and Truszczynski 1999; Niemelä

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1999). Furthermore, the action language BC (Lee, Lifschitz,
and Yang 2013) can easily formalize recursively defined flu-
ents, which can be useful in robot task planning.

The main contribution of this paper is a demonstration
that the action language BC can be used for robot task
planning in realistic domains, that require planning in the
presence of missing information and indirect action effects.
These features are necessary to completely describe many
complex tasks. For instance, in a task where a robot has to
collect mail intended for delivery from all building residents,
the robot may need to visit a person whose location it does
not know. To overcome this problem, it can plan to complete
its task by asking someone else for that person’s location,
thereby acquiring this missing information. Additionally, a
person may forward his mail to another person in case he
will be unavailable when the robot comes around to collect
mail. In such situations, the information about mail trans-
fers is best expressed through a recursive definition. When
the robot visits a person who has mail from multiple people,
planning needs to account for the fact that mail from all these
people will be collected indirectly. In this paper, we use this
mail collection task to demonstrate how these problems are
solved. The overall methodology is applicable to other plan-
ning domains that involve recursive fluents, indirect action
effects, and human-robot interaction.

The second contribution of this paper is to show how an-
swer set planning under action costs (Eiter et al. 2003) can
be applied to robot task planning, and how these costs can
be learned from experience. Incorporating costs in symbolic
planning is important for applications that involve physical
systems and deal with limited resources such as time, bat-
tery, communication bandwidth, etc. Previous applications
of action languages for robotics do not consider these costs
(Caldiran et al. 2009; Chen et al. 2010). It is also important
to learn costs from the environment, since these costs may
not be the same for different robots, and may even differ
for the same robot under different environmental conditions.
For instance, while a fully articulated humanoid robot may
be slower than a wheeled robot for navigation tasks, the ex-
tra dexterity it possesses may allow it to be faster at opening
doors. Similarly, construction inside a building may render
certain paths slow to navigate. If the robot learns these costs
on the fly, it becomes unnecessary to worry about them dur-
ing the domain formalization.



We evaluate our approach using a Segway mobile robot
navigating through an indoor environment and interacting
with people, serving people by completing tasks such as col-
lecting mail. We also demonstrate the process of learning
navigation costs both in a simulation environment and on a
physical robot. All the code used in this paper has been im-
plemented using the ROS middleware package (Quigley et
al. 2009) and the GAZEBO simulator (Koenig and Howard
2004), and is available in the public domain 1.

Related Work

Task planning problems for mobile robots can be described
in the Planning Domain Definition Language (PDDL)
(Quintero et al. 2011b), which can then be solved by general
purpose PDDL planners such as SAYPHI (de la Rosa, Olaya,
and Borrajo 2007), However, PDDL planning is mainly lim-
ited to domains in which all effects of actions are described
directly, without specifying interactions between fluents. It
should be noted that the original specification of PDDL in-
cludes axioms, which can specify indirect effects of actions.
This feature, however, is rarely used in the planning commu-
nity or planning competitions2.

Answer set programming provides a clear semantics for
indirect effects of actions. Indirect effects of actions can also
be described in action languages such as B (Gelfond and Lif-
schitz 1998), C (McCain and Turner 1997), C+ (Giunchiglia
et al. 2004) and the recently proposed BC (Lee, Lifschitz,
and Yang 2013), which can also support recursive action ef-
fects. Answer set programming has been successfully used
to model the reactive control system of the space shuttle
(Balduccini, Gelfond, and Nogueira 2006), and the action
language C+ has been used for robot task planning (Caldiran
et al. 2009; Chen et al. 2010; Chen, Jin, and Yang 2012;
Erdem and Patoglu 2012; Erdem et al. 2013; Havur et al.
2013). In most of these robotics applications, complete in-
formation for the initial state is available. In contrast, we are
interested in large and realistic domains that require plan-
ning with incomplete information.

Recent work improves on existing ASP approaches for
robot task planning by both using larger domains in simula-
tion, as well as incorporating a constraint on the total time
required to complete the goal (Erdem, Aker, and Patoglu
2012). While this previous work attempts to find the shortest
plan that satisfies the goal within a prespecified time con-
straint, our work attempts to explicitly minimize the over-
all cost to produce the optimal plan. Additionally, this pre-
vious work attempts to include geometric reasoning at the
planning level, and the ASP solver considers a discretized
version of the true physical location of the robot. Since we
target larger domains, we use a coarser discretization of the
robot’s location to keep planning scalable and use dedicated
low-level control modules to navigate the robot.

The difficulty in modeling the environment has motivated
a number of different combinations of planning and learn-

1
https://github.com/utexas-bwi/bwi_planning

2The use of axioms is known to increase the expressiveness and
elegance of the problem representation, and improve the perfor-
mance of the planner (Thiébaux, Hoffmann, and Nebel 2003).

Figure 1: The architecture used in our approach. The planner in-
vokes a cost learner that learns costs from sensing during execution.

ing methods. In related work, a breadth-first planner is used
to compute the set of shortest strong solutions in a non-
deterministic PDDL domain, and the resulting plans are
compiled into a state machine (Leonetti, Iocchi, and Patrizi
2012). Such a state machine is used at run time to constrain
the agent’s behavior, and learn the optimal plan through
model-free reinforcement learning. While model-free learn-
ing has its benefits, the learned information cannot be reused
on different tasks. Since the main reason to have a planner
is often the need for such flexibility, in this paper we let the
agent learn the cost of single actions, adapting the model to
the actual environment.

The approach most closely related to ours, for learning
individual action costs, is the PELA architecture (Jiménez,
Fernández, and Borrajo 2013). In PELA, a PDDL descrip-
tion of the domain is augmented with cost information
learned in a relational decision tree (Blockeel and De Raedt
1998). The cost computed for each action is such that the
planner minimizes the probability of plan failures in their
system. Our method estimates costs more generally based
on any metric observable by the robot. Some preliminary
work has been done in PELA to learn expected action dura-
tions (Quintero et al. 2011a), using a variant of relational de-
cision trees. In contrast, we learn costs using exponentially
weighted averaging, which allows us to respond to recent
changes in the environment.

In preliminary work, we explored optimal planning and
cost learning on robots using ASP (Yang et al. 2014). In this
paper, we use the action language BC for planning, explore
tasks where recursive fluents are necessary, and demonstrate
our approach on real robots.

Architecture Description

Our proposed architecture (shown in Figure 1) has two mod-
ules that constitute the decision making: a planning module,
and a cost estimation module. At planning time, the planner
generates a description of the initial state of the world based
on observations provided by the executor. The initial state,
domain description (translated from the action language BC
into ASP), and goal description are sent to an answer set
solver, in our case CLINGO (Gebser et al. 2011). CLINGO

polls the cost of each action from the estimator, and pro-
duces an optimal plan. After plan generation, the executor
invokes the appropriate controllers for each action, grounds



Figure 2: The layout of the example floor plan used in the text
along with the rigid knowledge provided to the planner.

numeric sensor observations into symbolic fluents, and re-
turns these fluents to the planning module for verification. If
the observed fluents are incompatible with the state expected
by the planner, the planner will update the robot’s domain
knowledge and replan. During action execution, the cost es-
timator also receives sensor data, and employs a learning al-
gorithm to estimate the value of the cost of each action from
the experienced samples. This architecture treats the plan-
ning module as a black box, and can in principle be adopted
with any metric planner. Additionally, the formalism used to
represent the state space in the planner and the cost estimator
modules need not to be the same.

Domain Representation

Background: The Action Language BC

The action language BC, like other action description lan-
guages, describes dynamic domains as transition systems.
An action description in the language BC includes two kinds
of finite symbol sets, fluent constants and action constants.
Fluent constants are further divided into regular and stati-
cally determined. Informally, regular fluents are those that
are directly affected by actions, while statically determined
fluents are those that are determined by other fluents. Every
fluent constant has a finite domain of cardinality ≥ 2.

An atom is an expression of the form f = v, where f is
a fluent constant, and v is an element of its domain. If the
domain of f is {f, t} then we say that f is Boolean. If f is
Boolean then we will write the atom f= t as f , and the atom
f= f as ∼f .

A static law is an expression of the form:

A0 if A1, . . . , Am if cons Am+1, . . . , An

where n ≥ m ≥ 0 and each Ai is an atom. It expresses, in-
formally speaking, that every state satisfies A0 if it satisfies
A1, . . . , Am, and it can be assumed without contradiction
that the state satisfies Am+1, . . . , An. If m = 0, then if is
dropped; if m = n, then ifcons is dropped.

A dynamic law is an expression of the form:

A0 after A1, . . . , Am if cons Am+1, . . . , An

where:

• n ≥ m ≥ 0,

• A0 is an atom containing a regular fluent constant,

• A1, . . . , Am are atoms or action constants, and

• Am+1, . . . , An are atoms.

It expresses, informally speaking, that the end state of any
transition satisfies A0 if its beginning state and its action
satisfy A1, . . . , Am, and it can be assumed without contra-
diction that the end state satisfies Am+1, . . . , An. If m = n,
then ifcons is dropped.

An action description in the language BC is a finite set
consisting of static and dynamic laws.

The following abbreviations are usually used in action de-
scriptions. Symbols a, a1, . . . , ak denote action constants,
A,A0, . . . , Am denote atoms, and f denotes a fluent.

abbreviation causal laws

a causes A A after a
a causes A0 if A1, . . . , Am A0 after a,A1, . . . , Am

default A0 A0 if cons A0

inertial f
f=v after f=v

if cons f=v,
for all v in the domain of f

nonexecutable a1, . . . , ak

if A1, . . . , Am,

f=v after a1, . . . , ak,
A1, . . . , Am

f=w after a1, . . . , ak,
A1, . . . , Am (v 6= w)

The semantics of action descriptions in BC are defined by
translation into the language of logic programs under an-
swer set semantics. Automated translation of BC action de-
scriptions is incorporated in software CPLUS2ASP version 2
(Babb and Lee 2013). Therefore, planning with BC can be
automated by translating into answer set programming and
calling answer set solvers.

Formalizing the Dynamic Domain

In order to demonstrate how ASP can be used for robot task
planning under incomplete information, with human-robot
interaction and with action costs, we use a small domain as
a running example. The example domain we consider has
a mobile robot that navigates inside a building, visiting and
serving the inhabitants by collecting mail:

The robot drops by offices at 2pm every day to collect
outgoing mail from the residents. However, some peo-
ple may not be in their offices at that time, so they can
pass their outgoing mail to colleagues in other offices,
and send this information to the robot. When the robot
collects the mail, it should obtain it while only visiting
people as necessary. If the robot needs to collect mail
from a person whose location is not known, it should
plan to visit other people to acquire this information.

We will show that solving this problem requires handling
indirect effects of actions formulated by recursively defined
fluents, which cannot be easily handled by planners based
on the PDDL formulation, nor by previous action languages
such as C and C+. Solving it also involves planning under
incomplete information and knowledge acquisition through
human-robot interaction, which is not explored in existing
work that uses action languages for task planning.

The floor plan of the example building is illustrated in
Figure 2, along with information about the residents. In the
experimental section, we evaluate our approach on a larger
domain based on a real building.

In this example, we consider the following objects:



• alice, bob, carol and dan are people

• o1, o2, o3 are offices and lab1 is a lab.

• cor (corridor) is a room.

• d1, d2, d3, d4 and d5 are doors.

In the following subsections, we will use meta-variables
P, P1, P2, . . . to denote people, R,R1, R2, . . . to denote
rooms, offices and labs, and D,D1, D2, . . . to denote doors.

Domain knowledge about a building includes the follow-
ing three different types of information: rigid knowledge,
time-dependent knowledge, and action knowledge. We ex-
plain each of these in detail in the following subsections.

Rigid Knowledge includes information about the building
that does not depend upon the passage of time. In our ex-
ample, rigid knowledge includes accessibility between the
rooms, the lab, and the corridor. This knowledge has been
formalized in our system as follows:

• hasdoor(R,D): office R has door D. An office R does
not have a door D unless specified. This default expresses
the closed world assumption (Reiter 1978) for hasdoor:

hasdoor(o1, d1) hasdoor(o2, d2) hasdoor(o3, d3)
hasdoor(lab1, d4) hasdoor(lab1, d5)
default ∼hasdoor(R,D).

• acc(R1, D,R2): room R1 is accessible from room R2 via
door D. Two rooms are not connected by a door unless
specified:

acc(R,D, cor) if hasdoor(R,D)
acc(R,D, cor) if acc(cor,D,R)
default ∼acc(R1, D,R2).

• knows(P1, P2) describes P1 knows where person P2 is.
By default, a person P1 does not know where another per-
son P2 is.

• passto(P1, P2): person P1 has passed mail to person P2.
By default, a person P1 has not passed mail to a person
P2 (including himself).

Time-Dependent Knowledge includes information about
the environment that can change with the passage of time, as
the robot moves around in the environment. Time-dependent
knowledge can be formalized as follows:

• The current location of a person is formalized by the flu-
ent inside. inside(P,R) means that person P is located in
room R. A person can only be inside a single room at any

given time. The fluent is inertial3:

∼inside(P,R2) if inside(P,R1) (R1 6= R2)
inertial inside(P,R).

• Whether the robot knows the current location of a person
is formalized by the fluent knowinside. knowinside(P,R)
means the robot knows that person P is located in
room R. The robot knows that a person can only be inside
a single room at any given time. The fluent is inertial:

∼knowinside(P,R2) if knowinside(P,R1) (R1 6= R2)
inertial knowinside(P,R).

If the robot knows that a person P is in room R, then P
3An inertial fluent is a fluent whose value does not change with

time by default.

is indeed in room R:

inside(P,R) if knowinside(P,R).

• open(D): a door D is open. By default, a door is not open.

• visiting(P ): the robot is visiting a person P . By default, a
robot is not visiting anyone.

• mailcollected(P ): the robot has collected mail from P .
This fluent is inertial. It is recursively defined as follows.
The robot has collected P1’s mail if it has collected P2’s
mail and P1 has passed his mail to P2.

mailcollected(P1) if mailcollected(P2), passto(P1, P2). (1)

Defining fluents recursively is a feature of the domain that
cannot be easily formalized and planned using PDDL, but
can be easily formalized in BC.

• facing(D): the robot is next to a door D and is facing it.
The robot cannot face two different doors simultaneously.

• beside(D): the robot is next to door D. beside(D) is true
if facing(D) is true, and the robot cannot be beside two
different doors simultaneously. Since beside is implied by
facing, it will become an indirect effect of the actions that
make the fluent facing true.

• loc = R: the robot is at room R.

Action knowledge includes the rules that formalize the
actions of the robot, the preconditions for executing those
actions, and the effects of those actions. The robot can exe-
cute the following actions:

• approach(D): the robot approaches door D. The robot
can only approach a door accessible from the the robot’s
current location and if it is not facing the door. Approach-
ing a door causes the robot to face that door.

approach(D) causes facing(D)
nonexecutable approach(D) if loc = R,∼hasdoor(R,D)
nonexecutable approach(D) if facing(D).

• gothrough(D): the robot goes through door D. The robot
can only go through a door if the door is accessible from
the robot’s current location, if it is open, and if the robot
is facing it. Executing the gothrough action results in the
robot’s location being changed to the connecting room
and the robot no longer faces the door.

• greet(P ): the robot greets person P . A robot can only
greet a person if the robot knows that both the robot and
that person are in the same room. Greeting a person P
results in the visiting(P ) fluent being true.

• collectmail(P ): the robot collects mail from person P . A
robot can only collect mail from a person if the robot
knows that both the robot and that person are in the
same room, if the person has not passed their mail to
someone else, and if the person’s mail has not been col-
lected yet. Collecting mail from a person P results in the
mailcollected(P ) fluent being true, formalized as

collectmail(P ) causes mailcollected(P )

Because of the recursive definition of mailcollected in (1),
collectmail(P ) will also indirectly lead to the other peo-
ple’s mail passed to P to be collected as well.

• opendoor(D): the robot opens a closed door D. The robot
can only open a door that it is facing.



• askploc(P ): The robot asks the location of person P if
it does not know the location of person P . Furthermore,
the robot can only execute this action if it is visiting a
person P1 who knows the location of person P . This is the
action that triggers human-robot interaction. By executing
this action, the robot knows that the location of person P
is room R, formalized as

askploc(P1, P ) causes knowinside(P,R) if inside(P,R).

The above formalization can be easily written in the syntax
of CPLUS2ASP, which translates it into the input language
of the answer set solver CLINGO. The complete description
is available with our code-release1.

Planning with Action Description

Generating and executing plans

An action description in BC formalizes the domain as a tran-
sition system. In order to specify the planning problem, a
planning query needs to be specified.

Before a plan can be generated, the planner needs to ob-
tain an initial state from two sources:

• The planner maintains tables for some portion of the do-
main knowledge, namely, knowinside, knows, and passto,
that help the robot reason about acquiring missing infor-
mation and figure out how mail has been forwarded re-
cursively. At planning time, the contents of the table are
translated into a part of query that describes the initial
state. For instance, the table that contains fluent values
for knowinside is:

knowinside o1 o2 o3 lab1

alice t f f f
bob f t f f

carol f f t f
dan f f f f

(2)

Using this table, the planner outputs the table contents as
a set of atoms which are joined to the query:

knowinside(alice, o1),∼knowinside(alice, o2), . . . ,
∼knowinside(bob, o1), knowinside(bob, o2), . . . ,

It is important to note that all values in the last row of the
table are f, indicating that Dan’s location is not known.

• The planner polls the sensors to obtain the values of some
portion of the time-dependent knowledge, namely, beside,
facing, open and loc, and translates them into a part of the
query that describes the initial state. The sensors guaran-
tee that the value for loc is always returned for exactly one
location, and beside and facing are returned with at most
one door. If the robot is facing a door, the value of open
for that door is sensed and returned as well. For instance,
in the initial state, if the robot is in lab1 and not facing any
door, the planner senses and appends the following to the
description of the initial state:

loc = lab1,∼beside(d4),∼facing(d4), . . .

In addition to the initial state, the query includes also a goal,
for instance, visiting(alice).

The planner uses CPLUS2ASP to translate the action de-
scription and query into a logic program following the syn-
tax of answer set solver CLINGO, and then calls it to gen-
erate the answer sets. To find the shortest plan, CLINGO is

called repeatedly with an incremental value of maximum
plan length, up to a user-defined constant maximumLength.
Execution is stopped at the first length for which a plan ex-
ists. A plan is represented as a sequence of actions and their
time stamps. In the case where the robot starts in lab1 and its
goal is visiting(alice), the following 7-step plan can satisfy
the goal:

0:approach(d5), 1:opendoor(d5), 2:gothrough(d5),
3:approach(d1), 4:opendoor(d1), 5:gothrough(d1),
6:greet(alice)

The output of CLINGO also contains the values of the flu-
ents at various times:

0: loc = lab1, 0:∼facing(d5), 1: loc = lab1, 1: facing(d5), . . .

These fluents are used to monitor execution. Execution mon-
itoring is important because, when using a real robot, it is
possible that the action being currently executed by the robot
does not complete successfully. In that case the robot may
return observations different from the expected effects of
the action. For instance, assume that the robot is executing
approach(d5) at time 0. The robot attempts to navigate to
door d5, but fails and returns an observation ∼facing(d5) at
time 1. Since this observation does not match the expected
effect of approach(d5) at time 1, which is facing(d5), the
robot incorporates ∼facing(d5) as part of a new initial con-
dition and plans again.

The Mail Collection Task

To solve the mail collection problem, the robot first needs
to receive information about how mail was transferred from
one person to another person, i.e. information that relates to
the fluent passto. Any person who passes their mail to other
people will send this information to the robot.

In our example domain, let’s assume the robot receives
the following information:

passto alice bob carol dan

alice f f f f
bob t f f f

carol f f f f
dan f t f f

(3)

Initially, let’s assume that the robot is in lab1 and not beside
nor facing any door. The goal of collecting everyone’s mail
and reaching the corridor can be described as:

mailcollected(alice),mailcollected(bob),
mailcollected(carol),mailcollected(dan), loc = cor.

CLINGO generates an answer set with the following plan:

0:approach(d5), 1:opendoor(d5), 2:gothrough(d5),
3:approach(d1), 4:opendoor(d1), 5:gothrough(d1),
6:collectmail(alice),
7:approach(d1), 8:opendoor(d1), 9:gothrough(d1),
10:approach(d3), 11:opendoor(d3), 11:gothrough(d3),
13:collectmail(carol),
14:approach(d3), 15:opendoor(d3), 16:gothrough(d3)

In this plan, the robot only visits Alice and Carol, and do-
ing so is sufficient to collect everyone’s mail, even if Dan’s
location is not known.



Planning with Human Robot Interaction

Consider the modification of Table (3) in which Dan doesn’t
forward his mail to Bob. To collect Dan’s mail, the robot
now needs to visit him. However, the robot does not know
where Dan is, as shown in the last row of Table (2). In our
example domain, we assume Carol knows Dan’s location:

knows alice bob carol dan

alice f f f f
bob f f f f

carol f f f t
dan f f f f

Again, let’s assume that the robot is initially located in
lab1 and not beside nor facing any door. The planner calls
CLINGO with the same initial state and same goal as in the
previous section to generate the following shortest plan:

0:approach(d5), 1:opendoor(d5), 2:gothrough(d5),
3:approach(d1), 4:opendoor(d1), 5:gothrough(d1),
6:collectmail(alice),
7:approach(d1), 8:opendoor(d1), 9:gothrough(d1),
10:approach(d3), 11:opendoor(d3), 11:gothrough(d3),
13:collectmail(carol),
14:greet(carol), 15:askploc(dan), 16:collectmail(dan),
17:approach(d3), 18:opendoor(d3), 19:gothrough(d3)

The first 13 steps of this plan are same as that of the plan
generated in the previous section. It is important to notice
that the answer set also contains the following fluent:

16:knowinside(dan, o3) (4)

This atom is the effect of executing action askploc(dan) at
time 15. Since CLINGO searches for the shortest plan by in-
crementing the number of steps, the “optimistic” plan that
it finds corresponds to the case where Dan is located at the
same office as Carol.

As before, the plan is executed and the execution is moni-
tored. The robot executes action askploc(dan) at time 15 by
asking Carol for Dan’s location. The robot obtains Carol’s
answer as an atom, for instance,

16:knowinside(dan, o2),

which contradicts (4). As in the case of execution failure,
replanning is necessary. Before replanning, the acquired in-
formation is used to update table (2). While replanning, the
update table will generate a new initial condition that con-
tains the following information knowinside(dan, o2).

After running CLINGO again, a new plan is found based
on the information acquired from Carol (when replanning is
triggered, the time stamp is reset to start from 0):

0:approach(d3), 1:opendoor(d3), 2:gothrough(d3),
3:approach(d2), 4:opendoor(d2), 5:gothrough(d2),
6:collectmail(dan),
7:approach(d2), 8:opendoor(d2), 9:gothrough(d2)

By interacting with Carol, the robot obtained Dan’s loca-
tion, updated its knowledge base, and completed its goal.
It should be noted that while planning under incomplete
information can be achieved through sophisticated method
such as conformant planning (Tu et al. 2011) and conditional
planning (Son, Tu, and Baral 2004), our optimistic approach
is extremely effective in acquiring missing information sim-
ply through execution monitoring and replanning.

Planning with Action Costs

Optimal Plan Generation

In the previous section, the planner generates multiple plans
of equal length out of which one is arbitrarily selected for ex-
ecution. In practice, those plans are not equivalent because
different actions in the real world have different costs. In
our domain, we consider the cost of an action to be the time
spent during its execution. For instance, when the robot vis-
its Alice in the first few steps of plan execution, the gener-
ated plan includes the robot exiting lab1 through door d5.
The planner also generated another plan of the same length
where the robot could have exited through door d4, but that
plan was not selected. If we see the layout of the example
environment in Figure 2, we can see that it is indeed faster
to reach Alice’s office o1 through door d4. In this section,
we present how costs can be associated with actions such
that a plan with the smallest cost can be selected to achieve
the goal.

Costs are functions of both the action being performed
and the state at the beginning of that action. CPLUS2ASP

does not directly support formalizing costs for generating
optimal plans, but CLINGO allows the user to write a logic
program with optimization statements (indicated via the key-
words #maximize and #minimize) to generate optimal
answer sets. Therefore, in our application, cost formaliza-
tion and optimization statements are directly written in logic
program rules in CLINGO syntax. They are then appended to
the domain description and the query, and sent to CLINGO to
generate an optimal plan. In the example domain, for sim-
plicity, we assume all actions to have fixed costs apart from
approach. Actions askploc, opendoor, greet, and collectmail
have cost 1, and gothrough has cost 5.

The costs for executing action approach(D) depend on
the physical location of the robot. It is computed in two dif-
ferent ways:

• When the robot approaches door D1 from door D2 and is
currently located in R, the values of fluents uniquely iden-
tify the physical location of the robot in the environment.
The cost of action approach(D1) is specified by an exter-
nal term @cost(D1,D2,R) supported by CLINGO. At
the time of plan generation, CLINGO will make external
function calls to compute the value of external term.

• When the robot is not next to a door, for instance, in the
middle of the corridor, the cost for approaching any door
is fixed to 10. This only happens in the initial condition.

With all actions associated with costs we use the opti-
mization statement #minimize to guide the solver to re-
turn a plan of optimal cost, instead of shortest length. Dif-
ferent from the previous case without costs, we do not call
CLINGO repeatedly with incremental values of maximum
plan length, and directly search for the optimal plan with
a maximum of maximumLength steps. It is important to note
that the optimal plan found by CLINGO is not necessarily
the global optimal plan, but only the optimal plan up to
maximumLength steps. maximumLength needs to be set ap-
propriately to balance optimality with execution time based
on computational power available.



(a) Simulation in GAZEBO (b) Floor plan (c) Learning Results

Figure 3: The simulation domain contains 20 rooms, 25 doors and 10 people from whom mail has to be collected. The filled circle marks the
robot’s start position, and the crosses mark the people who hold all the mail (A, D, H), and the arrows mark how mail was recursively passed
to them. Figure 3c shows the costs of 6 plans as actions costs are learned in the environment.

Estimating costs through environment interactions

Although costs for different navigation actions can be esti-
mated from the dedicated low-level navigation module, the
navigation module can only return costs based on spatial
metrics. In this work, we use navigation time instead of dis-
tance as the cost measure, and estimate this time through
interactions with the environment. Whenever the executor
successfully performs an action, the cost estimator gets a
sample of the true cost for that action. It then updates the cur-
rent estimate for that action using an exponentially weighted
moving average:

coste+1(X,Y ) = (1− α)× coste(X,Y ) + α× sample

where e is the episode number, α is the learning rate and set
to 0.5 in this paper, X is the action, and Y is the initial state.

To apply this learning rule, we need estimates of all costs
at episode 0. Since we want to explore a number of plans
before choosing the lowest-cost one, we use the technique
of optimistic initialization (Sutton and Barto 1998) and set
all initial cost estimates to a value which is much less than
the true cost. This causes the robot to underestimate the cost
of an action it has not taken often enough for its estimate
to converge to the true value. The exploration in optimistic
initialization is short-lived (Sutton and Barto 1998). Once
the cost estimator sets the values such that a particular plan
becomes larger than the current best plan, the planner will
never attempt to follow that plan even though its costs may
decrease in the future. There are known techniques such as ǫ-
greedy exploration in the literature (Sutton and Barto 1998)
that attempt to solve this problem. We leave testing and eval-
uation of these approaches to future work.

Experiments

We evaluate planning and learning in a domain using both
a real robot and a realistic simulation of that robot. The
robot used in these experiments is built on top of a Segway
RMP, and uses a Hokuyo URG-04LX LIDAR and a Kinect
RGB-D camera for navigation and sensing. Autonomous
navigation on the robot is based on the elastic band ap-
proach (Quinlan and Khatib 1993).

Actions requested by the planner are mapped into specific
low-level procedures on the robot as follows:

• The approach action autonomously navigates the robot to

a prespecified location approximately 1m from the door.

• The gothrough action navigates the robot to a similarly
prespecified location on the other side of the door.

• The opendoor action automatically opens the door in sim-
ulation. In the real world, the robot does not have the ca-
pability to open the door itself, and requests a human to
open the door instead.

• The askploc action requests the location of a person, and
the answer is input by the human from the terminal. The
answer is then encoded using the knowinside fluent and
returned to the planner.

• The greet and collectmail actions are simply placeholders,
and pause the robot for a short duration during which the
robot uses a speech synthesis module to greet the person
and request mail.

The observations from the robot’s sensors are grounded
into valued fluents as follows:

• The beside fluent is true if the robot is within 2m of the
door. If the robot is sufficiently close to multiple doors, it
will only set beside for a single door.

• The facing fluent is true if the robot is beside the door,
and the orientation of the robot does not differ from the
orientation to the door by more than π/3.

• The open door fluent is true if the robot senses that it can
navigate through the door.

• The loc fluent is mapped from the physical location of the
robot to a logical location using a look-up table. The real
robot estimates its position using adaptive Monte Carlo
localization (Fox et al. 1999).

Simulation Experiments

Experiments in simulation test our approach in the domain
illustrated in Figure 3. This domain has a total of 10 peo-
ple from whom mail needs to be collected, 20 rooms and
25 doors. Action execution inside the simulator is typically
successful. In order to demonstrate how learning can adapt
planning and allow for the generation of optimal plans, we
learn navigation costs through multiple episodes on a sin-
gle problem instance where all the mail has been passed to 3
people (A, D, H in Figure 3b), and the robot starts at location
indicated by the filled circle.



(a) Segway based Robot (b) Floor plan (c) Learning Results

Figure 4: The real world domain contains 5 rooms, 8 doors and 4 people from whom mail has to be collected. The filled circle marks the
robot’s start position, and the crosses mark the people who have all the mail (A, C), and the arrows mark how mail was recursively passed to
them. The 4 plans compared in Figure 4c are also marked on the floor plan.

All simulation experiments were run on a machine with
a Quad-Core i7-3770 processor, where the processing was
split between 3D simulation, visualization and the planner.
CLINGO ran using 6 parallel threads to generate plans, and
searched for the optimal plan among all plans up to a length
of 35 steps (maximumLength). After 1 minute of planning,
the best available plan from CLINGO was selected for exe-
cution. Since this domain contains a large number of cor-
rect but sub-optimal plans, we restrict the size of the search
space to decrease the number of episodes required to learn
the costs for the optimal plan. This reduction is achieved by
appending the following heuristics to the query:

• Approach a door only if the next action goes through it.

• Don’t go through a door if the next action is to go back
through it again without taking any other action.

Since there are a large number of correct plans, we only
present the cost curves for six plans to demonstrate learning.
These six plans correspond to the best plans for all permuta-
tions of the order in which mail is collected from A, D, and
H. The plan that collects mail in the order A-D-H is opti-
mal. Figure 3c shows the total costs of these 6 plans as the
cost estimates improve. By episode 17, the costs are learned
sufficiently well such that the planner converges to the true
optimum plan A-D-H. However, it should be noted that since
the planner may be terminated early before finding this plan,
on occasion other plans may be selected for execution. For
instance, in episode 24, the plan H-D-A gets executed, as
shown by the significant increase in the cost values of the 2
plans H-D-A and H-A-D in Figure 3c. This problem can be
alleviated by allowing longer planning times.

Real World Experiments

Experiments using the real robot have been run in the same
environment on which the simulation in the previous section
was based on. Since tests on the real robot require consider-
ably more effort, and robot execution cannot be sped up, the
real world domain has been reduced to a subset of the sim-
ulation domain. The real world domain contains 5 rooms, 8
doors, and 4 people from whom mail has to be collected. 2
people have passed mail forwards such that the robot only
needs to visit a total of 2 people. The domain is illustrated
in Figure 4. Since the domain is smaller than that in sim-

ulation, the planner can typically generate the optimal plan
in 10-15 seconds and verify that it is optimal. It should be
noted that execution in the real world often results in failure,
and replanning occurs frequently.

We present the cost curves of 4 different plans in Figure
4c, where Plan 1 is optimal. In this experiment, the robot
starts in the middle of the corridor not beside any door as
shown in Figure 4b. Consequently, the cost of the first navi-
gation action cannot be learned as the true physical location
of the robot gets abstracted away. The learning curves shows
that the planner discovers by the episode 12 that plan 1 is
optimal. Different from the simulation experiment there is
no early termination of the planner. After the optimal plan
is found, no other plans are selected for execution and their
costs don’t change. In addition to the quantitative evaluation
in this section, we also present a qualitative evaluation of the
mail collection task in a online video appendix1.

Conclusion

In this paper, we introduced an approach that uses action lan-
guage BC for robot task planning, and incorporates action
costs to produce optimal plans. We applied this approach to
a mail collection task using a real robot, as well as a realistic
3D simulator. Using action language BC allows us to for-
malize indirect effects of actions on recursive fluents. In the
presence of incomplete information, the proposed approach
can generate plans to acquire missing information through
human-robot interaction. Furthermore, by estimating costs
from experience, we can adapt planning while learning costs
in the environment.

Acknowledgments

The authors would like to thank ROS, GAZEBO, and CLINGO

developers for infrastructure used in this work. The authors
would also like to thank Chien-Liang Fok, Sriram Vish-
wanath and Christine Julien for their assistance in construct-
ing the Segway robot.

A portion of this research has taken place in the Learning
Agents Research Group (LARG) at the AI Laboratory, UT
Austin. LARG research is supported in part by grants from
the NSF (CNS-1330072, CNS-1305287), ONR (21C184-
01), and Yujin Robot. LARG research is also supported in



part through the Freshman Research Initiative (FRI), Col-
lege of Natural Sciences, UT Austin.

References

Babb, J., and Lee, J. 2013. Cplus2ASP: Computing action lan-
guage C+ in answer set programming. In International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR).

Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. Answer set
based design of knowledge systems. In Annals of Mathematics and
Artificial Intelligence.

Blockeel, H., and De Raedt, L. 1998. Top-down induction of first-
order logical decision trees. Artificial intelligence (AIJ).

Caldiran, O.; Haspalamutgil, K.; Ok, A.; Palaz, C.; Erdem, E.; and
Patoglu, V. 2009. Bridging the gap between high-level reason-
ing and low-level control. In International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR).

Chen, X.; Ji, J.; Jiang, J.; Jin, G.; Wang, F.; and Xie, J. 2010.
Developing high-level cognitive functions for service robots. In
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

Chen, X.; Jin, G.; and Yang, F. 2012. Extending C+ with composite
actions for robotic task planning. In International Conference on
Logical Programming (ICLP).

de la Rosa, T.; Olaya, A. G.; and Borrajo, D. 2007. Using cases
utility for heuristic planning improvement. In International Con-
ference on Case-based Reasoning (ICCBR).

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A. 2003.
Answer set planning under action costs. Journal of Artificial Intel-
ligence Research (JAIR).

Erdem, E.; Aker, E.; and Patoglu, V. 2012. Answer set program-
ming for collaborative housekeeping robotics: representation, rea-
soning, and execution. Intelligent Service Robotics (ISR).

Erdem, E., and Patoglu, V. 2012. Applications of action lan-
guages in cognitive robotics. In Erdem, E.; Lee, J.; Lierler, Y.;
and Pearce, D., eds., Correct Reasoning, volume 7265 of Lecture
Notes in Computer Science. Springer.

Erdem, E.; Patoglu, V.; Saribatur, Z. G.; Schüller, P.; and Uras, T.
2013. Finding optimal plans for multiple teams of robots through
a mediator: A logic-based approach. Theory and Practice of Logic
Programming (TPLP).

Finger, J. 1986. Exploiting Constraints in Design Synthesis. Ph.D.
Dissertation, Stanford University.

Fox, D.; Burgard, W.; Dellaert, F.; and Thrun, S. 1999. Monte
carlo localization: Efficient position estimation for mobile robots.
In National Conference on Artificial Intelligence (AAAI).

Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011. Ad-
vances in gringo series 3. In International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR).

Gebser, M.; Grote, T.; and Schaub, T. 2010. Coala: a compiler
from action languages to ASP. In European Conference on Logics
in Artificial Intelligence (JELIA).

Gelfond, M., and Lifschitz, V. 1988. The stable model seman-
tics for logic programming. In International Logic Programming
Conference and Symposium (ICLP/SLP).

Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databases. New Generation Computing.

Gelfond, M., and Lifschitz, V. 1998. Action languages. Electronic
Transactions on Artificial Intelligence (ETAI).

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and Turner, H.
2004. Nonmonotonic causal theories. Artificial Intelligence (AIJ).

Havur, G.; Haspalamutgil, K.; Palaz, C.; Erdem, E.; and Patoglu,
V. 2013. A case study on the Tower of Hanoi challenge: Repre-

sentation, reasoning and execution. In International Conference on
Robotics and Automation (ICRA).

Jiménez, S.; Fernández, F.; and Borrajo, D. 2013. Integrating plan-
ning, execution, and learning to improve plan execution. Compu-
tational Intelligence.

Koenig, N., and Howard, A. 2004. Design and use paradigms
for Gazebo, an open-source multi-robot simulator. In International
Conference on Intelligent Robots and Systems (IROS).

Lee, J.; Lifschitz, V.; and Yang, F. 2013. Action language BC: A
preliminary report. In International Joint Conference on Artificial
Intelligence (IJCAI).

Leonetti, M.; Iocchi, L.; and Patrizi, F. 2012. Automatic generation
and learning of finite-state controllers. In Artificial Intelligence:
Methodology, Systems, and Applications. Springer. 135–144.

Marek, V., and Truszczynski, M. 1999. Stable models and an alter-
native logic programming paradigm. In The Logic Programming
Paradigm: a 25-Year Perspective. Springer Verlag.

McCain, N., and Turner, H. 1997. Causal theories of action and
change. In National Conference on Artificial Intelligence (AAAI).

McCarthy, J., and Hayes, P. 1969. Some philosophical problems
from the standpoint of artificial intelligence. In Machine Intelli-
gence. Edinburgh University Press.

McCarthy, J. 1987. Generality in Artificial Intelligence. Commu-
nications of the ACM (CACM).

Niemelä, I. 1999. Logic programs with stable model semantics as
a constraint programming paradigm. Annals of Mathematics and
Artificial Intelligence.

Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs,
J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-source robot
operating system. In Open Source Softare in Robotics Workshop at
ICRA ’09.

Quinlan, S., and Khatib, O. 1993. Elastic bands: Connecting path
planning and control. In International Conference on Robotics and
Automation (ICRA).

Quintero, E.; Alcázar, V.; Borrajo, D.; Fernández-Olivares, J.;
Fernández, F.; Garcia-Olaya, A.; Guzmán, C.; Onaindia, E.; and
Prior, D. 2011a. Autonomous mobile robot control and learning
with the PELEA architecture. In Automated Action Planning for
Autonomous Mobile Robots Workshop at AAAI ’11.

Quintero, E.; Garcia-Olaya, Á.; Borrajo, D.; and Fernández, F.
2011b. Control of autonomous mobile robots with automated plan-
ning. Journal of Physical Agents (JoPhA).

Reiter, R. 1978. On closed world data bases. In Logic and Data
Bases. Plenum Press.

Son, T. C.; Tu, P. H.; and Baral, C. 2004. Planning with sensing
actions and incomplete information using logic programming. In
International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR).

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: An
introduction. Cambridge University Press.

Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2003. In defense of
PDDL axioms. In International Joint Conferences on Artificial In-
telligence (IJCAI).

Tu, P. H.; Son, T. C.; Gelfond, M.; and Morales, A. R. 2011. Ap-
proximation of action theories and its application to conformant
planning. Artif. Intell. 175(1):79–119.

Yang, F.; Khandelwal, P.; Leonetti, M.; and Stone, P. 2014. Plan-
ning in answer set programming while learning action costs for
mobile robots. In AAAI Spring 2014 Symposium on Knowledge
Representation and Reasoning in Robotics (AAAI-SSS).


