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Box 1 Blood cell lineages in Drosophila

Drosophila fruit flies contain a population of blood cells called

hemocytes that consists of at least three cell types: plasmatocytes,

lamellocytes and crystal cells. Plasmatocytes are migratory, pha-

gocytic and resemble vertebrate macrophages; lamellocytes are

induced during immune responses to encapsulate invading parasites

with their large lamellar processes [65]; crystal cells are non-motile

and rupture during immune responses to activate the phenoloxidase

pathway and the melanization cascade [66], a humoral form of host

defense. Insect blood cells have been used extensively as a model for

blood cell specification and proliferation, since many of the signaling

pathways used during vertebrate hematopoiesis are conserved and

related transcription factors employed [67,68], such as the GATA

factor Serpent [69] and the RUNX homologue Lozenge, which is

specifically required for the production of crystal cells [70]. Embryonic

hemocytes are derived from the head mesoderm [71], while a second

wave of hematopoiesis occurs in the lymph gland, with cells released
Drosophila melanogaster contains a population of blood cells

called hemocytes that represent the functional equivalent of

vertebrate macrophages. These cells undergo directed

migrations to disperse during development and reach sites of

tissue damage or altered self. These chemotactic behaviors are

controlled by the expression of PDGF/Vegf-related ligands in

developing embryos and local production of hydrogen

peroxide at wounds. Recent work reveals that many molecules

important in vertebrate cell motility, including integrins, formins,

Ena/VASP proteins and the SCAR/WAVE complex, have a

conserved function in these innate immune cells. The use of this

model organism has elucidated how damage signals are

activated by calcium signaling during inflammation and that the

steroid hormone ecdysone activates immune competence at

key developmental stages.
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Introduction
Chemotaxis is the directed movement of cells (or an

organism) towards or away from a chemical source. A

classical example of chemotaxis is the movement of

immune cells, such as neutrophils or macrophages,

towards chemoattractants released at sites of infection

or injury (e.g. fMLP and CSF-1) [1]. This process has been

studied intensively in vitro, while the slime mould Dic-
tyostelium discoideum has also proven vital in dissecting out
§ This is an open-access article distributed under the terms of the

Creative Commons Attribution License, which permits unrestricted use,

distribution and reproduction in any medium, provided the original

author and source are credited.
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the migration machinery and its regulation [2]. Whilst

understanding regulation of cell migration represents a

key biological problem, the fact that so many studies

focus on immune cell motility reflects the diverse range of

human diseases driven or exacerbated by inflammation.

Insects contain a population of blood cells, called hemo-

cytes (Box 1), which make up the cellular component of

their innate immune system [3,4]. Given the genetic

tractability and imaging capabilities of Drosophila mela-
nogaster, the hemocytes of this organism have emerged as

a prime cell type with which to study the regulation of

migration and inflammation in vivo. Hemocytes are func-

tionally equivalent to vertebrate macrophages and

undergo chemotaxis to undergo developmental

migrations and reach sites of tissue damage, while also

detecting and removing apoptotic cells, debris and patho-

gens [4]. In this review we will discuss recent develop-

ments in our understanding of the machinery used by

Drosophila hemocytes to chemotax during both develop-

mental and pathological events occurring over the life-

span of a fruit fly. We will also focus on the latest work

elucidating how damage signals are triggered and

immune cell activation controlled.

Hemocytes use an evolutionarily conserved
migration machinery to undergo chemotaxis
Hemocytes migrate as individual cells tightly confined be-

tween tissues when colonizing the embryo (Figure 1a,b)

[5,6]. Dispersal is critical for normal morphogenesis [7–11],

allowing hemocytes to reach distant locations where their
from this organ during larval stages [72]. Migration studies typically

focus on the highly motile plasmatocytes, which disperse over the

entire embryo during the course of development [71]. Plasmatocytes

persist through to adult stages [72] and are often referred to simply as

hemocytes (as we have done in this review) or macrophages.
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2 Cell adhesion and migration

Figure 1

hm
gb

a p

v

d

vitelline membrane

RhoL-dependent transmigration vitelline membrane

Pvfs VNC

ep

VNC

mp

ant

post

stage 13

(a)  penetration of the germband

(c)      microtubule arm (d)               lateral migration

(b)  movement along the VNC

stage 15

as

dv

Current Opinion in Cell Biology

Embryonic migration routes and chemoattractant expression. Schematics showing expression of Pvf2 and Pvf3 chemoattractants (pink shading) in the

developing Drosophila embryo at stages 11 (a) and 12 (b). Cartoons below embryos correspond to boxed regions and show RhoL-dependent invasion

of the germband (gb) towards a source of Pvfs, some of which is expressed by the developing malphigian tubules (mp) (a) and movement along the

developing ventral nerve cord (VNC; grey) (b); arrows indicate hemocyte movements at these stages of development. During progression along the

VNC hemocytes are tightly confined between the ventral side of the VNC and epithelium (ep) and as they migrate along the VNC in response to the Pvf

ligands that are expressed there, the epithelium and VNC separate, creating a channel for hemocyte progression. Hemocytes also migrate along the

developing dorsal vessel at this stage (dv); a = anterior, p = posterior, d = dorsal, v = ventral, lat = lateral. Later in development cell–cell repulsion

begins to occur and this depends upon the microtubules, which are frequently bundled into an arm-like structure (arrow) that facilitates persistent

migration (c). Microtubules labeled via Clip-GFP expression in hemocytes; white line indicates edges of hemocytes, drawn according to mCherry-

moesin localization (not shown). After initial dispersal hemocytes migrate at right angles from the ventral midline to the edges of the VNC (purple

arrows) to form three lines (white arrows) on the ventral side of the embryo, immediately beneath the epithelium (d). Maximum projection images show

GFP and nls-red stinger localization in hemocytes from the ventral side of the embryo; scale bars represent 50 mm; ant = anterior, post = posterior.
developmental functions are necessary and facilitates sur-

veillance against potential pathogens. Consequently, disper-

sal is a carefully orchestrated and hard-wired process and its

stereotyped nature provides numerous opportunities at

which to determine the genetic requirements for chemo-

taxis. After dispersal, hemocytes become responsive to

wound stimuli owing to downregulation of developmental

cues [12], suggesting a prioritization of developmental cues
Current Opinion in Cell Biology 2014, 30:1–8 
over wound cues; a large overlap exists in the machinery used

to respond to either cue. Migrating hemocytes possess large

actin-rich lamellipodia into which microtubules protrude

from the cell body. These microtubules are often bundled

into an ‘arm-like’ structure (Figure 1c), which facilitates

persistent motility [13]. A number of classic cytoskeletal

regulators are autonomously required within hemocytes for

dispersal or normal motility, including the GTPases Rho,
www.sciencedirect.com
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Rac and Cdc42 [14,15], and actin regulators Ena [6] and

fascin [16,17��]; all these play related roles in vertebrate cells.

A family of PDGF/Vegf-related ligands called the Pvfs is

expressed along the routes hemocytes take through the

embryo (Figure 1a,b) [18,19], suggesting they operate as

chemoattractants to drive dispersal. Pvf signaling via the

receptor Pvr is indispensible for both hemocyte viability

and migration [18,20,21]. Importantly, blocking hemo-

cyte apoptosis in pvr mutants rescues hemocyte numbers

in the embryo [20], but fails to restore developmental

dispersal fully [19,20], while misexpression of Pvf2 can re-

route hemocytes [5,18], signifying Pvr promotes more

than simply hemocyte survival. The route most sensitive

to loss of Pvr signaling is penetration of the extended

germband: here invasive hemocytes breach an epithelial

barrier, involving a hemocyte-dependent disassembly of

epithelial adhesions (Figure 1a; [22]). This strongly

resembles transepithelial migration of vertebrate immune

cells and critically depends on a small GTPase, RhoL

[22]. RhoL function during transepithelial migration

depends upon Rap1, which itself operates upstream of

integrins in both hemocytes [23] and transmigrating

vertebrate leukocytes [24]. Recent work has demon-

strated that the main b-integrin (encoded by myospheroid)

is required for normal hemocyte motility and migration to

wounds in both embryos and pupae [25��,26�]. In myo-
spheroid embryos failed separation of the ventral nerve

cord (VNC) and epithelium [25��] contributes to dispersal

phenotypes. Loss of ECM (laminin) [27] or integrin

complex components (rhea/talin and fermitin 1) also

impairs migration [25��,26�]. Whilst loss of integrin com-

plex components did not interfere with repolarization

towards wounds [25��,26�], microtubule dynamics within

hemocytes were affected with rapid and repeated collapse

of microtubule arms observed in vivo [25��], presumably

explaining the defects in contact inhibition of motility

(cell–cell repulsion — a phenomenon that depends on

microtubules [13]) observed in myospheroid mutants. Col-

lapse events may occur via uncoupling of the actin and

microtubule cytoskeletons or increased actin retrograde

flow forcing microtubules rearwards when integrin-

mediated anchoring of actin to ECM is absent.

Nucleation of actin filaments in migrating
hemocytes
Although Drosophila cell RNAi screens identified numer-

ous regulators of cellular morphology and the actin cytos-

keleton [28–30], in vivo roles for many regulators have not

been investigated. Addressing how hemocytes generate

actin networks to drive migration has provided novel

insights into hemocyte function in vivo.

SCAR encodes the Drosophila homologue of the WAVE

proteins, activators of the Arp2/3 complex. SCAR interacts

genetically with pvr during hemocyte dispersal along the

VNC [5], potentially becoming activated downstream of
www.sciencedirect.com 
Pvr via Vav, a Rac GEF downstream of Pvr in border cell

migration [31�], or the adapter Pico/Lamellipodin [32��].
Unsurprisingly SCAR is necessary for all hemocyte

migrations and drives formation of lamellipodia, revealing

that branched Arp2/3-nucleated actin is a key component

of these protrusive structures in vivo. However loss of

SCAR also leads to hemocytes becoming engorged with

undigested apoptotic cells [33��], a phenotype possibly

related to SCAR mutant trafficking defects previously

only observed in Dictyostelium [34]. Remarkably, blocking

apoptosis to remove the source of apoptotic cells rescues

hemocyte lamellipodia and dispersal and also partially

restores their motility, suggesting that SCAR-indepen-

dent mechanisms to form lamellipodia exist and that

these can be suppressed by contact with apoptotic cells

[33��], which may have important implications for regu-

lation of macrophage behaviors following contact with

apoptotic cells in disease situations. SCAR was also

recently shown to be necessary for the migration of pupal

macrophages to wounds [35�].

Formins represent another means to nucleate actin fila-

ments. Drosophila contain examples of seven of the eight

human formin families [36] and the homologue of the

formin FHOD (encoded by fhos/knittrig) localizes to the

rear of migrating pupal hemocytes and is required for

spreading of pupal macrophages in vitro and normal

migration to wounds [37��]. FHOD formins are thought

to be activated by Rho kinase/Rock [36] and this seems to

be the case for Fhos [37��]; Fhos may therefore act as a

Rock-dependent effector of the RhoA-mediated retraction

events necessary during migration to wounds [15]. How the

activities of the numerous actin regulators known to oper-

ate in hemocytes are integrated to facilitate coordinated

cell migration will doubtlessly be an important area to

watch. Notably the group of Mark Peifer recently showed

that Ena antagonizes Diaphanous (in both hemocytes and

epithelial cells), which helps control the nature of filopodial

protrusions ultimately produced [38�].

Developmental dispersal after downregulation
of the Pvfs
After migrating the length of the ventral midline, hemo-

cytes undergo a characteristic migration to the edges of

the VNC ([19]; Figure 1d). These movements correlate

with downregulation of the Pvfs at the midline. Over-

expression of Pvfs along the midline delays lateral

migration [19], suggesting loss of attractive ligands con-

trols the timing of this event. Mathematical modeling of

hemocyte movements raises the intriguing possibility

that contact inhibition explains this patterning: simu-

lations of hemocytes released from the ventral midline

reproduce lateral migration patterns seen in embryos

[39��]. Importantly, reducing hemocyte numbers, a key

parameter in the model, causes this pattern to break down

both in vivo and in simulations [39��]. The underlying

molecular basis for repulsion remains to be established,
Current Opinion in Cell Biology 2014, 30:1–8
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Figure 2
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Calcium waves direct inflammatory migration of hemocytes. Ventral and cross-sectional views (anterior-posterior position indicated by arrows)

showing immune cell recruitment to sites of tissue damage in Drosophila embryos. Hemocytes (green) sit immediately beneath the epidermis (ep, pink)

on the ventral nerve cord (VNC, grey) (a). Laser wounding of the epithelium causes an almost instantaneous calcium wave to flood through the

epithelium via cell–cell junctions (b); this depends upon functional cell–cell junctions and TrpM. An increase in intracellular calcium activates the

NADPH oxidase Duox via its EF hands driving hydrogen peroxide production (c). Hydrogen peroxide is necessary for the recruitment of hemocytes to

this point of tissue damage, which is an active, migratory process requiring the function of the actin and microtubule cytoskeletons (d). The relative

timescale is indicated in brackets.
but potentially targets microtubules, since depolymeriza-

tion or hyperstabilization of microtubules or loss of the

microtubule-binding protein Clasp/Orbit inhibits contact

inhibition [13]; dynamic microtubules are also needed

during contact inhibition between fibroblasts in vitro [40].

As hemocytes cluster together at wound sites and other

sites of pathology, mechanisms to override repulsion must

exist to enable normal macrophage behavior. Later in

development a subpopulation of hemocytes closely associ-

ates with the larval peripheral nervous system, establishing

a hematopoietic niche [41��]. Physical disturbance of these

hemocytes results in their re-homing to this niche [41��],
suggesting the presence of attractive signals regulating

developmental migrations post-embryogenesis.

Regulation of migration to sites of pathology
As cells of the innate immune system, the primary role of

hemocytes is host defense against invading pathogens

and altered self. Hemocytes therefore localize to sites of

tissue damage, cancerous growth and cell death (epi-

thelial wounds [15,42,43], RasV12;scribble�/� clones

[44,45] and loser cells resulting from cell competition

[46], respectively). Tissue resident hemocytes also

become activated to deal with damage and promote

recovery independent of migration (e.g. in UV-irradiated

eye discs; [47�]).
Current Opinion in Cell Biology 2014, 30:1–8 
The embryonic wound response is perhaps the best-

characterized example of hemocyte chemotaxis; here

hemocytes rapidly repolarize and migrate to sites of

damage (Figures 2 and 3). As is the case following tail

fin wounds in zebrafish larvae [48], the NADPH oxidase

Duox becomes activated, leading to the production of

hydrogen peroxide at wound sites. Duox is both necessary

and sufficient for hemocyte recruitment [12,49��]. In

worms, flies and fish wounding induces a rapid calcium

flash through the epithelium [49��,50,51��], which, in flies

at least, leads to Duox activation via a pair of calcium-

sensing EF hands in an intracellular loop (Figure 2)

[49��]. How hemocytes decode the hydrogen peroxide

wound cue is not known, but the zebrafish Src family

kinase Lyn contains a conserved cysteine residue,

oxidation of which regulates Lyn activity and is necessary

for neutrophil chemotaxis to hydrogen peroxide and

wounds [52]. This cysteine is conserved in Src42A in

flies [52], suggesting this mechanism may be conserved

through evolution, although Src42A has an anti-inflam-

matory role limiting epithelial cell responses to damage in

flies [53].

PI3K signaling is specifically required for hemocyte

wound responses in embryos, leading to the hypothesis

that inflammatory responses could be regulated via
www.sciencedirect.com



Drosophila blood cell chemotaxis Evans and Wood 5

Figure 3
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Comparison of migration to wounds in larval and embryonic stages of Drosophila development with vertebrate inflammatory responses. Cartoon of

macrophage migration to wounds in vertebrates (a). Macrophages (green) form transient adhesions with activated endothelial cells (red) and roll,

leading to arrest and extravasation and penetration through the basement membrane (brown) before migrating though tissue largely composed of

fibroblasts (fb) and ECM to reach wound sites (W). Larval hemocyte responses (b) consist of an adhesive capture that recapitulates rolling and

tethering of vertebrate leukocytes; sessile hemocytes do not respond to wounds. Migration of hemocytes to wounds in the embryo occurs in the

context of an environment containing ECM deposited between closely opposed tissues (epithelium and VNC) and requires active migration and

resembles movement of vertebrate leukocytes post-extravasation.
G-protein coupled receptors, similar to other chemoat-

tractants [19]. Alternatively PI3K signaling might be

involved in hemocyte activation (i.e. a priming event

rendering hemocytes competent to respond to wounds).

Curiously PI3Kg contributes to the wandering migration

of neutrophils in zebrafish [54], but appears dispensable

for hemocyte developmental migrations [19].

Adhesive capture and hemocyte activation
During late embryogenesis, the primitive fly heart begins

to beat and hemocytes are pumped around internal spaces

as a constituent of the insect blood for the rest of the

lifecycle, although some hemocytes remain attached to

the epithelium in sessile patches. From larval stages

onwards hemocytes are captured from the circulation

via adhesion, with no contribution from the sessile popu-

lation [42]. This ‘adhesive capture’ superficially

resembles the rolling and tethering of vertebrate leuko-

cytes ahead of their extravasation; embryonic migration

more closely resembles chemotaxis of macrophages

through connective tissue after extravasation

(Figure 3). In pupae sessile patch hemocytes recom-

mence motility and become wound responsive [43].

The signals driving inflammatory migration in larvae
www.sciencedirect.com 
and pupae remain uncharacterized, but as wounding of

the latter triggers integrin-dependent migration and epi-

thelial calcium waves [26�,55��], a similar mechanism to

that of the embryo may be employed.

In larvae and adults activation of adhesion may facili-

tate capture: the typical blood cell response to damage

and infection in Lepidopteran insects (the order con-

taining moths and butterflies) is adhesion, which can

be mediated via cytokine-like molecules such as plas-

matocyte spreading peptide (PSP) [56,57]. Injection of

PSP into lepidopterans removes immune cells from

circulation, presumably via adhesion to internal tissues

[56]. Likewise, hemocyte chemotactic peptide (HCP)

facilitates recruitment to wounds in moth larvae and

directs chemotaxis of their blood cells in vitro [58].

Therefore systemic release of similar molecules may

activate Drosophila hemocytes to enable capture at

wounds. Recruitment to other sites of pathology (e.g.
tumors) post-embryogenesis is also likely to occur via
adhesive capture from circulation. Whether local

infections can trigger focal recruitment of hemocytes

remains unclear — chemotaxis towards pathogens is

yet to be demonstrated. Homing of hemocytes to
Current Opinion in Cell Biology 2014, 30:1–8
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tumors is associated with damage or degradation of the

basement membrane [45], which might expose

adhesive signals or activate hemocytes to become

adherent. Indeed, activation may represent the key

step controlling immune responses. The steroid hor-

mone ecdysone has long been associated with control

of Drosophila  development [59] and two recent studies

have confirmed ecdysone to stimulate hemocyte moti-

lity, and its crucial role activating clearance of apopto-

tic cells and immune surveillance during

metamorphosis [60��,61��]. The transition back to a

more classical migratory chemotaxis to wounds corre-

lates with the beginning of metamorphosis and is

prevented by expression of dominant negative ecdy-

sone receptor in hemocytes [60��]. Ecdysone also turns

on immune responses in embryos, since treatment with

ecdysone analogues is sufficient to activate immune

competence ahead of schedule [62��]. Rac1 and Bas-

ket/JNK signaling have also been previously impli-

cated in hemocyte activation [63] and therefore

represent potential downstream targets of signaling

pathways to trigger recruitment of hemocytes from

the circulation.

Conclusions
Hemocytes have long been investigated as part of the

innate immune responses to systemic infection [64], but

have recently received substantial interest as a model cell

type to understand the regulation of cell migration in the

context of an intact and immune competent organism. We

are now beginning to have a more complete understand-

ing of the molecular mechanisms used by these highly

migratory cells to reach the locations necessary for their

range of functions and needed for their responses to

pathology. As researchers fill in the gaps in our knowl-

edge, we anticipate hemocytes will become a prime cell

type to probe regulation of signal integration in vivo and

the challenge for Drosophila researchers will be to use the

powerful genetics available in the fly to identify novel

targets involved in these processes.
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