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Information Centric Modeling for Two-tier Cache

Enabled Cellular Networks
Syed Ali Raza Zaidi, Member, IEEE, Mounir Ghogho, Senior Member,IEEE, Desmond C. McLernon, Member, IEEE

Abstract—In this article, we introduce a new metric called ‘infor-
mation centric coverage probability’ to characterize the performance
of a two-tier cache enabled cellular network. The proposed metric
unifies the dynamics of in-network caching and heterogeneous
networking to provide a unified performance measure. Specifically,
it quantifies the probability that a mobile user (MU) is covered
at a desired rate when a certain content is requested from a
global content library. In other words, it quantifies the percentage
of time when an MU can be served locally without paying the
traffic penalties at backhaul, fronthaul and core networks. Caching
dynamics are modeled by considering that the content which is
least recently used (LRU) is evicted while the requested content is
stored in the cache. The considered two-tier cellular model leverages
coordination between the macro base-station (MBS) and the small
cell base-stations (SBSs) to maximize the resource efficiency. More
specifically, coordination between macro and small cells enables an
arbitrary SBS to exploit the caches at other SBSs in the neigh-
borhood. Thus reducing the requirement for huge and expensive
memory modules at individual SBSs. The spatial dynamics of cellular
network are modeled by borrowing well established tools from
stochastic geometry. Propagation uncertainties are explicitly factored
in characterization by considering the small scale Rayleigh fading
and the large scale power-law path-loss model. It is shown that the
information centric coverage probability is a function of (i) the size
of caches at the SBSs and the MBS; (ii) the content eviction strategy;
(iii) the underlying popularity law for referenced objects; (iv) the
size of the global content library; (v) desired downlink transmission
rate; (vi) the amount of spectrum allocated to each tier; (vii) path-
loss exponent; and (viii) the deployment density of the SBSs and
the MBSs. Our analysis reveals that significant performance gains
can be harnessed with appropriate dimensioning of both cache sizes
and deployment density. Finally, identification of memory limited
vs. QoS limited operational regime for two-tier cellular networks is
considered.

Index Terms—Cache, small cells, LRU, two-tier, Poisson process,
coverage.

I. INTRODUCTION

A. Motivation

I
N recent times, the demand for ubiquitous wireless connectivity

has intensified. The exponential growth in capacity requirements
can be attributed to the increasing popularity of multimedia in-
fotainment applications and the enormous penetration of smart

platforms facilitating their execution. According to recent statistics
[1], by the end of year 2019 mobile broadband subscriptions are
expected to reach 7.6 billion, accounting for 80% of all mobile

subscriptions, compared to around just 30% in 2013. The demand
for mobile data traffic is expected to grow at a compound annual
growth rate (CAGR) of 45% between 2013-2019. Consequently,

it is predicted that while the voice traffic will maintain its current
trend, the data traffic will grow 10 fold by the end of 2019.

These formidable capacity demands have lead to so called

‘1000× mobile data challenge’ introduced by Qualcomm. More
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specifically, the 1000× challenges dictates that fifth generation
(5G) wireless networks (which are expected to roll out by early

2020) should be designed to be 1000 times more efficient than
existing networks. In order to enable such a high level of efficiency,
the architecture has to leverage three vital building blocks: (i)

network densification; (ii) spectral agility; and (iii) higher energy
efficiency. While network densification has received significant
attention in the recent past, the prime objective has been to explore

the design space from the quality-of-service (QoS) perspective (see
[2] and references therein). An alternative yet powerful design per-
spective is to employ the content centric approach towards network

densification. In other words, treating networks as intelligent re-
configurable platforms where proactive decision making can be
employed to opportunistically enhance the quality-of-experience

(QoE) with better spectral utilization and a smaller CO2 footprint. It
has been predicted by Cisco that the aggregate traffic generated by
all forms of video traffic, i.e., TV, video on demand (VoD), Internet,

and P2P will be in the range of 80 − 90% of global consumer
traffic by 2018. From the content/information centric perspective,
intelligently designed networks can reduce this demand from such a

high share of traffic by opportunistically utilizing network resources
in conjunction with proactive in-network content caching.

The idea of caching in the IP networks has evolved from the

underlying principles earlier exploited to empower computers with
higher performance. In this context the main memory access was
a key bottleneck and introduction of an intermediate on board

faster memory (such as L1/L2 cache) yielded a several fold gain
in computing performance. Consequently, cache memory has been
central ingredient of computer architecture for several decades. The

design principles of caching have evolved to a whole new level
with the emerging ‘information centric networking’ paradigm. In
particular, the information centric design of a network departs from

the traditional end-to-end host centric architecture. The information
centric design is inspired by the fact that the named informa-
tion/content is the key consumable commodity from the end-

user’s perspective. Making data independent from the geographical
location, application, storage and means of transportation through
in-network caching and cognitive replication is envisaged to bring

several fold gains in terms of spectral efficiency and scalability of
networks. The information centric networking paradigm has also
enabled content providers (such as Akamai, Level3 Communica-

tions and Limelight) to enhance QoE by reducing access delays
through moving desired content closer to the user, i.e., towards the
edge of the network.

B. Related Work

Investigation of cache empowered wireless networks is much
more recent than the traditional computer networking paradigm.
There are two key obstacles as regards exploring the design space:

• Performance of the caching algorithms on its own has been
quite intricate and solution generally rely on sophisticated time
consuming simulations. Thus characterizing the performance

of the cache enabled cellular networks considering spatio-
temporal dynamics of the cellular network is a non-trivial task
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when compared to the traditional computer network with static
topology, user association, etc.

• Modeling the link level performance of the cellular network

itself has been quite a challenge until very recently. In the
recent past [3], it has been recognized that borrowing well
established mathematical tools from stochastic geometry can

circumvent certain modeling issues. In particular, modeling the
locations of the BSs as a Poisson point process significantly
enhances the tractability while providing a lower bound on

the actual performance experienced in a practical large scale
deployment [3].

In the light of recent advances, the authors in [4] studied the

performance of the cache-enabled small cell networks. Optimal
cooperation between caching empowered device-to-device (D2D)
communication nodes is investigated in [5], [6]. The authors in

[5], [6], assume idealistic propagation conditions, i.e, the impact
of multipath fading is completely ignored and an ideal protocol
interference model is adapted. A detailed survey of the literature

on cache-enabled D2D communication is beyond the scope of this
current article. However, interested readers may refer to [6]–[9] and
references therein. In [10], authors treated small cell base-stations

(SBS) as helpers and formulated the problem of which files to
cache when each user has access to multiple helpers. Since the
focus in [10] is to derive an optimal caching strategy, authors do not

consider the dynamics of the connectivity and the network topology.
Moreover, most of the existing studies also ignore the fact that the
cellular macro base-station (MBS) can also control the dynamics
of information storage/retrieval in cache enabled networks.

The closest study to our work is [4], where the authors investi-
gated the design space of the cache enabled small cell networks

by adapting the tractable approach for characterizing coverage
probability from [3]. To the best of our knowledge, it is the
only study which considers both the spatial and the propagation

dynamics of the cache enabled cellular network. Nevertheless, in
[4] only a single tier network is considered, i.e., the existence and
participation of the MBSs in both service and storage processes is
completely ignored. Furthermore, the dynamics of the cache content

replacement algorithm are not incorporated into the analysis. So,
in this article, we consider a two-tier cache enabled small cellular
network and explore its dimensioning under a well known least

recently used (LRU) content eviction policy (see Section II for
details).

C. Contributions & Organization

The contribution of this article is two fold:

1) We first introduce a new metric for a two-tier cache-enabled
cellular network which unifies several networking aspects

into a single quantitative measure. The introduced metric
is termed as an ’information centric coverage probability’
(refer to Section IV) which quantifies the probability that in

a two-tier network a certain requested content can be retrieved
locally and can be successfully transmitted to the desired MU.
In contrast to [4], we consider that both the MBS and the SBS

can perform caching while operating under the LRU based
content eviction policy (see Section II & III). Thus, at each
request for a certain content if it is either not located at the

serving SBS, the MBS can arbitrate by retrieving the content
from other SBSs or from its own cache. MBS can also serve
the MU if the desired QoS cannot be met by its serving SBS.

Such dynamic arbitration capitalizes on the fact that memory
in proximity of a serving SBS is also an exploitable resource.
Optimal exploitation of such a resource may bring significant

gains by reducing both (i) backhaul/core network utilization;
and (ii) memory requirements at individual SBSs.
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Figure 1. A realization of the proposed two-tier cellular network.

2) We characterize the information centric coverage probability
by employing point process framework from stochastic geom-

etry and also by using some recent results on the performance
evaluation of the LRU cache hit rates. In particular, we revisit
a well known “Che approximation” [11] for LRU cache hit

probability, when the content is independently referenced and
follows the Zipf like popularity law (details are deferred
until Section III). We demonstrate how an alternative ap-

proximation based on the central limit theorem (CLT), and
developed in [12], can be employed to quantify the cache hit
probability. We then develop an analytical framework which

combines the hit probability approximation with the spatial
and channel dynamics of the cellular network under the pro-
posed association model (see Section II) to characterize the

information centric coverage probability. Finally, the impact
of various parametric variations on the coverage probability
are investigated in Section V. It is shown that employing the

proposed metric provides interesting insights for the design
of a large scale two-tier cellular network.

To the best of our knowledge, the system architecture considered
in this article and the proposed metric have not been studied in any

of the existing literature.

D. Notations

Throughout the paper, a particular realization of a random
variable Z is denoted by a corresponding lower-case letter z and its

probability density function (PDF) by fZ(.). The boldface lower-
case letter (e.g. x) is employed to denote a vector in R

2. For sake
of compactness, we employ x to refer to both the vector itself and

also its location. The symbol \ denotes the set subtraction and ‖x‖
denotes the Euclidean norm of the vector x. The symbol b(x, r)
denotes a ball of radius r centered at point x. The symbol ∈ denotes

set membership and Π is generally employed to denote the point
process. The point process is also used as a counting measure by
using the notation Π(A) which returns the number of points in Π
which lie inside A ∈ R

2. Finally, Z ∼ E(µ) is used to represent
an exponential random variable with mean µ.

II. SYSTEM MODEL
A. Spatial Model

We consider a two-tier HetNet such that the first tier is formed by

the macro cellular BSs. The subsequent tier is formed by SBSs such
as femto cells. The spatial configuration of the BSs in both tiers
is modeled by employing two independent homogeneous Poisson

point processes (HPPPs), Πm and Πs, with intensity λm and λs

respectively (see Fig. 1). Specifically, the probability of finding n ∈
N BSs inside a typical area foot-print A ⊆ R

2 follows the Poisson

law with mean measure Λi(A) = λiv2 (A), i ∈ {s,m}. The mean
measure is characterized by both the average number of BSs per
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unit area (i.e., λi) and the Lebesgue measure [13] v2 (A) =
∫

A dx
on R

2, where if A is a disc of radius r then v2 (A) = πr2 is the
area of the disc. Given n ∈ N, the BSs are uniformly distributed in
A ⊆ R

2. Notice that by virtue of superposition theorem for HPPPs
(see [13]) the combined spatial distribution of BSs also forms a

HPPP, i.e., Π = Πm ∪ Πs.

B. Channel Model

The channel between an MU (o), located at origin and a BS

x ∈ Πi i ∈ {s,m} is modeled by the composite random variable
Ho,xl (‖x‖). Here Ho,x ∼ E(1) is a unit mean exponential
random variable which captures the impact of the Rayleigh fading

channel between a BS and a MU. The small-scale Rayleigh
fading is complemented by a large-scale path-loss modeled by

l(‖x‖) = G ‖x‖−α
. Here ‖x‖ is distance between the BS

(x) and the MU (o); G is a frequency dependent constant and

α ≥ 2 is an environment/terrain dependent path-loss exponent.
The fading channel gains are assumed to be mutually independent
and identically distributed (i.i.d.).

C. Content Access & Cellular Association Model

By virtue of the stationarity of the HPPP Π, it follows that the
downlink performance of a typical MU can be treated as a proxy

for the attainable performance of any MU (see [14]). Without any
loss of generality, we consider a typical reference MU (denoted by
o) located at the origin. The MU requests a certain content n from

a global library S of size N . It is assumed that each BS (x ∈ Π)
maintains a cache of size Cx [objects]1 where objects are stored
upon their request. Whenever object n /∈ Cx, it is then retrieved

and stored in the cache while the least recently accessed object is
discarded. This eviction strategy is frequently known as an LRU
strategy.

In this paper, we consider that upon the MU is associated with

the nearest SBS and the nearest MBS. In subsequent discussion, the
nearest SBS and MBS will be frequently referred to as the serving
SBS and the serving MBS respectively. The serving cell of MBS

z ∈ Πm is defined as:

Cz =
{
x ∈ R

2
∣
∣ ‖z − x‖ ≤ ‖y − x‖ ∀y ∈ Πm s.t.y 6= z

}
},

(1)

i.e., Cz is the Voronoi cell of z. The serving region of the SBS
is defined in a similar manner. The key features of the downlink
service for an MU are as follows:

• The MU request for the nth item and the nearest SBS (x ∈ Πs

) first searches its cache to locate the requested content. It is
assumed that depending on the type of content, it is required to

be transmitted to the MU at a certain desired rate T [bps/Hz].
If the content cannot be found at the serving SBS it redirects its
request to the serving MBS. The serving MBS tries to locate

the requested content locally at its own cache or at the caches
furnished to the SBSs which are inside its serving region.
For an LTE-A cellular network, the intra-tier coordination is

attained over the X2 interface.
• If the requested content is located, it is served by either the

SBS or the serving MBS depending on which one out of the

two can satisfy the desired rate requirement.
• In the event that content cannot be locally located, a request

is forwarded to serving gateway (S-GW) which retrieves the

content from the source through the core network. Notice

1In this paper, we assume that each object has same size and the cache size
is defined in terms of number of objects it can hold. Nevertheless, the analysis
can be easily extended to the case where cache size is defined in bytes and each
object has a different size (see [15] for details of LRU caches with variable sized
objects).

that such retrieval incurs a two-level cost which is essentially
due to the backhaul transmission. The cost can be modeled
in terms of the shared capacity, the energy penalty or the

backhaul outage. Modeling such a cost, essentially empowers
designers to explore the design space of HetNets in terms
cache-ability of content. Due to space restrictions, we refrain

from presenting the characterization of such costs.

D. Spectrum Allocation

In this paper, we assume that the small cells are deployed with
the macro cellular network in an overlay mode. The choice is
inspired by the recent proposals for the LTE Release 12 (expected in

March 2015) where C/U plane split has been advocated by several
industrial leaders. We assume that the MU is mainly associated
on C-Plane (control plane) with the serving MBS while the U-

plane (user plane) services are rendered by the small cells. The
spectrum allocation across the macro and small cell tier is non-
overlapping. In other words, small cells are deployed in non co-

channel mode and the available spectral resources are split between
both tiers. Consequently, if a unit bandwidth is available to operator,
its fraction β is assigned to macro tier, while (1− β) is allocated

to small cell tier 2.

III. CACHE HIT PROBABILITY UNDER LRU CONTENT

EVICTION POLICY

In [11] Che et al. developed the fundamental design principles
for the hierarchical web caching systems. The key contribution of

[11] was to develop an approximation for estimating the cache hit
probability under LRU content eviction policy. The “Che approx-
imation” proved to be extremely accurate, even in the scenario’s

where an intuitive explanation for its applicability was quite vague.
In a recent article [12], Fricker et al. revisited the Che approx-
imation to unveil its remarkable success through an alternative

mathematical explanation for a wide spectrum of scenario, beyond
the specific conditions anticipated in [11]. In this article, we expand
Fricker’s alternative framework for the Che approximation for two-

tier cellular networks. To this end, the key objectives of this section
are:

1) To explicitly detail the traffic model, the content popularity
laws and other assumptions which are central for quantifying

the LRU cache hit probability by employing the Che approx-
imation.

2) To recap the Che approximation and develop the Gaussian

approximation for hit probability as in [12].

The developed approximations for the hit probabilities are later
employed to quantify the proposed information centric coverage

probability for an arbitrary MU in two tier cellular network with
the limited shared backhaul.

A. The Independent Reference Model (IRM)

The independent reference model (IRM) has been frequently
employed in literature (see [11], [12], [15] and references therein),

to model how a particular object is referenced in an arbitrary traffic
stream. Under the IRM model, requests for the objects/content
occur in an infinite stream. The content/file demanded on the

ith request, for i > 0, is an independent random variable on
S ⊂ Z

+with a common probability distribution. It is assumed that
users request items from a global content library of size N , i.e.,

|S| = N . The probability that the content n ∈ S is accessed is
governed by the underlying content popularity distribution p(n),
where p(n) is frequently referred to as the “popularity law” which

is dependent upon the type of content, i.e., video, audio, etc.

2With the nearest neighbor association, it is straight-forward to show that equal
allocation (i.e., β = 0.5) maximizes the performance metric considered in this
paper.
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Content Type Popularity Exponent (η)

VoD .65 ≤ η ≤ 1.2
Websites .64 ≤ η ≤ .83
P2P Files .75 ≤ η ≤ .82

Table I
SUMMARY OF CONTENT POPULARITY.

B. Content Popularity Law- A Case for Zipf Distribution

As discussed in the previous sub-section, the content popularity

law governs how often a particular object is referenced in an infinite
stream of the access requests. Empirical studies [15]–[17] have
shown that the Zipf distribution renders itself as a most promising

fit for describing the popularity of the content across various
references. Under the Zipf popularity distribution p(i) < p(j)
for i > j. Moreover, the probability that the nth content will be

referenced is given by

p(n) =
1/nη

κ1
, where κ1 =

N∑

n=1

n−η. (2)

here κ1 is normalizing constant, while η > 0 defines the exponent
which characterizes the distribution. The value of η is strongly

coupled with the type of content. Table 1, summarizes a few
reference values for the various content types.

C. Che & Gaussian Approximations for Cache Hit Probability

Proposition 1 (Che Approximation). For a cache, say x of size

Cx, the probability that the object can be retrieved from a cache

without accessing the content provider library for the requested nth

object is given as

q{H}
x

(n) = 1− exp (−p(n)tCx
) , (3)

where tCx
is the characteristic time for the cache and is given by

the unique root of

Cx =
N∑

n=1

q{H}
x

(n). (4)

Proof: Please refer to [11].

A detailed discussion on computation of characteristic time is
beyond the scope of this article. The interested reader is directed to

[11] for a comprehensive analysis. As can be seen from Proposition
1, analysis of the cache hit probability requires the solution of
the non-linear equation (Eq. (4)). This can be quite involved for

large cache and library sizes. This limitation can be circumvented
by employing the Gaussian approximation for the hit probability
developed by the Fricker et al. in [12].

Proposition 2 (Gaussian Approximation). The probability that the

nth requested item can be found in the cache of size Cx can be

approximated by employing the central limit theorem as follows

q{H}
x

(n) = 1− 1

2

∫ ∞

0

erfc

(

Cx − µ(t)
√

2σ2(t)

)

p(n) exp (−p(n)t)dt.

(5)

where

µ(t) =
N∑

n=1

(1− exp (−p(n)t)) . (6)

σ2(t) =
N∑

n=1

exp (−p(n)t) (1− exp (−p(n)t)) . (7)

Proof: For a detailed proof, readers may refer to [12].

Intuitively, the effectiveness of the Gaussian approximation can
be understood by observing that the cache hit probability is given
by

q{H}
x

(n) = Pr {TCx
(n) > τn} (8)

where τn is the time since the last occurrence of the request for the
object n. Notice that this time is exponentially distributed, i.e., the
request arrivals are assumed to follow a Poisson point process with

the rate proportional to the popularity of the content. Moreover,

TCx
(n) = inf

{

t > 0 :
∑N

i=1,i6=n 1{τ<} = Cx

}

, i.e. the time at

which cache is completely filled with the number of different

objects excluding the requested object n. As TCx
(n) is coupled

with the sum of the exponential random variables, for a large N
then the central limit theorem can be invoked and thus the Gaussian

approximation for Eq. (8) can be easily established.
Note that the evaluation of hit probability by employing the

Gaussian approximation requires the solution of the integral given
Eq. (5). This integral cannot be evaluated in closed-form in general.

However, a numerical solution can easily be obtained via standard
analysis software such as MATLAB. The computation complexity
is significantly reduced when compared to the original Che approx-

imation.

IV. INFORMATION CENTRIC LOCAL COVERAGE PROBABILITY

FOR TWO-TIER CELLULAR NETWORKS

The information centric coverage probability for an arbitrary MU
(o) is defined as the probability of finding the requested content

locally from the caches inside the Voronoi cell of its serving MBS.
Let z ∈ Πm be the serving MBS of a typical MU o with its
corresponding cell denoted by Cz . Moreover, let n ∈ S be the

requested content in the current request generated by an MU, then
the information centric downlink coverage probability is given by

Pcov (n) = P
{S}
cov (n) +

(

1− P
{S}
cov (n)

)

P
{M}
cov (n), (9)

where

P
{M}
cov (n) = Pr {β log2(1 + ΓM ) ≥ T , n ∈ Cs} , (10)

P
{S}
cov (n) = Pr {(1− β) log2(1 + ΓS) ≥ T , n ∈ Cs} , (11)

here ΓS and ΓM are the received signal-to-interference ratios

(SIRs) at an MU and the aggregate network memory in terms of
caching is given by

Cs =

Caches at all SBSs inside Macro-cell
︷ ︸︸ ︷
∑

y\x∈Πs

Cy +

Cache at Nearest SBS
︷︸︸︷

Cx (12)

+ Cz
︸︷︷︸

Cache at Nearest MBS

.

Intuitively, an MU can be successfully served iff:

1) The nearest SBS which is serving the MU has a copy of the
requested content in its cache and can serve MU at its desired
rate;

2) Either the other SBSs or the MBS has a copy of the requested
content in its cache and can transfer it to the serving SBS,
which in turn can transmit content to the MU at its desired

rate;
3) The content can be locally found at the SBSs managed by the

serving MBS but the serving SBS cannot satisfy the desired

rate requirement and thus the MU has to be served by the
MBS directly.

The first two factors contribute towards the first term in Eq. (9),
while the third case is captured by the second term. The information

centric coverage probability unifies both the desired QoS and the
cache dynamics into a single analytically tractable metric.
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V. PERFORMANCE ANALYSIS OF TWO-TIER CACHE ENABLED

CELLULAR NETWORKS

In the previous section, we briefly outlined the analytical frame-

work which can be employed to study the performance of an LRU
cache. In this section, we build on the already developed framework
to unify the hit probabilities with the link level QoS to characterize
the information centric coverage probability for two tier cellular

networks.

Proposition 3 (Small Cell Coverage P
{S}
cov (n)). The probability

that an MU can be served by its serving SBS in the downlink

for a certain locally accessible content n ∈ S request can be

characterized as

P
{S}
cov (n) =

Ξ(n)

1 +
(
δγδ

thsB(δ, 1− δ)− 2F1 (1, δ; 1 + δ;−1/γths)
) ,

(13)
where γths = 2T/(1−β) − 1 and

Ξ(n) = 1−
mm

(

1− q
{H}
z (n)

)

(

λS/λMq
{H}
y (n) +m

)m with m = 3.5 . (14)

Proof: From Eq. (11), it follows that

P
{S}
cov (n) = Pr {(1 − β) log2(1 + ΓS) ≥ T , n ∈ Cs} ,

= Pr



















log2(1 + ΓS)
︸ ︷︷ ︸

κ2

≥T/(1−β)
︸ ︷︷ ︸

T2

∣

∣

∣

∣

∣

∣

∣

∣

∣

n∈Cs



















Pr {n ∈ Cs} ,

=
(a)

Pr {κ2≥T2}
︸ ︷︷ ︸

A1

Pr {n ∈ Cs}
︸ ︷︷ ︸

Ξ(n)

, (15)

where (a) follows from the mutual independence of the QoS and
the cache hit probabilities. Notice that the term A1 corresponds
to the event that the MU can be served at its desired rate by the

nearest SBS and can be evaluated as

A1 = Pr {κ2 ≥ T2} = Pr






ΓS ≥ 2T2 − 1

︸ ︷︷ ︸

γths






, (16)

= Pr

{

hox ≥ γthsIr
l(r)

}

= ER

(

LIr (s)|s=γthsrα

)

.

The random variable Ir =
∑

x∈Πs\b(o,r) hxl(‖x‖) models the

other-cell interference experienced at a typical MU o. Now, follow-

ing the steps similar to [3] with several mathematical manipulations,
the Laplace transform of the aggregate interference experienced by
the MU can be quantified as

LIr (γthr
α) = exp

(

−λsπδγ
δ
thsr

2 (B(δ, 1− δ)

−
(

δγδ
ths

)−1

2F1 (1, δ; 1 + δ;−1/γths)

))

(17)

where δ = 2
α , B(a, b) = Γ(a)Γ(b)/Γ(a+b) is the standard Beta

function and 2F1 (a, b; c; z) =
∑∞

n=0
a(n)b(n)

c(n)
zn

n! is the Gauss Hy-

pergeometric function3 . Finally employing the distance distribution
for nearest SBS, Eq. (16) can be evaluated as

A1 =

∫ ∞

0

2πλsr exp
(
−λsπr

2ζ
)
dr, (18)

=
1

1 +
(
δγδ

thsB(δ, 1− δ)− 2F1 (1, δ; 1 + δ;−1/γths)
) .

3Here a(n) = a× (a+1)× ....(a+n−1) is the rising Pochhammer Symbol.

Now, Ξ(n) = Pr {n ∈ Cs} can be evaluated as follows

Ξ(n) = 1− Pr {n /∈ Cs} , (19)

=
(b)

1− Pr {n /∈ Cz}
︸ ︷︷ ︸

A2

∏

y∈CZ∩Πs

Pr {n /∈ Cy}
︸ ︷︷ ︸

A3

,

where (b) can be deducted from Eq. (12). Moreover, the term A2

can be computed as

A2 = 1− q{H}
z

(n). (20)

The term A3 can be written as

A3 =
(c)

EA

[ ∞∑

k=0

(

1− q{H}
y

(n)
)k (λsa)

k

k!

× exp (−λsa)] ,

=
(d)

EA

[

exp
(

−λsq
{H}
y

(n)a
)]

, (21)

where (c) follows from the Poisson law for Πs and (d) can

be obtained by using the fact that exp(x) =
∑∞

k=0
xk
/k!. The

Evaluation of Eq. (21), requires the distribution for the area of

a typical Voronoi cell. From [17] the distribution of the normalized
area is given by

fX(x) =
mm

Γ(m)
xm−1 exp(−mx), (22)

where m = 3.5 and X is a random variable that denotes the size of
the typical Voronoi cell normalized by the value 1/λM . Employing

Eq. (22), A3 can be simplified to

A3 =
mm

(

λS/λMq
{H}
y (n) +m

)m . (23)

Substituting A2 and A3in Eq. (19), we obtain

Ξ(n) = 1−
mm

(

1− q
{H}
z (n)

)

(

λS/λMq
{H}
y (n) +m

)m . (24)

Remarks

• From Eq. (18) it is easy to see that the coverage probability

in terms of the desired QoS is a function of: (i) the fraction of
spectrum (β) allocated to the small cell tier; (ii) the required
rate for content transfer (T ) and (iii) the path-loss exponent

(α). It is independent from the density of small cells and
their transmit powers. This can be credited to the fact that
while increasing the density of small cells reduces average link

distance by Θ(1/
√
λs) the distance between nearest interferer

also scales under the same law. Consequently, the gain in
terms of signal power is offset with the increase in aggregate

interference.
• Noting that the probability of being covered, given the fact that

content can be locally retrieved is independent of the density

and the transmit power, then it follows that

P
{M}
cov (n) =

Ξ(n)

1 + (δγδ
thmB(δ,1−δ)−2F1(1,δ;1+δ;−1/γthm))

. (25)

where γths = 2
T/β − 1 and Ξ(n) is defined in Eq. (13).

Proposition 4. Consider an arbitrary MU which generates a

request for nth object from the global content library of size N .

The probability that the MU is covered locally in two-tier small cell

networks under LRU based content eviction policy can be quantified

as

Pcov (n) = ∆ (1− β) + (1−∆(1− β))∆ (β) , (26)
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∆(a) =

1−
mm

((

1
2

∫

∞

0
erfc

(

Cz−µ(t)√
2σ2(t)

)

p(n) exp(−p(n)t)dt

))

(

λS/λM

(

1− 1
2

∫

∞

0
erfc

(

Cy−µ(t)√
2σ2(t)

)

p(n) exp(−p(n)t)dt

)

+m

)m

1 +
(

δ
(
2T/a − 1

)δ
π/sin(πδ) − 2F1

(

1, δ; 1 + δ;−1/
(

2
T/a−1

)

)) . (27)
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Figure 2. Information centric coverage probability (Pcov (n)) as a function of
varying the required transmission rate (T ) for various requested object indices
(n) and small cell cache memory (Cs) with Cm = 10, α = 4, λm = 10−3 ,
λs = 10−2 , β = 0.5, N = 104 and η = 1.2 (see Eq.(26)).

where ∆(a) is defined in Eq. (27).

Proof: Employing the definition of information centric prob-

ability of being locally covered from Eq. (9) in conjunction with
Eqs. (13) and (25) completes the proof.
Remarks

• From Proposition 4, it can be easily observed that unlike the
traditional coverage probability metric, the information centric
coverage probability is strongly dependent upon the density of

deployment for each tier. More specifically, the ratio between
the density of SBSs and MBSs dictate the overall performance
of the scheduled downlink MU.

• Another interesting observation from Proposition 4 is that the
information centric coverage probability is dependent upon
which content is requested (i.e. object index n) and also the
cache sizes deployed across both tiers. Optimal dimensioning

of the allocated memory at each tier can be employed to max-
imize the downlink performance. We defer the dimensioning
problem for the future work.

VI. DISCUSSION & RESULTS

Fig. 2 investigates the impact of the desired bit rate, the popu-
larity of requested object and the size of SBS cache on information
centric coverage probability4 . As expected, the probability of being
locally covered decreases with an increase in the desired rate. Intu-

itively, this can be attributed to the co-channel interference which
limits the maximum attainable rate in the downlink transmission for
any scheduled MU. For a fixed desired rate, the information centric

coverage probability is strongly dependent on how popular the
requested content is. The content which is less frequently demanded
by the users has a lower probability of being in the cache and

thus the probability of retrieving such a object from the serving
macro or small cell BSs is also low. Thus the information centric
coverage probability decreases with an increase in the requested

object index n, when objects are sorted in accordance with their
popularity (such as in case of the Zipf distribution). As shown

4Throughout this section, the size of cache at SBSs is denoted by (i.e., Cy =
Cs) while the size of cache at MBS is denoted by Cz = Cm.
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Figure 3. Information centric coverage probability (Pcov (n)) as a function of
varying the ratio of deployment between small cells and macro cells (λS/λM )
for various requested object indices (n) with T = 1, Cm = 10, Cs = 5, α = 4,
β = 0.5, N = 104 and η = 1.2 (see Eq.(26)).

in Fig. 2 the coverage probability for the objects which are less
frequently requested can be significantly improved by increasing

the size of the cache available at the SBSs. For instance, when
T = 1 bps/Hz is required for the downlink transmission, the
coverage probability can be improved by 50% for n = 10−20. For

the popular content, deploying more memory does not effect the
coverage probability as transmissions are already constrained by the
attainable QoS performance for the the downlink MU and not on

the cache size. Note that the coverage probability increases with an
increase in η (the exponent of Zipf distribution). Due to the space
constraints, we refrain from presenting the straightforward results.

Fig. 3 depicts the impact of increasing the average number
of small cells per macro cells (i.e., the ratio of deployment

density λS/λM ) on the information centric coverage probability.
As is obvious from the figure, the coverage probability for the
less frequently referenced items improves significantly through the

network densification. Following, the widely observed 10 − 90
law, i.e., 10% of the content is requested 90% of the time, it is
easy to see that for a library of size N = 104, most referenced

items are from n = 1 − 100. Moreover, as depicted by Fig. 3
the local coverage probability for n = 100 can be increased by a
factor of 6× with ultra dense deployment. However, the coverage

probability considering only attainable QoS, does not depend on
the deployment density λs (see Eq. (18) and subsequent remarks).
Thus instead of deploying more SBSs, simply increasing the cache

memory at each SBS will have a similar impact.

Fig. 3 explores the behavior of the information centric coverage

probability against the deployed cache memory (Cs = Cm) at
both the small and macro BSs for various values of the desired
rate (T ). An interesting observation from Fig. 3 is that for any

referenced object, there exists two distinct operation regimes, i.e.,
(i) a memory constrained regime; and (ii) a QoS constrained regime.
In a memory constrained regime, the information centric coverage

probability can be significantly improved by increasing the size
of the cache installed on the BSs. However, after a certain value
of Cm, say C∗

m, the benefits of adding more memory saturate. In

other words, the information centric coverage probability saturates
to a certain value which is dictated by the path-loss exponent,
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Figure 4. Information centric coverage probability (Pcov (n)) as a function of cache size (Cs = Cm) at small cells and macro cells (λS/λM ) for various requested
object indices (n) and desired rates (T ) with , α = 4, β = 0.5, λs/λm = 2, N = 104 and η = 1.2 (see Eq.(26)).

the required downlink transmission rate and the allocated fraction

of spectrum at each tier. Thus, the downlink performance of the
MU becomes QoS constrained rather than memory constrained.
Furthermore, it is observed that as expected C∗

m increases with an

increase in n. Effectively, sporadically referenced items have an
expanded memory-constrained operational regime as compared to
the popular items. Thus the improvement by adding the extra cache

memory at the BSs strongly depends on the maximum content index
say n∗, for which the network information centric coverage needs
to be maximized.

VII. CONCLUSION

In this article, we presented a comprehensive framework for the

information centric modeling of a two-tier heterogeneous cellular
network. We introduce a new metric called ‘information centric
local coverage probability’ which quantifies the probability that a

downlink MU can retrieve its desired content from the content
caches deployed at the nearest macro base-station or from the
overlaid small cells. We demonstrated that unlike a traditional cov-

erage metric, which is completely characterized by the distribution
of the signal-to-interference ratio (SIR), the information centric
coverage probability is coupled with: (i) the size of caches; (ii)
the content eviction strategy; (iii) the underlying popularity law for

referenced objects; (iv) the size of global content library; (v) the
desired downlink transmission rate; and (vi) the amount of spectrum
allocated to each tier. Moreover, under the SIR based coverage

model the probability of an MU being covered is independent of the
density of the deployed base stations and only depends on desired
rate threshold, allocated fraction of spectrum and the path-loss

exponent. However, the information centric coverage probability
is strongly coupled with the deployment density of base-stations. It
is demonstrated that when a least recently used content is evicted

from the cache, the network densification can bring gains of the
order of 6× for a moderately accessed object. It is demonstrated
that for a certain desired rate, the information centric coverage

probability has two distinct operational regimes with respect to the
cache size, i.e., (i) memory limited; and (ii) cache limited. It is
shown that the performance can be maximized in a memory limited

regime by increasing the cache capacity. However, there exists a
threshold capacity (dependent upon the underlying popularity law
and considered referenced object) after which additional memory

does not bring any benefit in terms of performance. The operation
beyond this threshold is strongly dependent on the required rate.
In summary, it is shown that the information centric coverage

probability is a strong function of the content type and thus content
aware design can bring significant performance gains for the 5G
cellular networks. REFERENCES
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