UNIVERSITY of York

This is a repository copy of Power-balance in the time-domain for IEMI coupling prediction.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/97409/</u>

Proceedings Paper:

Dawson, J F orcid.org/0000-0003-4537-9977, Flintoft, I D orcid.org/0000-0003-3153-8447, Marvin, A C orcid.org/0000-0003-2590-5335 et al. (2 more authors) (2016) Power-balance in the time-domain for IEMI coupling prediction. In: European Electromagnetics (EUROEM) 2016 Book of Abstracts. .

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Strategies for the Improvement of Critical Infrastructure Resilience to Electromagnetic attacks

European Commission Grant Agreement FP7-SEC-2011-285257

Power-balance in the time-domain for IEMI coupling prediction

J F Dawson

I D Flintoft, A C Marvin, M P Robinson, L Dawson

University of York, UK, e-mail: john.dawson@york.ac.uk

EUROEM 2016

THE UNIVERSITY of York

Paper 4.b.2

The STRUCTURES Project

- IEMI Coupling
- IEMI Detection
- System Vulnerability
- Guidelines & StandardsTools

FD Power Balance: Steady state

- Aperture electrically small plane wave illumination
 - Polarisabilitities

$$P^{t}(\theta^{i},\varphi^{i},\psi^{i}) = \frac{8\pi\eta_{0}}{3\lambda^{2}} \left(\omega^{2}\varepsilon_{0}^{2} \left|\overline{\overline{\alpha}}_{e}\cdot\mathbf{E}^{i}\right|^{2} + k^{2} \left|\overline{\overline{\alpha}}_{m}\cdot\mathbf{H}^{i}\right|^{2}\right)$$

- o Reverberant field
 - Build up

STRI

 Exponential decay

Taken from: **Figure 2–4**, of Richardson, R. E., "Reverberant Microwave Propagation", *NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA*, *NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA*, *no. ADA501122*, OCT, 2008, Available: http://www.dtic.mil/docs/citations/ADA501122

12/07/2016

Time Response in Reverb

- o Reverberant field
 - Build up
 - Exponential decay
- Direct path
 - Friis Equation
- Early reflections
 - Mean free path
 - Friis
 - Reflection loss

Taken from: **Figure 2–3**, of Richardson, R. E., "Reverberant Microwave Propagation", *NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA*, *NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA*, *no. ADA501122*, OCT, 2008, Available: http://www.dtic.mil/docs/citations/ADA501122

Enclosure: PWB analysis (TD)

• Time domain energy balance

$$-\frac{\mathrm{d}\langle U\rangle}{\mathrm{d}t} + \frac{\langle U\rangle}{\tau_{\mathrm{enc}}} = \frac{\mathrm{d}\langle U\rangle}{\mathrm{d}t} + \Lambda_{\mathrm{enc}}\langle U\rangle = P^{\mathrm{t}}(t)$$

• Power transmitted through aperture

$$- \frac{A}{\eta_0} \left[\int_0^t h_{\rm ap}(t-t') E_{\rm pulse}(t') \, \mathrm{d}t' \right]^2 \cos \theta^{\rm i}$$

• Dispersion of aperture – filter

$$- H_{\rm ap}(s) = H_{\rm ap}^{\infty} \left(\frac{s}{s + \omega_{\rm ap}}\right)^2$$

Transfer function

$$- H_{E_{\text{RMS}}} = \frac{\sqrt{\max_{t} [\langle |\mathbf{E}|^2(t) \rangle]}}{\max_{t} [E_{\text{pulse}}(t)]}$$

Enclosure: PWB analysis (TD)

Enclosure with aperture

FDTD vs PWB (TD)

FDTD vs PWB (TD)

Enclosure: Scenarios

- Range of "real" scenarios
- Monte Carlo model for statistical view of each scenario

Scenario	<i>L_x</i> (m)	<i>L_y</i> (m)	<i>L_z</i> (m)	<i>a_x</i> (m)	<i>a_y</i> (m)	<q<sub>enc> (-)</q<sub>
Machine hall, WP7.2	10-20	3-6	10-20	2-3	2-3	10-20
Server/ICT room, WP7.3	3	2.5	3	0.5	0.5	200
Train cabin, WP7.4	2-3	1.8-2.5	2-5	1-1.8	0.8-1.5	50-200
Office, WP7.5	5	3	6	2.5	1	20
Aircraft cabin, WP7.6	2-4	2-4	5-15	0.2-0.4	0.2-0.4	50-300
Building, WP7.7	4	3	6	1	2.5	20
Parameter range	2-20	2-6	2-10	0.2-3	0.2-3	10-300

Monte Carlo simulation results

Scenario	CW 100 MHz		CW 300 MHz		CW 1 GHz		CW 3 GHz		CW 10 GHz		JOLT Pulse	
	Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max
Machine hall	-24	-16	-26	-19	-28	-21	-31	-24	-34	-26	-2	0
ICT room Office Building	-18	-4	-13	-3	-16	-6	-18	-8	-21	-10	-3	0
Train cabin	-6	0	-7	-1	-8	-2	-11	-4	-14	-7	-2	0
Aircraft cabin	-35	-14	-24	-14	-26	-17	-28	-20	-32	-22	-3	-1
Mean and maximum transfer functions (in dB): $H_E(f) = \frac{\sqrt{\langle \mathbf{E} ^2 \rangle}}{ E^i } = \frac{\sqrt{\langle \mathbf{H} ^2 \rangle}}{ H^i } = \sqrt{\frac{\langle S \rangle}{ S^i }}$ over 1000												
sets of uniformly distributed random parameters over the ranges specified in previous slide plus random incidence angle.												

Monte Carlo PWB FD simulation

- PDF of relative amplitudes for CW (Machine hall)

Monte Carlo PWB TD simulation

- PDF of relative coupling for JOLT Pulse (Machine hall)

Concluding remarks

- Power balance can estimate time-domain coupling but must include direct first pulse
 - Possibly should include other initial reflections
 - Not included here but may be significant
- Possible to do fast parametric/ Monte Carlo models
- Results show significant difference in attenuation between pulse/transient and CW steady state
 - Should think about CW turn on transient ?

Bibliography

Additional material beyond the references in the abstract

The STRUCTURES project "STRUCTURES Strategies for The impRovement of critical infrastrUCTUre Resilience to Electromagnetic attackS", Available: <u>http://www.structures-project.eu/</u>

Time domain measurements in reverb chamber:

Richardson, R. E., "Reverberant Microwave Propagation", NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA, NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA, no. ADA501122, OCT 2008., Available: http://www.dtic.mil/docs/citations/ADA501122

Results:

"TECHNICAL REPORT D 8.1 Definition of the Critical Infrastructures Protection Levels", STRUCTURES: Strategies for The impRovement of critical infrastrUCTUre Resilience to Electromagnetic attackS, 2015. Contact information: <u>http://www.structures-project.eu/</u>