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ABSTRACT

This paper describes work undertaken to understand
how the structure of a nonwoven carbon fibre material
determines its shielding effectiveness, including the
effects of fibre orientation, and contact resistance. In
order to facilitate understanding of the material
behaviour, software has been written to generate Monte
Carlo Models (MCMs) of the material structure. The
results of our MCMs are compared with measurements
and some empirical expressions.

1. INTRODUCTION

There exists a large body of work on the behaviour of
stick networks based on the initial work of Balberg and
Binenbaum [1] mostly associated with nano-structures
[2–4]. We have applied these ideas to understand the
behaviour of the conductivity and shielding
effectiveness of non-woven carbon fibre sheets.
Section 2 describes the structure of the nonwoven
carbon fibre sheets, Section 3 summarises the shielding
behaviour of the sheets and its relationship to sheet
conductivity. In Section 4 we describe the MCM, and in
Sections 5 and 6 we illustrate the behaviour of the
conductivity of 2D and 3D materials and how
anisotropy in the fibre angle distribution affects the
performance. In section 7 we compare the MCM with
measurements of the conductivity of real materials.

2. NON-WOVEN FABRICS

Figure 1. Electron microscope image of carbon fibre

veil.

A non-woven fabric is an array of discontinuous fibres
that are formed into a sheet using a wet-laid process like
that used for paper manufacture. Non-woven materials
possess a complicated structure with varying local
parameters such as thickness, areal density, and fibre
angle. Fig. 1 shows a scanning electron microscope
(SEM) image of a non-woven fabric, constructed from
12 mm long carbon fibres. Non-woven carbon fibre
sheets are typically incorporated in composite materials
to provide a degree of conductivity where the strength
and weight of a woven carbon fibre composite is not
required. Sheets can be fabricated with areal densities as
low as 4 gm-2.

3. SHIELDING EFFECTIVNESS

Schelkunoff [5] determined the plane-wave shielding
effectiveness, SE, of an infinite planar sheet in free
space as:
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where IE is the amplitude of the normally incident

plane wave, and TE is the amplitude of the transmitted

wave.  is the propagation constant in the sheet and
 is the interface reflection coefficient
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m and 0 are the characteristic impedances of the

material and of free space.
At frequencies where the skin-depth in the material is
negligible the sheet conductance is the principle factor
determining the electromagnetic shielding effectiveness
(SE) and for high conductance materials

s02
1 GSE  (4)

where sG is the sheet conductance. For the non-woven

materials we have tested (4) is effective at frequencies
up to about 2 GHz for the heaviest materials, and to
beyond 8 GHz for the lightest as can be seen in Fig. 2
and in [6,7]. So in this paper we consider how the
structure affects the sheet conductance and hence the SE
as predicted by (4). At higher frequencies the shielding
effectiveness rises due to the attenuation through the
thickness of the material according to (1). That regime
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is not considered in this paper.
Fig. 2 shows the measured shielding effectiveness of the
heaviest and lightest samples we have measured. The
areal densities shown represent the weight of carbon
fibre per square metre in the material, a binder is also
used which increases the actual weight by about 20%.
As the materials are anisotropic, two orientations were
measured using the technique described in [8]. In these
materials there is considerable difference in the SE of
the two difference orientations. The sheet conductance
shown later was deduced by fitting the full expression
(1) to the measured SE curves up to 2.5 GHz. We chose
this limit as the measured SE starts to exhibit jig
artefacts above this range. Fig. 2 shows the fitted data
over the full frequency range (points) as well as the
measured SE data (lines). It can be seen that the x-
polarised values have considerable higher SE than the y-
polarised cases. The values of conductances from the fit
are plotted in Fig. 11.

Figure 2. Shielding effectiveness of the lightest and

heaviest veils at two polarisations

4. MONTE CARLO MODELS

In order to understand how the material structure affects
its sheet conductance, and hence SE, we used a Monte
Carlo method to construct artificial models of the
structure [7].

Fig. C shows a rendered image of a computer generated
veil model. The mass per unit area (areal density), fibre
dimensions, and fibre angular distribution can be set to
produce a range of material models representative of
real materials. In this paper we use the model to
generate a resistor network from each segment of fibre
and can also include a contact resistance between fibres.
Fibres with centres closer than the fibre diameter are
assumed to connect and a circuit model can then be
fabricated and solved using nodal analysis to determine
the sheet conductance.
In order to get reliable results the model size must be at
least several fibre lengths in each dimension and the
results from multiple models are averaged as individual

samples vary in conductance due to the stochastic nature
of the material structure. In particular, at low areal
density when the structure is close to the percolation
threshold, large variations in conductivity can be seen
from one sample to the next. The percolation threshold
is the areal density where a 50% probability of
connectivity across the material exists. The percolation
threshold in the materials considered here is of the order
of 0.03 gm-2, whereas the lowest areal density available
to us is 3 gm-2.

Figure C. Computer generated veil model

5. BEHAVIOUR OF 2D MCM

Fig. 3 shows the sheet conductivity against areal density
for an isotropic fibre mesh, with no contact resistance
between fibres, solved in two orthogonal directions
(marked x-pol and y-pol). For areal density above about
0.2 g m-2 it can be seen that the conductivity is
proportional to areal density and the results in the two
orthogonal directions are very close. At low areal
density the conductivity falls more rapidly with
reduction in areal density as the material approaches the
percolation threshold below which point no continuous
path through the fibre is likely. Žeželj and Stanković [9] 
modelled similar “stick-networks” and empirically
determined an expression for the conductivity for the
isotropic case, based on the material percolation
threshold.
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where fG and cG are the fibre and contact

conductances. fl is the fibre length, and n is the

dimensionless fibre concentration: the number of fibres

in an area
2
fl . cn is the concentration of fibres at the

percolation threshold, 63726.5 for isotropic 2D material.

L is the size of the sample square, and 29.1t is the 2D
critical exponent. The empirical constants are:

027.0a , 0.061b , and 5.2c as determined in [9].



The empirical fit of Žeželj and Stanković is also shown 
in Figs. 3-5,7,9, & 10 where the actual (marked x- and
y-pol) percolation thresholds from our models are used
and also for the universal threshold (marked Zezelj
theory) [9].

Figure 3. Sheet conductivity v areal density for uniform

fibre distribution with no contact resistance, error bars

show std.deviation becoming larger density reduces

Fig. 4 shows the material behaviour when the contact
resistance between fibres dominates - the conductance
then varies with the square of the material areal density.
The reason for this is that the number of contacts per
fibre increases linearly with the number of fibres
present, so that the total number of contacts able to
share the current increases with the square of the
number of fibres.

Figure 4. Effect of 1 M contact resistance on veil with
uniform fibre distribution.

For isotropic materials the empirical model of Žeželj
and Stanković gives a good approximation of the 
behaviour of our models, though it does not match as
well as shown in [9]. Fig. 5 shows the effect of a non-
uniform distribution of fibre angles. Anisotropy can be
seen in the sheet conductance when a non-uniform
distribution of fibre angles is present; this is the case in
most real materials.

Figure 5. Sheet conductivity v areal density for

truncated Gaussian fibre angular

distribution deg.9090   , with deg.30 .

It can be seen that the theory of Žeželj and Stanković 
does not represent the behaviour of the anisotropic case
as both the level of sheet conductance, and the
percolation thresholds are changed by the anisotropy. In
Figure 5 we have also plotted the theory of Žeželj and
Stanković modified by including the actual percolation 
thresholds for the x- and y-oriented directions from the
Monte Carlo model, and multiplying the conductance by

the factor ab / where the geometry factor
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where  p is the angular PDF for the fibres in the

material which we have described in detail in [10] and
 is the angle of the fibre in the xy-plane, relative to the
x-axis.
We also considered the average the number of contacts
per fibre, which is predicted by Heitz et al [11] for the
2D isotropic case.

contcf PnN  (8)

where 0.2027contP . This agrees well with our isotropic

MCM.
Fig. 7 show the mean number of contacts per fibre
predicted by Heitz et al and the number counted in our
MCM for the anisotropic material which shows a
reduction.

6. BEHAVIOUR OF 3D MCM

We have observed that the main effect of the transition
from 2D to 3D materials is that the number of contacts
per fibre in 3D materials behaves differently from the
2D Case.



Figure 6. Truncated Gaussian fibre angle PDF

deg.9090   , with deg.30

Figure 7. Number of contacts per fibre for 2D isotropic

(Heitz) and anisotropic (MCM) materials.

In the plots below the thickness of the material is:
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where t is the material thickness between the
centrelines of the outermost fibres (measured thickness

minus one fibre diameter), m6.11min t is the

minimum thickness (~ 2 fibre diameters), A is the

areal density and
-2

0 gm05.1A is the areal density

at which the material transitions from constant thickness
to a linear increase in thickness with areal density. The
parameters given were based on the best fit to measured
thickness data [10].
The behaviour of 3D materials with zero contact
resistance is identical to that of 2D materials as long as
the fibres are well connected. As can be seen in Fig. 8
the number of contacts per fibre in the MCM is reduced
from that of the 2D case (Heitz).
When contact resistance is significant (Fig. 9) the
conductivity at larger areal densities falls below that
predicted by the 2D model of Heitz as less contacts are

present. Also the percolation threshold, occurs at a
higher areal density as can be seen by the lowered
conductance at lower densities.
In Fig. 10 a 3D veil, with a truncated Gaussian angular
fibre distribution and zero contact resistance is shown.
Compared with Fig. 5 the conductance is comparable at
high densities but at low densities the conductance is
lower due to the reduced connectivity of the fibres and
again the percolation threshold occurs at a higher value
than in the 2D case. This behaviour depends on how the
thickness varies with areal density.

Figure 8. Material thickness and number of contacts per

fibre for 3D isotropic (MCM) material compared with

the 2D case (Heitz).

Figure 9. 3D veil with 1 M contact resistance and
uniform fibre distribution.

7. BEHAVIOUR OF REAL SHEETS

Fig. 11 shows the conductivity, deduced from SE
measurements of a set of real materials compared with
the results of the MCM prediction. The distribution of
fibre angles for the real material was determined using
image analysis. Also plotted is the average conductance
of the materials measured with an eddy current method
which can be seen to correspond well with the average
predicted by the SE measurement.
The fibres in the real material have a diameter of 7 µm,



a length of 12 mm, an electrical conductivity of
72.5 kS/m and a density of 1820 kgm-2. The areal
density shown in this paper considers only the mass of
the fibre. The binder adds about 20% to the density of
the real material, but is not considered here as it does
not directly affect the model. We estimate the contact
resistance as approximately 8.6 kΩ by choosing a value 
which results in a conductivity which best fits the
measured data.

Figure 10. Sheet conductivity v areal density for

truncated Gaussian fibre angular distribution

deg.9090   , deg.30 with no contact resistance.

Figure 11. Comparing the sheet conductance of

nowoven veils deduced from SE measurements with that

of the MCM and eddy current measurements

8. CONCLUSIONS

The MCM has been a valuable tool in understanding the
behaviour of nonwoven carbon fibre sheets, as previous
work on stick networks concentrated on low density
behaviour near the percolation threshold, and little
information was available about 3D sheets. In
particular the reduced number of contacts per fibre and
increased percolation threshold in 3D materials suggest
that contact resistance can have a significant effect on
the performance of these materials.
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