
The evolution towards the rod-like axisymmetric structure for turbulent
stress tensor
Yi Li 
 
Citation: Physics of Fluids 27, 085104 (2015); doi: 10.1063/1.4928245 
View online: http://dx.doi.org/10.1063/1.4928245 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/27/8?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
On the evolution of the invariants of the velocity gradient tensor in single-square-grid-generated
turbulence 
Phys. Fluids 27, 075107 (2015); 10.1063/1.4926472 
 
Influence of vortex dynamics and structure on turbulence statistics at large scales 
Phys. Fluids 27, 055106 (2015); 10.1063/1.4921210 
 
Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow 
Phys. Fluids 26, 115104 (2014); 10.1063/1.4901186 
 
Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow 
Phys. Fluids 25, 035101 (2013); 10.1063/1.4795547 
 
Structure information in rapid distortion analysis and one-point modeling of axisymmetric
magnetohydrodynamic turbulence 
Phys. Fluids 12, 2609 (2000); 10.1063/1.1287838 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  143.167.5.230 On: Mon, 17 Aug 2015 08:54:42

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/691801999/x01/AIP-PT/OUP_PoFArticleDL_081215/OUP-ER-OLE-1640x440-AIP-with-oup-logo.gif/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Yi+Li&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4928245
http://scitation.aip.org/content/aip/journal/pof2/27/8?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/7/10.1063/1.4926472?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/7/10.1063/1.4926472?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/5/10.1063/1.4921210?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/26/11/10.1063/1.4901186?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/25/3/10.1063/1.4795547?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/12/10/10.1063/1.1287838?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/12/10/10.1063/1.1287838?ver=pdfcov


PHYSICS OF FLUIDS 27, 085104 (2015)

The evolution towards the rod-like axisymmetric structure
for turbulent stress tensor

Yi Lia)

School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH,
United Kingdom

(Received 20 May 2015; accepted 28 July 2015; published online 11 August 2015)

Modelling the turbulent stress tensor is a main task for both large eddy simulations
and methods based on Reynolds averaged Navier-Stokes equations. The turbulent
stress is known as the subgrid-scale stress in the former and the Reynolds stress
in the latter. In this paper, we examine the observation that the stress tensor tends
to evolve towards a rod-like axisymmetric configuration. This observation has been
well documented for the subgrid-scale stress. However, for the Reynolds stress, the
available data are still too limited to draw a definite conclusion. In the first part of the
paper, we show that the tendency is also universal for the Reynolds stress by direct
numerical simulations of decaying anisotropic turbulence. To show the universality,
it is crucial to examine the decaying process from initial turbulent fields with a wide
range of levels of anisotropy. Such initial fields are generated by a novel synthetic
turbulence model based on the so-called constrained multi-turnover Lagrangian map.
In the second part, we use the direct numerical simulation data to study the dynamical
mechanisms of the evolution towards the rod-like structures. Among others, the
analyses show that the nonlinear self-interaction term is the driving force of the
process, and that the pressure tends to enhance the disk-like axisymmetric structure
but overall tends to reduce the anisotropy of the stress tensor. The results shed
light on the subtle difference between the pressure and the nonlinear self-interaction
terms. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928245]

I. INTRODUCTION

We investigate in this paper a common feature observed in the turbulent stress tensors for both
large eddy simulations (LESs) and the methods based on the Reynolds averaged Navier-Stokes
(RANS) equations. In LES, the filtered Navier-Stokes (NS) equations are the governing equations,
which read

∂tui + u j∂jui = −∂ip − ∂jτi j + ν∇2ui. (1)

In the above equations, ui is the filtered velocity,

ui(x) =


G∆(x − y)ui(y)dy, (2)

where G∆ is the filter with length scale ∆. p is the filtered pressure defined in a similar way
and τi j ≡ uiu j − uiu j is the subgrid-scale (SGS) stress. Density ρ = 1 has been assumed. ν is the
kinematic viscosity. The equations are not closed, because the SGS stress τi j has to be modelled.1–3

In RANS, one considers the ensemble averaged NS equations.3 In this case, one has to model
the Reynolds stress Ri j ≡ ⟨uiu j⟩, where ⟨·⟩ denotes ensemble average. We have assumed ⟨ui⟩ = 0,
which is sufficient for the discussion in this paper because we consider only homogeneous turbu-
lence in which the mean velocity gradient is zero. We note that ensemble average is the same as

a)Email: yili@sheffield.ac.uk.
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spatial average for such flows. Therefore, the Reynolds stress has no fundamental difference from
the SGS stress when a non-negative filter is used for the latter.

To close the Reynolds stress tensor Ri j, one may include its transport equation as part of
the governing equations and model the unclosed terms. In homogeneous turbulence with no mean
velocity (⟨ui⟩ = 0), the equation for Ri j becomes

dRi j

dt
=


p
�
∂jui + ∂iu j

��
− 2ν



∂kui∂ku j

�
. (3)

The two terms on the right hand side are the slow pressure-strain-rate correlation and the viscous
dissipation, respectively. Various models have been proposed for the two terms (see, e.g., Ref. 3,
and the reference therein). Direct numerical simulations (DNS) and experiments in decaying homo-
geneous anisotropic turbulence have found that the initially anisotropic Ri j relaxes back to isotropy
during the decaying process. The models are required to reproduce the correct behaviours for Ri j

during this so-called return-to-isotropy process (RIP).
To describe the anisotropy of the Reynolds stress tensor, one may use the anisotropic tensor

bi j =
Ri j

Rkk
− 1

3
δi j . (4)

bi j may be characterized by its tensor invariants, which can be defined as

I2b =
1
2

bi jbj i, I3b =
1
3

bi jbjkbki, (5)

or

η = (I2b/3)1/2, ξ = (I3b/2)1/3. (6)

Realizability of Ri j implies that the possible values for ξ and η are limited in the so-called Lumley
triangle,3–6 as is illustrated in Fig. 1 (Note that using variables (I3b, I2b), one also obtain a triangular
area although the boundaries are not straight lines3). The right boundary η = ξ corresponds to
axisymmetric configurations in which bi j has one large positive eigenvalue and two equal negative
eigenvalues, whereas on the left boundary bi j has two equal positive eigenvalues and a negative
eigenvalue with larger magnitude. The former configuration has been termed “rod-like,” while
the latter “disk-like,”6 referring to the shapes of the tensor ellipsoids corresponding to the two
conditions, respectively.

During the RIP, the state of the Reynolds stress tensor changes over time. The changes are
represented by a trajectory on the (ξ,η) plane. Different initial conditions correspond to different
trajectories. Previous DNS and experimental data are summarized in, e.g., Refs. 3, 7, and 8. The
data show that the trajectories are curves rather than straight lines. The observation implies that the
pressure-strain-rate term is nonlinear in bi j. As a consequence, different nonlinear models have been
proposed to replace the classical linear Rotta model, as is shown in, e.g., Refs. 7–11. A detailed
summary and appraisal can be found in Refs. 3, 7, and 12. On the other hand, although the data

FIG. 1. Sketch of the Lumley triangle in the (ξ,η) plane.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  143.167.5.230 On: Mon, 17 Aug 2015 08:54:42



085104-3 Yi Li Phys. Fluids 27, 085104 (2015)

are sufficient to show the deviation from the linear relaxation, they are not conclusive regarding the
details of the trajectories. In particular, the data seem to suggest that the trajectories tend to evolve
towards the right boundary of the Lumley triangle (corresponding to the rod-like axisymmetric
state), before they relax towards the origin (corresponding to the isotropic state). However, the
universality of this trend is still in question because the available data cover only a small range of
initial states close to the rod-like state. It is not clear if the same tendency still exists if the initial
state is far from the rod-like state. As a matter of fact, some nonlinear models (e.g., Refs. 7 and 11)
predict that the trajectories would cross over from the left half of the phase plane (where ξ < 0) to
the right (ξ > 0) and approach the right boundary, whereas some other models predict a tendency
towards the left boundary of the Lumley triangle (corresponding to the disk-like axisymmetric
structure) when the initial state is on the left half of the phase plane.8 Currently, there are no data
available to either confirm or reject these predictions. One of the goals of this article is to provide
data to fill this gap.

To do so, we will need to simulate the RIP starting from initial conditions that have not been
looked into before. The technical challenge is to generate realistic initial turbulence field with
controlled anisotropic tensor bi j that is also divergence-free and homogeneous. Existing DNS has
used precursor simulations, in which mean strain is applied to a homogeneous turbulent field to
generate anisotropy.13,14 As mentioned above, the anisotropic states having been obtained mostly
cluster around the boundaries of the Lumley triangle. To achieve our goal, we make use of the
constrained multi-scale turn-over Lagrangian map (CMTLM) proposed recently in Ref. 15. In the
multi-scale turn-over Lagrangian map (MTLM)16,17 method, a synthetic field is generated by ad-
vecting fluid particles in a random Gaussian field recursively over a set of increasingly refined
meshes. The process gives rise to a highly non-Gaussian velocity field that reproduces very well
a whole range of statistics of real incompressible isotropic turbulence.15–18 CMTLM formulates
MTLM as an optimization problem with the Gaussian random input as the control and some given
velocity field as the target. As such, CMTLM can generate inhomogeneous synthetic incompress-
ible turbulence while retaining the realistic small scale statistics in MTLM. Thus, CMTLM provides
a viable tool for current study. Therefore, as part of the first goal of this paper, we generalize
the CMTLM method to produce synthetic incompressible turbulence with prescribed anisotropic
Reynolds stress. We then use the synthetic fields as initial conditions for the simulations of the
return-to-isotropy process.

As we will show below, the data show that the tendency towards the rod-like configuration is
indeed to large extent universal. This tendency is reminiscent of the same observation for the SGS
stress tensor. Let τdi j ≡ τi j − τkkδi j/3 be the deviatoric part of the SGS tensor. The invariants of τdi j
are denoted as

I2τ =
1
2
τdi jτ

d
ji, I3τ =

1
3
τdi jτ

d
jkτ

d
ki. (7)

Because the SGS stress is a random variable, it has a range of possible geometrical configurations.
Nevertheless, the joint probability density function (PDF) of I2τ and I3τ shows strong peak values
around the right boundary of the Lumley triangle, indicating that it is much more probable to
observe the rod-like axisymmetric state (see, e.g., Ref. 19 and below) for the SGS stress tensor too.

Given the universality of the observation, it is of interests to understand its dynamical mech-
anisms, and this is the second goal of this paper. To do so, we look into the dynamical equations
for the tensor invariants. To simplify the calculation, we first approximate the SGS stress tensor
with the nonlinear model.20–22 We then use DNS data to evaluate the contributions from nonlinear
self-interaction, pressure, SGS interactions, and viscous diffusions, separately. We use the transport
equation for the joint PDF for the invariants and the conditional statistics23,24 in the phase space
to illustrate the different behaviours of each contribution hence show that the driving mechanism
towards the structure is the nonlinear self-interaction term.

The paper is organized as follows. In Section II, we explain briefly the CMTLM method
and discuss some properties of the synthetic fields. In Section III, we present the DNS data and
the observation about the evolution towards the rod-like axisymmetric configuration. The physical
mechanism of the process is discussed in Section IV. Conclusions are drawn in Section V. In the
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appendices, we document the details of the CMTLM method as well as some of the coefficients in
the dynamical equations for the tensor invariants.

II. THE CMTLM SYNTHETIC VELOCITY FIELDS WITH PRESCRIBED REYNOLDS STRESS

We explain in this section how to generate the initial velocity fields with prescribed Reynolds
stress tensor using the CMTLM method.15 CMTLM is an extension of the MTLM,17 which maps a
Gaussian random velocity field to a realistic non-Gaussian synthetic turbulent field. The detail of the
map is given in Appendix A. Here, it suffices to denote the map byM and write

u =Mϕ, (8)

where u is the synthetic velocity field, and ϕ is the Gaussian random input. Both are three dimen-
sional vector fields with given energy spectrum Ep(k). The synthetic field u has been extensively
studied previously.15–18

Apparently, one obtains different u for different ϕ. In CMTLM, we choose suitable ϕ to obtain
a synthetic u that has additional features, including inhomogeneous mean flows etc.15 Such a ϕ is
found by solving a constrained optimization problem. In a generic case, the cost function measures
the difference between the MTLM synthetic field and a given target velocity field w(x) and is
defined as

Jgeneric(u) = 1
2
∥F (u − w)∥2

2. (9)

F is a filter which extracts the features in u(x) and w(x) that we would like to match. u is given by
Eq. (8). We take ϕ as the control of the optimization problem and aim at finding an optimal ϕ that
minimizes Jgeneric subject to the constraint Eq. (8).

To study the return-to-isotropy process, we need to produce a set of homogeneous turbulent ve-
locity fields with prescribed anisotropic Reynolds stress tensor. Let R0

i j be the prescribed Reynolds
stress tensor. Instead of using R0

i j as the target in the cost function, we use the corresponding
anisotropic tensor b0

i j, which is defined by R0
i j in the same way as in Eq. (4). Specifically, we define

the cost function for the synthetic field u as follows:

J(u) = 1
2
(2π)3b̄i j − b0

i j

2⟨ūkūk⟩2, (10)

where ūk is the filtered synthetic velocity field and b̄i j is the corresponding anisotropic tensor, i.e.,

b̄i j =
⟨ūiū j⟩
⟨ūkūk⟩ −

1
3
δi j . (11)

ūk is defined by ūk = Gc ∗ uk, where uk is the kth component of u(≡Mϕ) and Gc is the cutoff filter
with filter scale Lc. b̄i j is a functional of the synthetic field u. When J is small, the anisotropic
tensor bi j of the synthetic field u would be close to the prescribed b0

i j.
We have chosen to use b0

i j as the target because it is easier to enforce realizability conditions.
The factor (2π)3 in Eq. (10) is the volume of the periodic domain. We have also decided to match
b̄i j, instead of bi j, with b0

i j. Because the contributions to the Reynolds stress come mainly from the
very large scales, b̄i j is not much different from bi j. Therefore, optimizing b̄i j is practically the same
as optimizing bi j. On the other hand, as will be seen below, the adjoint variable will be non-zero
only for wave number less than π/Lc due to the filtering. Thus, the filtering has the advantage of
reducing the computational cost. Throughout this study, we use Lc = π/6.

To find the optimal ϕ that minimizes J, we use the adjoint-based method (see, e.g., Refs. 15
and 25). We introduce the adjoint variable ξ(x) and define the Lagrangian,

L(u,ξ ,ϕ) = J(u) +


ξ · (u −Mϕ)dx. (12)
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We thus find the adjoint equation,

ξi(x) = −2⟨ūkūk⟩

b̄i j − b0

i j


¯̄u j(x)

+ 2⟨ūkūk⟩ �b̄mn − b0
mn

�
b0
mn

¯̄ui(x). (13)

We also find the gradient of the cost function with respect to the control ϕ,

D J
Dϕ
= −M+ξ , (14)

whereM+ is the adjoint operator of the tangent operator ofM.M+ has the same expression as the
one in Ref. 15, which is also given in Appendix A. The functional derivative is understood in the
Gateaux sense.25

The optimization problem is solved from Eqs. (8), (13), and (14), using the steepest descent
method with back tracking.15,25,26 The solution provides the optimal control ϕ and the corre-
sponding optimal synthetic field u. Note that in our previous work,15 we have used the so-called
“discretization of the adjoint” formulation, where we derive the continuous versions of the adjoint
equation and gradient of the cost function, which are then discretized when they are solved numeri-
cally. Here, we have partially used the “adjoint of the discretization” formulation, as we describe in
Appendix A.

To illustrate the result of the above CMTLM system, Figs. 2–4 show the contours of the three
components of the velocity field on a two dimensional cut of such a CMTLM field (this field is used
as the initial condition for one of the samples in Case D below, shown with magenta left-pointing
triangles in Fig. 7—see Sec. III for more detail). The velocity field is synthesized on a 1283 mesh of
grids and has an anisotropic tensor with

b11 = 0.2647,b22 = 0.0067,b33 = −0.2714 (15)

and zero for other components. It is seen from the figures that, among others, the z velocity
component tends to have smaller values, consistent with the imposed Reynolds stress tensor.

The energy spectra of the three components are shown in Fig. 5. The low wavenumber
parts of the spectra show the expected differences: the z-component is the smallest whereas the
x-component is the largest. On the other hand, the difference decreases when wavenumber is
increased, and the three spectra almost agree with each other at the high wavenumber end, as
one would expect in real turbulence. We note that the CMTLM procedure (and the MTLM proce-
dure) takes a given three dimensional total energy spectrum as input. The componential spectra
for the velocity components are not imposed. The anisotropic energy distribution among different
components shown in Fig. 5 is generated by the dynamics embedded in the CMTLM procedure.

FIG. 2. The contour of the x-component of a CMTLM synthetic velocity field on a two dimensional cut.
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FIG. 3. Same as Fig. 2 but for the y-component.

III. EVOLUTION TOWARDS THE ROD-LIKE AXISYMMETRIC STRUCTURE:
OBSERVATIONS

In this section, we use the synthetic fields generated by the CMTLM method as the initial fields
to perform direct numerical simulations of decaying homogeneous turbulence. We report the results
regarding the tendency towards the rod-like axisymmetric configuration for the Reynolds stress
tensor and the SGS stress tensor.

Decaying turbulence in a periodic box [0,2π]3 is simulated by the pseudo-spectral method. In
total, nine different ensembles of data are generated, each with a different initial Reynolds stress
tensor. In each ensemble, about 20 realizations of time series of the three dimensional velocity
fields are generated. The statistics are averaged over space and then over all the realizations in
each ensemble, then the results from different ensembles are compared. In all nine but one cases,
1283 grids are used with viscosity ν = 0.0032, whereas 2563 grids are used in the remaining case
with viscosity ν = 0.0016. The viscosity has been chosen to make sure kmaxℓK > 1.5 in both cases,
where ℓK ≡ [ν3/ϵ(0)]1/4 is the Kolmogorov length scale based on the initial mean energy dissipation
ϵ(0) and kmax is the maximum resolved wavenumber. We will refer to the first eight cases Case

FIG. 4. Same as Fig. 2 but for the z-component.
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085104-7 Yi Li Phys. Fluids 27, 085104 (2015)

FIG. 5. The energy spectra for the three velocity components of the CMTLM synthetic velocity field shown in Figs. 2–4.
Red circles: x-component, blue squares: y-component, and green diamonds: z-component. The dashed line shows the
Kolmogorov −5/3 spectrum.

A through Case H and the last one (with 2563 grids), Case I. In all simulations, the two-step
Adam-Bashforth method is used to advance in time, with the starting step computed using a sec-
ond order Runge-Kutta scheme. The Courant number based on the maximum velocity is chosen
as 0.15.

Fig. 6 shows the decay of the turbulent kinetic energy k(t) and the mean energy dissipation
ϵ(t), and the skewness factor of the longitudinal velocity gradient S, where TL ≈ 6.4 is the initial
large eddy turnover time scale. The figure reproduces the usual observations in decaying turbulence.
Notably, because the CMTLM field produces realistic small scale statistics, there is only a very
short transition period. The skewness S reaches its stationary value S ≈ −0.5 almost right after
the simulations have been started. The dissipation rate peaks at t = 0, markedly different from
simulations with random Gaussian initial conditions. In the latter cases, the dissipation usually only
reaches peak values after about an eddy turnover time in which small scale structures are developed.
Therefore, simulations using CMTLM fields as initial conditions capture the decaying process more
accurately, especially its early phase.

Next, we calculate the Reynolds stresses and the corresponding anisotropic tensor bi j for all
nine ensembles. We also calculate the SGS stress tensor τdi j in Case I (with resolution 2563) and
compare its behaviours with those of the Reynolds stress. The Gaussian filter with filter scale ∆ is
used to calculate the SGS stress tensor.

FIG. 6. The decay of the turbulent kinetic energy k(t) and mean energy dissipation ϵ(t) (left axis), and the skewness factor
of the longitudinal velocity gradient S (right axis) in Case I. Red circles: k(t)/k(0), blue squares: ϵ(t)/ϵ(0), and green
diamonds: S.
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FIG. 7. The relaxation of the anisotropic tensor bi j shown in the Lumley triangle on the (ξ,η) phase plane, from t/TL = 0
to approximately 0.8 for all nine cases. Case A: red circles, Case B: blue squares, Case C: green diamonds, Case D: magenta
left-pointing triangles, Case E: black crosses, Case F: red upward-pointing triangles, Case G: blue gradients, Case H: magenta
right-pointing triangles, and Case I: green pluses.

We first look at the results for (ξ, η). The trajectories of the phase point are shown in Fig. 7
for the nine sets of initial conditions. First, we observe that, thanks to the new CMTLM technique,
we are able to generate initial fields that cover a wider area in the Lumley triangle. Some of them
are far from the left and right boundaries where previous data have been obtained. Second, most
of the trajectories show a clear tendency to evolve towards the right boundary, corresponding to
the rod-like axisymmetric state. In particular, three trajectories (those shown with left triangles,
right triangles, and pluses) originate from the negative half plane, cross over to the right half,
and converge to the right boundary. Although no clear trend is observed for the two trajectories
originated near the disk-like axisymmetric state (marked by red upward triangles and black crosses),
the results nevertheless clearly demonstrate that there is a universal trend towards the rod-like
axisymmetric configuration over a majority part of the triangle.

A more quantitative way to characterize the evolution is to use the shape factor27 s∗ ≡ (ξ/η)3.
It can be shown that −1 ≤ s∗ ≤ 1 and that s∗ = 1 for a rod-like axisymmetric state. Thus, we expect
that the value of s∗ over time will tend to 1, according to the previous figure. Fig. 8 shows s∗ as
a function of time for the cases shown in Fig. 7. We can see that, in almost all cases, s∗ increases
towards s∗ = 1 as time increases. For the two initial conditions close to the disk-like axisymmetric
state (shown with red upward triangles and black crosses), Fig. 8 shows that s∗ also tends to
increase, the amount of change being small notwithstanding. Thus, they also tend to move towards
the rod-like axisymmetric state, even though it is not obvious from Fig. 7.

FIG. 8. The evolution of the shape factor s∗ for the anisotropic Reynolds stress in all nine cases.
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FIG. 9. The evolution of the invariants I3b and I2b for the anisotropic Reynolds stress tensor bi j. The black solid lines
represent the left and right boundaries of the Lumley triangle. The black dotted lines corresponds to the trajectories of “linear
relaxation” (see text for more detail).

In the literature of SGS modelling, it is more common to use the invariants I2τ and I3τ to
characterize the SGS stress τdi j. Therefore, we also look into the relaxation of the Reynolds stress
using I2b and I3b, as is shown in Fig. 9. Because the boundaries of the Lumley triangle are not
straight lines in variables I3b and I2b, it is not obvious as to what the trajectories represent. To
alleviate this difficulty, we use a linear relaxation process as a reference. If bi j decays linearly, i.e., if

dbi j

dt
= −αbi j (16)

for some constant α, then I2b = CI2/3
3b for some constant C. We plot with black dotted lines in Fig. 9

this relation for a few values of C. The comparison with these lines now provides clear indication
that the trajectories of the phase points bend towards the rod-like axisymmetric configurations,
consistent with the results shown in Fig. 7. This linear reference case is also used below when we
discuss the dynamics of the process.

The results shown in Figs. 7-9 provide new data for the modelling of the Reynolds stress tensor.
We make a few remarks on this aspect briefly, even though it is not our goal to assess or develop
models in this paper. First, the results confirm the prediction of some nonlinear pressure-strain-rate
correlation models, that the trajectories for (ξ,η) may cross over from the left half plane to the
right.7,10,11 Second, we do not find indication in our results that there is a tendency towards the
disk-like axisymmetric structure as suggested in some models.8

We now look into the SGS stress tensor τdi j. To compare with the results for the Reynolds stress,
we first calculated (ξ,η) for the averaged SGS stress tensor. Fig. 10 shows the trajectories for the
Reynolds stress tensor with green pluses and the averaged SGS stress tensor with blue squares. Also
plotted is the same statistics for the nonlinear model of the SGS stress (also known as the Clark
model, see Sec. IV for more discussion),21 defined as

Ti j =
∆2

12

(
∂kui∂ku j −

1
3
δi j∂kum∂kum

)
. (17)

All trajectories in Fig. 10 display the same trend, namely crossing over to the right half of the phase
plane and approaching the rod-like axisymmetric configuration first before relaxing towards the
origin. The results for the shape factor, shown in Fig. 11, show consistent behavior. The tendency
can also be observed for the joint PDF of the invariants I3τ and I2τ of τi j (cf. Eq. (7)) and the
PDF of the corresponding shape factor s∗τ ≡ 33/2I3τ/2I3/2

2τ . The latter has been extensively studied in,
e.g., Ref. 19. We thus present only a few results for the former to illustrate the behaviors. Fig. 12
shows the joint PDF calculated at several times t/TL ≈ 0.7,1.2,2.1. The main observation is that
high value contours are closely aligned with the right boundary of the Lumley triangle at all times,
showing that there is a strong preference for the rod-like axisymmetric state. If we compare the
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FIG. 10. Relaxation of the mean SGS stress (⟨τd
i j⟩, blue squares) and the averaged nonlinear model (⟨Ti j⟩, red triangles) in

Case I with 2563 resolution, compared with the results for the anisotropic Reynolds stress (bi j, green pluses). ∆= 64δx.

contours at different times, we may see that the contours shrink towards the right boundary as time
increases. However, the difference is not large enough to make solid conclusion.

Similar results are observed for the invariants of the nonlinear model Ti j, defined as

I2T =
1
2

Ti jTj i, I3T =
1
3

Ti jTjkTki. (18)

Fig. 13 shows the joint PDF of I2T and I3T , which displays the same trend as τdi j, showing a strong
preference for the rod-like axisymmetric configuration.

To summarize, the results presented in this section clearly show that the tendency towards the
rod-like axisymmetric configuration is genuine and universal to large extent for both the Reynolds
stress, the SGS stress, as well as the nonlinear model. The universal behavior suggests that it is a
consequence of some fundamental physical processes in turbulence.

IV. EVOLUTION TOWARDS THE ROD-LIKE AXISYMMETRIC STRUCTURE: DYNAMICS

In this section, we look into the dynamical processes that underline the behavior observed in
Sec. III. Given that the Reynolds stress can be considered a limiting case for the SGS stress, we
focus on the latter. Our objective is to derive the dynamical equations for the invariants of the SGS
stresses and evaluate the contributions of the involved physical processes. However, to simplify

FIG. 11. Same as Fig. 10 but for the evolution of the shape factor s∗.
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FIG. 12. The joint PDF of the invariants I3τ and I2τ of τd
i j with ∆= 16δx. The values for the four groups of contours are,

from bottom to top, 10, 1, 0.1, and 0.01, respectively. Red solid lines: t/TL ≈ 0.7, blue dashed lines: t/TL ≈ 1.2, and green
dotted lines: t/TL ≈ 2.1.

calculation, we will use the nonlinear model Ti j to approximate the SGS stresses, i.e., we will look
into the dynamical equations for invariants I2T and I3T instead of those for I2τ and I3τ. As having
been shown in Sec. III, the nonlinear model displays the same behavior as the true SGS stress
regarding the preference of the rod-like structure. Also, it has been shown22 that τi j can be repre-
sented by a so-called multi-scale gradient expansion, in which each term represents the contribution
from the motion in a given bandwidth. It is proven that the expansion is convergent, and the first
truncation coincides with the nonlinear model Ti j given in Eq. (17). Besides, previous studies have
shown that the geometrical structure of the nonlinear model is very similar to real SGS stress.19,28

Therefore, it is expected that the results obtained from the nonlinear model provide useful insight
into the behaviours of the real SGS stress. The advantage of using the nonlinear model is that the
algebra can be simplified and the interpretation of the results can be related to the fundamental
nonlinear self-interaction term of the NS equations.

The equations for I2T and I3T may be derived from the equation for the filtered velocity gradient
Ai j, which reads

Dt
Ai j + Aik

Ak j = −∂2
i jp + ∂2

jk(−τik) + ν∇2Ai j, (19)

FIG. 13. The joint PDF of I3T and I2T . For filter scale ∆= 16δx at t/TL ≈ 0.7. The values of the contours are, from bottom
to top, 1, 10−1, 10−2, and 10−3.
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where Dt ≡ ∂t + u j∂j denotes the material derivative based on the filtered velocity field. Using Πi j

to denote the anisotropic part of the pressure Hessian and Yi j to denote the anisotropic part of the
subgrid-scale stress Hessian,

Πi j = ∂2
i jp −

1
3
δi j∇2p, (20)

Yi j = ∂2
jk(−τik) −

1
3
δi j∂

2
mk(−τmk). (21)

The equations for I2T and I3T can be written as

Dt I3T = N3 − C3i jΠi j + (C3i jY s
i j + D3iεik jYjk)

+ ν(C3i j∇2si j + D3i∇2ωi), (22)
Dt I2T = N2 − C2i jΠi j + (C2i jY s

i j + D2iεik jYjk)
+ ν(C2i j∇2si j + D2i∇2ωi). (23)

The equations have been normalized by suitable powers of ⟨Ti jTi j⟩1/2 and the filter scale ∆. In the
equations, N2 and N3 are the contributions due to the nonlinear self-interaction term in Eq. (19).
Explicitly, we have

N3 = −3ω2I2sI3s −
2
3

I2
2sI3s + 2I3sV 2

− 13
24

I3sω4 +
1

18
PI2

2s +
17
36

Pω2I2s

− 1
6

PV 2 − 1
96

Pω4, (24)

N2 = −2I2sI3s −
7
2
ω2I3s +

5
6

PI2s +
1
8

Pω2. (25)

In other words, N3 and N2 are given in terms of the invariants of the strain rate tensor si j and the
vorticity ωi, including ω2 ≡ ωiωi, I2s ≡ si js j i/2, I3s ≡ si js jkski/3, P ≡ ωisi jω j, and V 2 ≡ ViVi with
Vi ≡ si jω j.

The second terms on the right hand sides of Eqs. (22) and (23) represent the effects of the
anisotropic pressure Hessian Πi j. The third terms are the contributions from the anisotropic SGS
stress Hessian, where Y s

i j represents the symmetric part of Yi j. The last terms are the viscous contri-
butions. C2i j, C3i j, D2i, and D3i are tensor functions of si j and ωi. Their expressions are given in
Appendix B.

The dynamics of (I3T , I2T) is manifested in the evolution of the joint PDF P(I3T , I2T). The
equation of P(I3T , I2T) is given by3

∂P
∂t
= − ∂

∂I3T
⟨Dt I3T | I2T , I3T⟩ P

− ∂

∂I2T
⟨Dt I2T | I2T , I3T⟩ P. (26)

Using Eqs. (22) and (23), we see that the evolution of P(I3T , I2T) are controlled by four vector fields,

Fn = (⟨N3|I3T , I2T⟩, ⟨N2|I3T , I2T⟩), (27)
Fp = −(⟨C3i jΠi j |I3T , I2T⟩,

⟨C2i jΠi j |I3T , I2T⟩), (28)
Fs = (⟨C3i jY s

i j + D3iεik jYjk |I3T , I2T⟩,
⟨C2i jY s

i j + D2iεik jYjk |I3T , I2T⟩), (29)

Fv = (ν⟨C3i j∇2si j + D3i∇2ωi |I3T , I2T⟩,
ν⟨C2i j∇2si j + D2i∇2ωi |I3T , I2T⟩), (30)

which are defined in terms of the conditional averages at given I3T and I2T . We will call these
vectors the probability flow vectors. The stream lines of these vector fields define the so-called
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FIG. 14. The probability flow vector field Fn for filter scale ∆= 16δx. Red solid lines: the joint PDF of (I3T, I2T ). Dotted
lines: linear relaxation.

conditional trajectories,23 which show the most possible dynamical evolution of a given configura-
tion (I3T , I2T). In the following, we will present the results for these vector fields, calculated from
the 2563 DNS data (i.e., Case I above). The majority results are for filter scale ∆ = 16δx, where
δx ≡ π/128 is the grid size.

The contribution from the nonlinear self-interaction term is shown in Fig. 14. The figure shows
that the nonlinear term tends to push the phase point from the left half of the plane to the right
and then away from the origin along the right boundary (the rod-like axisymmetric state). Its effects
are much stronger for I3T > 0 than for I3T < 0. The overall effects are consistent with the known
properties of the nonlinear term. For example, it has been observed that the nonlinear term has
similar effects for the invariants of the strain rate tensor si j previously.23,24

The probability flow vectors for the pressure Hessian contribution, Fp, are plotted in Fig. 15.
It is interesting to see that, overall, the pressure tends to oppose the nonlinear term. This trend is
especially strong for I3T > 0, where it acts to reduce the anisotropy of the SGS stress tensor, with
the vectors pointing to the origin. When I3T < 0, it tends to enhance the disk-like axisymmetric
structure. These observations are consistent with previous results reported in, e.g., Ref. 18, where
the effects of the pressure Hessian are studied in the phase space of the invariants of the velocity
gradient tensor.

Recall that, for the Reynolds stress tensor, the tendency towards the rod-like axisymmetric
state is a consequence of the pressure-strain-rate correlation. Therefore, we plot in Fig. 16 the

FIG. 15. Same as Fig. 14, but for the probability flow vector field Fp.
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FIG. 16. Same as Fig. 14, but for the probability flow vector field Fn+Fp.

contributions from the sum of the nonlinear term and the pressure term. Apart from some statistical
scattering on the top-left part, the combined vector field points to the positive I3T direction in most
region of the Lumley triangle. It becomes stronger near the right boundary, where it tends to point
away from the origin. Therefore, in combination, the two terms would move the phase point towards
the rod-like axisymmetric state. The result is consistent with the results shown previously, as in
Figs. 7, 9, and 10, where the trajectories are found to be attracted to the right boundary before
they return towards the origin. However, Figs. 14, and 15 show that the driver of the process is the
nonlinear self-interaction term, whereas the pressure mainly acts to counter its effects.

The SGS and viscous contributions are given in Figs. 17 and 18. The SGS contribution moves
the phase point from the positive half plane where I3T > 0 to the negative half plane. In particular,
it enhances the probability for the disk-like structure and promotes stronger anisotropy by pushing
the stress tensor away from the origin along the left boundary of the triangle. The latter effect
differentiates it from the pressure Hessian term. The viscous diffusion term has similar effects as the
SGS stress; however, its magnitude is much smaller. Overall, the effects of these two contributions
are to balance the effects of the nonlinear self-interaction term.

The same behaviors are observed at different filter scales. As an illustration, we show the result
for the sum of the nonlinear term and the pressure term in Fig. 19, for ∆ = 32δx, which clearly
displays same trends as shown in Fig. 16. For other contributions, the same behaviours are also
observed at this filter scale, as well as ∆ = 64δx.

FIG. 17. The probability flow vector field Fs for filter scale ∆= 16δx.
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FIG. 18. The probability flow vector field Fv for filter scale ∆= 16δx.

FIG. 19. The probability flow vector field Fn+Fp for filter scale ∆= 32δx.

V. CONCLUSIONS

In this paper, we have looked into the tendency for turbulent stresses to evolve towards
the rod-like axisymmetric configuration, where the tensors have two negative, equal eigenvalues,
and a positive one. Such a tendency has been conclusively observed for the subgrid-scale stress
tensor. The same has also been suggested for the Reynolds stress tensor. However, because the
available data are limited, it has not been generally accepted. The first contribution of the pa-
per is to confirm that the observation for the Reynolds stress tensor is universal. The finding is
made possible by a new method to generate synthetic anisotropic turbulent fields, the so-called
constrained multi-turnover Lagrangian map we have developed recently. Using the method, we
generate realistic initial turbulent velocity fields with any prescribed anisotropic Reynolds stress
tensor not achievable before, hence verifying the universality of the tendency with direct numerical
simulations.

We then look into the dynamical mechanisms of the tendency using direct numerical simu-
lations data. It is shown that the trend is essentially due to the nonlinear self-interaction process
of the Navier-Stokes equations, which tends to produce the rod-like axisymmetric state with ever
stronger anisotropy. The non-local pressure Hessian tends to reduce the anisotropy of the tensor
when it is already in the rod-like structure. Otherwise, it generally tends to push the tensor towards
disk-like axisymmetric state. These observations highlight the different roles of the pressure and
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the nonlinear interaction term thus provide additional insights into the common observation that the
return-to-isotropy process is due to the pressure-strain-rate correlation.

The SGS contribution also tends to counter the effects of the nonlinear term, but in a different
way. In particular, the SGS contribution favors disk-like structures, i.e., those with two large eigen-
values. It also tends to increase the degree of anisotropy for the disk-like axisymmetric structures.
The viscous contribution shows similar trends as the SGS contribution, but with much smaller
magnitudes.

To conclude, we note that the constrained multi-turnover Lagrangian map is an essential tool
for this study. One can envision many other applications for the method. Our investigation into
the evolution of the turbulent stresses provides new insights on the dynamics towards the rod-like
axisymmetric state. It is our hope that the results will be useful for refining current models for the
turbulent stresses.

APPENDIX A: THE OPTIMALITY SYSTEM OF THE CONSTRAINED MULTI-TURNOVER
LAGRANGIAN MAP

1. The continuous versions of the adjoint operators

The MTLM takes a random velocity field ϕ(x) as the input and generates an isotropic synthetic
velocity field with a prescribed energy spectrum Ep(k). As a first step of the mapping, the diver-
gence of ϕ(x) is removed by projection, giving u10(x) ≡ Pϕ(x), where P is the usual projection
operator. Letting v̂(k) be the Fourier transform of a velocity field v(x), P is defined as

Pv̂(k) = [1 − k−2k ⊗ k]v̂(k), (A1)

with k = |k| and k being the wavenumber. A sequence of operations are then applied to u10. The
operations are defined at a hierarchy of M length scales ℓn = 2−nL (n = 1,2, . . . ,M), where L is the
integral length scale. Each scale ℓn corresponds to one iteration of the operations. At each iteration,
the velocity field generated from the previous iteration is used as the input. As a consequence, we
generate M + 1 velocity fields from ϕ after M iterations: u10, u20, . . . ,uM0, and u, where u is the
final MTLM synthetic field. Velocity field un0 is the output of the (n − 1)th iteration and the input
for the nth iteration.

At the nth iteration, we start with un0 and the following operators are applied: the advection
operator, the projection operator, and the rescaling operator. The procedure is as follows:

1. un0 is low-pass filtered to produce un1 ≡ Gnun0, where Gn represents the filtering operation
with length scale ℓn. The high wavenumber components of un0 are kept unchanged.

2. Advection operator An and the projection operator P are then applied to un1 mn times, giving
velocity field un2, i.e., un2 ≡ (PA)mnun1. An is the advection operator with advection time tn,
defined as follows for a generic velocity field v(x):

Anv(x) =


W (x − y − v(y)tn)v(y)dy, (A2)

where W is a weighting function.16 The advection time tn and mn are specified below. An is
called the advection operator because Anv(x) represents the solution of the Riemann equation
∂tv + v · ∇v = 0 when the weight W is taken as the Dirac-delta function.

3. un2 is rescaled, giving un3 = Rnun2, where Rn is the rescaling operator associated with un2,
defined by

Rnûn2(k) =


Ep(k)
En(k)

1/2

ûn2(k), (A3)

where ûn2(k) is the Fourier transform of un2 and En(k) its energy spectrum.
4. un3 is merged with the high wavenumber components of un0 to generate the final field of

current iteration, u(n+1)0, leading to

u(n+1)0 = un3 + Gc
nun0,

where Gc
n = 1 − Gn.
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Combining the operations together, we obtain the final MTLM velocity field u =Mϕ (i.e.,
Eq. (8)), with

M =
M
n=1

[Rn(PAn)mnGn + Gc
n]P . (A4)

The product is ordered such that from left to right n decreases from M to 1. The advection time
scale tn in operatorAn is given by

tn =
ℓn
u′n

,

where

u′n =
(

2
3

 kc,n

0
Ep(k)dk

)1/2

,

with kc,n = π/ℓn being the cutoff wavenumber corresponding to ℓn. On the other hand, the param-
eter mn is given by

mn =
ℓ2/3
n ϵ−1/3

tn
, (A5)

where ϵ is the energy dissipation rate corresponding to the prescribed energy spectrum. For more
details, see Refs. 15 and 17. In the numerical implementation of the MTLM map, the operations are
applied recursively over a set of finer and finer grids defined by the length scales. In order to eval-
uate the weight function in the advection map An, we need to track the movement of Lagrangian
fluid particles, hence the name “Lagrangian map.”

In the CMTLM method, we solve an optimization problem to find the ϕ that minimizes the
difference between u and some target function. For present study, we solve the state equation given
by Eq. (8) and the adjoint equation given by Eq. (13). We also need the gradient of the cost function
to perform steepest descent iterations. The gradient is given by15

D J
Dϕ
=

δL
δϕ

�����u,ξ
= −M+ξ , (A6)

where

M+ = P
M
n=1

(Bn + Gc
n) = P

M
i=1

Gc
i−1

M
n=i

Bn (A7)

and

Bn = GnDA+
n DR+

n . (A8)

DA+
n is the adjoint of the tangent operator of the composite operator (PAn)mn applied to un1 and
DR+

n is the adjoint of the tangent operator of the rescaling operator Rn applied to un2. Note that, for
simplicity, we sometimes speak of the adjoint of an nonlinear operator, even though in this case, it is
actually the adjoint of the tangent operator of the nonlinear operator.

For completeness, we give below the expressions of the above adjoint operators for generic
velocity fields. We use Rv to denote the rescaling operator applied to a generic velocity field v, i.e.,

Rvv̂(k) =


Ep(k)
Ev(k)

1/2

v̂(k), (A9)

where Ev(k) is the energy spectrum of v(x). UsingDR+
v to denote the adjoint of Rv, the operation of

DR+
v on a test function η(x) is given by15

DR+
v η̂(k) = Rvη̂(k) − Ep(k)1/2

Ev(k)3/2 ζvη(k)v̂(k), (A10)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  143.167.5.230 On: Mon, 17 Aug 2015 08:54:42



085104-18 Yi Li Phys. Fluids 27, 085104 (2015)

where η̂ is the Fourier transform of η and ζvη(k) is the co-spectrum between v and η, defined as

ζvη(k) = 1
2


Sk

η̂∗ · v̂dS. (A11)

The integration is taken over the surface Sk = {k : |k| = k} in the Fourier space and the asterisk
denotes complex conjugate. GivenDR+

v ,DR+
n is found by simply replacing v with un2.

As forDA+
n , we may write

DA+
n = DA+

n0 D
A+
n1 ...D

A+
n(mn−1), (A12)

where DA+
ni is the adjoint of PAn when the latter is applied to velocity field (PAn)iun1. To find the

expression for DA+
ni , we need only to consider DA+

v , namely the adjoint of PA when it is applied to
a generic velocity field v. The expression for DA+

v acting on a test function η(x) is given in Ref. 15
as follows:

DA+
v η(x) =


dyW (h)Pη(y)

+


dyW (h)[∇yPη(y)] · v(x)t, (A13)

in which h ≡ y − x − v(x)t and t is the advection time parameter for the advection operator A. ∇y

denotes the gradient operator with y as the variables.

2. The adjoint of the discretized advection operator

Equation (A13) gives the continuous version of DA+
v , which is the adjoint of the continuous

version of the composite operator PA applied to velocity field v. In the numerical implementation,
one will have to discretize DA+

v . This method is an example of the so-called “differentiate-then-
discretize” method,25 which is used in Ref. 15. Another possible way is to use the “discretize-then-
differentiate” method, where one starts with the discretized version of PA and then derives the
adjoint of the discretized operator.25 It turns out that treating the advection operator A with the
latter method provides better convergence in the present study. We thus derive below the adjoint of
the discretized advection operator, which has not been obtained before.

Note that in the continuous version, we have combined P withA. However, it is not convenient
to do so in the discretized version, because P and A will have to be implemented, respectively, in
the Fourier and the physical spaces. Therefore, for the discretized version, we will derive the adjoint
for A only, which we will call T A+

v . It is easy to show that the adjoint of the discretized PA is the
product T A+

v P. Therefore, we can easily obtain the discretized equivalence toDA+
v .

We assume A is applied to velocity field v(x) and we let va = Av. The velocity fields are
discretized on a set of grid points x(i), i = 1,2, . . . ,N , with N being the number of grid points. Let
v(i)a and v(i) be the velocities on grid point x(i). We will only consider the weight function that is
implemented numerically in our studies,

W (x) = H(|x|−1 − d−1
c )

|x| , (A14)

where dc is a cutoff length and H(·) is the Heaviside function. We introduce notations

h(i j) = x(i) − x( j) − v( j)t (A15)

and

wi j = W (h(i j)) = H(|h(i j)|−1 − d−1
c )

|h(i j)| . (A16)
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Letting si = (N
j=1 wi j)−1, where the summation is taken over all the grid points, we have the

following relation:

v(i)a = si
N
j=1

wi jv( j), (A17)

which defines the discretized version of the advection operator A. If we order v( j) into a column
vector with x components first and then y and z components, then the operator is a 3 × 3 diagonal
block matrix with three identical N × N matrices on the diagonal. The (i, j) entry of this N × N
matrix is siwi j.

The tangent operator ofA is defined by the differential of v(i)
a . Using Eq. (A17), we obtain

δv(i)a = si
N
j=1


t(v( j) − v(i)a )w3

i jh
(i j) · δv( j)

+ si
N
j=1

wi jδv( j). (A18)

The tangent operator is the coefficient matrix for δv( j). The adjoint operator T A+
v is simply the

transpose of the tangent operator. To write down the expression for T A+
v , we consider a test function

η(x). Let ηa = T A+
v η, and η(i) and η(i)

a be the values of the two functions at x(i), respectively. Then,
from Eq. (A18), we find that

η( j)
a = t

N
i=1

siw3
i jh

(i j)(v( j) − v(i)a ) · η(i)

+

N
i=1

siwi jη
(i), (A19)

which defines the adjoint of the discretized advection operator. For given η(i), η( j)
a is evaluated

similarly to the discretized advection operator, i.e., via Lagrangian particle tracking (cf. Ref. 17).
In this paper, Eq. (A19) is used whenever the adjoint of the advection operator needs to be

evaluated. This method is different from the one in our previous study reported in Ref. 15, where the
continuous version given in Eq. (A13) is used.

APPENDIX B: EXPRESSIONS FOR THE COEFFICIENTS IN THE EQUATIONS
FOR I2T AND I3T

The expressions for the coefficients are given as follows:

C2i j = f1si j − 2Viω j, (B1)
D2i = f2ωi − 2si jVj, (B2)
C3i j = f3si j + 4 f4s2

i j + f4ωiω j + f5Viω j, (B3)

D3i = f6ωi + 2 f4Vi + f5si jVj, (B4)

where Vi = si jω j and

f1 =
7
6
ω2 +

2
3

I2s, f2 =
ω2

12
+

7
3

I2s, (B5)

f3 =
11
72

ω4 − 2
9

I2
2s +

11
9

I2sω2 − 2
3

V 2, (B6)

f4 =
I3s

2
+

P
8
, f5 = −

4
3

I2s −
ω2

3
, (B7)

f6 =
11
9

I2
2s +

11
18

I2sω2 − V 2

3
− ω4

144
. (B8)
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