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Abstract We analyze the tidal forces produced in the space-
time of Reissner-Nordström black holes. We point out that
the radial component of the tidal force changes sign just out-
side the event horizon if the charge-to-mass ratio is close
to 1 unlike in Schwarzschild spacetime of uncharged black
holes, and that the angular component changes sign between
the outer and inner horizons. We solve the geodesic devia-
tion equations for radially falling bodies towards the charged
black hole. We find, for example, that the radial component
of the geodesic deviation vector starts decreasing inside the
event horizon unlike in the Schwarzschild case.

1 Introduction

Black holes are objects of great fascination for the scientific
community as well as for the general public, especially be-
cause of their remarkable physical properties. Schwarzschild
(uncharged) black holes – the simplest case – have been
extensively investigated over the years. However, less at-
tention has been given to Reissner-Nordström (electrically
charged) and Kerr (rotating) black holes. The importance of
studying these more complex black holes lies in the fact that
they present a new set of phenomena that are not present in
Schwarzschild spacetimes. Examples are the Penrose pro-
cess [1], superradiance [2], and interconversion between spin
1 and 2 fields [3, 5], as well as electromagnetic helicity-
reversing processes [4]. Reissner-Nordström black holes are
of special interest because they allow one to analyze extreme
spacetime configurations with spherical symmetry. For ex-
ample, it has recently been found that extreme Reissner-
Nordström black holes absorb and scatter gravitational and
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electromagnetic waves equally [6, 7]. This equality is a con-
sequence of the supersymmetry that relates photons and gravi-
tons in the extreme Reissner-Nordström spacetime [8].

In this paper we focus on Reissner-Nordström black holes,
which are spherically symmetric, have non-zero electric charge
but no angular momentum. They are exact solutions of the
Einstein-Maxwell equations [9], and in the case of vanish-
ing electric charge, they reduce to the Schwarzschild black
holes.

It is well known that a body falling towards the event
horizon of a static uncharged black hole experiences stretch-
ing in the radial direction and compression in the angular
directions [10–14]. However, whether a body may experi-
ence stretching or compression in either direction (radial or
angular) in Reissner-Nordström spacetime depends on the
charge-to-mass ratio of the black hole and where the body is
located (see, e.g. Ref. [15]). At certain points of Reissner-
Nordström spacetimes, the tidal forces in the radial or an-
gular direction change their sign unlike in Schwarzschild
spacetime. In this paper we describe the tidal forces in Reissner-
Nordström spacetime in detail. We then solve the geodesic
deviation equations to analyze the changes in size of a test
body consisting of neutral dust particles infalling radially
towards the Reissner-Nordström black hole. We also point
out that the tidal forces can be understood within Newtonian
Mechanics if an extra force coming from General Relativ-
ity is added, while the geodesic deviation needs to be an-
alyzed using full General Relativity. The remainder of this
paper is organized as follows. In Sec. 2 we briefly review
relevant facts about Reissner-Nordström black holes. We an-
alyze geodesics in Reissner-Nordström spacetime in Sec. 3
and study tidal forces for charged static black holes in Sec. 4.
In Sec. 5 we obtain the solutions of the geodesic deviation
equations. Then we present our conclusion in Sec. 6. We use
the metric signature (+,−,−,−) and set the speed of light c
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and Newtonian gravitational constant G to 1 throughout this
paper.

2 Reissner-Nordström Black Holes

The line element of a static charged black hole is given by [9]

ds2 = gµν dxµ dxν

= f (r)dt2 − f (r)−1dr2 − r2(dθ 2 + sin2 θdφ 2),

(1)

with

f (r) = 1− 2M

r
+

q2

r2 , (2)

where M and q are the mass and charge (in gaussian units)
of the black hole, respectively.

There are three possible configurations (with q 6= 0) for
the Reissner-Nordström spacetime:
(i) For q2/M2 < 1, we have a Reissner-Nordström black hole
with two horizons.
(ii) For q2/M2 = 1, we have an extremely charged Reissner-
Nordström black hole, with the event horizon located at r+=

r− = M.
(iii) For q2/M2 > 1, we have a naked singularity. Here we
will only consider the cases in which q2/M2 ≤ 1 (black
hole spacetimes). (Naked singularities do not occur in na-
ture if the cosmic censor conjecture [16] is true.) The radial
coordinates of the horizons, i.e. the zero(s) of the function
f (r), are

r+ = M+
√

M2 −q2, (3)

r− = M−
√

M2 −q2. (4)

Eq. (3) gives the location of the external horizon, or the
event horizon, of the black hole and Eq. (4) gives the lo-
cation of the internal horizon, or the Cauchy horizon, of the
black hole [17].

3 Radial Geodesics in Reissner-Nordström Spacetimes

We consider a radial geodesic motion in spherically sym-
metric spacetimes with line element (1). By letting ds = dτ

in Eq. (1) we obtain [18]

f (r)ṫ2 − f (r)−1ṙ2 = 1, (5)

where the dot represents the differentiation with respect to
the proper time τ . We have let θ̇ = φ̇ = 0 because the motion
is radial by assumption. As is well known, E = f (r)ṫ is con-
served and is interpreted as the mechanical energy per unit
mass of the particle. Substituting this equation into Eq. (5),
we obtain

ṙ2

2
=

E2 − f (r)

2
. (6)

For the radial infall of a test particle from rest at position b,
we obtain E =

√
f (r = b) from Eq. (6) [19].

By defining the “Newtonian radial acceleration" [20] as

A(R) ≡ r̈, (7)

we find from Eq. (6) that

A(R) =− f ′(r)
2

, (8)

where the prime denotes the differentiation with respect to
the radial coordinate r. For Reissner-Nordström spacetime
this becomes

A(R) =−M

r2 +
q2

r3 . (9)

This gives us the “Newtonian radial acceleration" that Reissner-
Nordström black hole “exerts” on a neutral freely falling
massive test body.

The term q2/r3 in Eq. (9) represents a purely relativistic
effect. It has been analyzed in the literature (see Ref. [21]),
and has been a theme of discussion (see Refs. [22] and [23]).
It is interesting to note that the test particle falling freely
from rest at r = b > r+ (for q 6= 0) would bounce back at
Rstop. The radius Rstop can readily be found as a root of E2−
f (r) as

Rstop =
bq2

2Mb−q2 , (10)

where we recall that b is the initial position of test particle
(starting from rest). The radius Rstop is always located in-
side the internal (Cauchy) horizon. In the limit b → ∞, one
finds Rstop → q2/2M. In the maximal analytic extension of
Reissner-Nordström spacetime the particle, after bouncing
back at Rstop, would emerge in a different asymptotically
flat region of the spacetime [11]. For more details about
the physics of freely falling neutral particles in Reissner-
Nordström black holes, we refer the reader to Refs. [10]
and [11]. We note in passing that the Cauchy horizon is
known to be unstable [24]. Thus, the part of the spacetime
beyond the Cauchy horizon in the maximal analytic exten-
sion of Reissner-Nordström spacetime is unphysical.

4 Tidal Forces in Reissner-Nordström Spacetime on a

Neutral Body in Radial Free Fall

Now let us turn our attention to the tidal forces acting in
Reissner-Nordström spacetime. As is well known [10, 11],
the equation for the spacelike components of the geodesic
deviation vector ηµ that describes the distance between two
infinitesimally close particles in free fall is given by

D2ηµ

Dτ2 −R
µ
σνρ vσ vν ηρ = 0, (11)



3

where vν is the unit vector tangent to the geodesic. We in-
troduce the tetrad basis for radial free-fall reference frames:

ê
µ

0̂
=

(
E

f
,−
√

E2 − f , 0, 0

)
,

ê
µ

1̂
=

(
−
√

E2 − f

f
, E, 0, 0

)
,

ê
µ

2̂
= r−1 (0, 0, 1, 0) ,

ê
µ

3̂
= (r sinθ)−1 (0, 0, 0, 1) ,

where (x0,x1,x2,x3) = (t,r,θ ,φ). These unit vectors satisfy
the following orthonormality condition:

ê α
µ̂

êν̂α = ηµ̂ ν̂ , (12)

where ηµ̂ ν̂ is the Minkowski metric (for more details, see

Ref. [10]). We have that ê
µ

0̂
= vµ . The geodesic deviation

vector, also called the Jacobi vector, can be expanded as

ηµ = ê
µ

ν̂
η ν̂ . (13)

Here we note that η 0̂ = 0 [10].
The non-vanishing independent components of the Rie-

mann tensor in spherically symmetric spacetimes, including
the Reissner-Nordström spacetime, are (see, e.g., Ref. [18])

R1
212 =− r f ′

2
, R1

313 =− r f ′

2
sin2 θ ,

R1
010 =

f f ′′

2
, R2

323 = (1− f )sin2 θ ,

R2
020 =− f f ′

2r
, R3

030 =− f f ′

2r
.

Using these expressions in Eq. (11) and noting that the vec-
tors ê

µ

ν̂
are all parallelly transported along the geodesic, we

find the following equations for tidal forces in radial free-fall
reference frames (see, e.g., Ref. [15]):

η̈ 1̂ = − f ′′

2
η 1̂, (14)

η̈ î = − f ′

2r
η î, (15)

where i = 2, 3.
Substituting the explicit form (2) of f (r) in Reissner-

Nordström spacetime into Eqs. (14) and (15) we see that
the tidal forces in this spacetime depend on the mass and
charge of a black hole. We also see that the radial and an-
gular tidal forces may vanish, in contrast to what happens
in the Schwarzschild spacetime (q = 0) [10–13]. We note
that the expressions of the tidal forces, given by Eqs. (14)
and (15), are identical to the Newtonian tidal forces with the
force − f ′/2 in the radial direction. In the remainder of this
paper we study Eqs. (14) and (15) for Reissner-Nordström
spacetime in detail.

4.1 Radial Tidal Force

From Eqs. (2) and (14) it can readily be shown that the radial
tidal force vanishes at r = Rrtf

0 , where

Rrtf
0 =

3q2

2M
. (16)

By comparing this and the expression (3) for the event hori-
zon we find that, if 2

√
2/3≤ q/M ≤ 1 1, the radial tidal force

inverts its direction and becomes compressing just outside
the event horizon. The radial tidal force takes a maximum
value at Rrtf

max where

Rrtf
max =

2q2

M
. (17)

The maximum radial stretching at r = Rrft
max is [21]

η̈ 1̂|max =
M4

16q6 η 1̂. (18)

In Fig. 1 we plot the radial tidal force given by Eq. (14)
for Reissner-Nordström black holes for different values of
the black hole charge. For q 6= 0 there is always a local max-
imum of the radial tidal force. In the Schwarzschild case
(q = 0) the radial tidal force is always positive and diverges
(infinite radial stretching) as the body approaches the singu-
larity.
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Fig. 1 Radial tidal force for Reissner-Nordström black holes with dif-
ferent choices of q/M (q = 0.6M, q = 0.8M, q = 0.96M, and q = M),
as well as for the Schwarzschild black hole (q = 0). The positions of
Rstop, r− and r+, are exhibited in each plot. We have chosen b = 100M.

1Since we are dealing with neutral test particles, the results presented
here are valid for both negatively and positively charged black holes.
That is, although we are restricting the analysis to positively charged
black holes, all results presented here depend only on the magnitude of
the black hole charge and apply to negatively charged black holes as
well.
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4.2 Angular Tidal Forces

We find from Eqs. (2) and (15) that the angular tidal forces
vanish at

Ratf
0

M
=

q2

M2 . (19)

From Eqs. (3), (4) and (19), we obtain

r− ≤ Ratf
0 ≤ r+ , (20)

i.e., the angular tidal forces are zero at some point between
the external and internal horizons, with the equality in Eq. (20)
holding for the extremely charged black hole. In Fig. 2 we
plot the angular tidal forces given by Eq. (15). We note that
for q = 0 (Schwarzschild black hole) angular tidal forces are
never zero and tend to minus infinity (infinite angular com-
pressing) as the body approaches the singularity.
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Fig. 2 Angular tidal forces for different choices of the charge-to-mass
ratio (q/M = 0, 0.6, 0.8, 0.96, 1.0). The positions of Rstop, r− and r+,
are exhibited in each plot. We have chosen b = 100M.

In Fig. 3 we plot r+, r−, Rstop, Rrtf
0 and Ratf

0 , given by
Eqs. (3), (4), (10), (16) and (19), respectively, as functions
of q/M. We used b = 100M to compute Rstop.

5 Solutions of the Geodesic Deviation Equations in

Reissner-Nordström Spacetimes

In this section we solve the geodesic deviation equations (14)
and (15) and find the geodesic deviation vectors for radi-
ally free-falling geodesics as functions of r. As stated in
the Introduction, we are considering a test body consist-
ing of neutral dust particles infalling radially towards the
Reissner-Nordström black hole. It is straightforward to con-
vert Eqs. (14) and (15) to differential equations in r by us-
ing dr/dτ =−

√
E2 − f (r), which results immediately from
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Fig. 3 Rstop, Rrtf
0 , Ratf

0 , r−, and r+, plotted as functions of q/M. The
intersection point of Rrtf

0 and r+ (black dot) happens at q/M = 2
√

2/3,
where the radial tidal force inverts its direction on the event horizon.
Rstop is always located inside the internal (Cauchy) horizon. We have
chosen b = 100M.

Eq. (6). Thus, we find

(
E2 − f

)
η 1̂′′− f ′

2
η 1̂′+

f ′′

2
η 1̂ = 0, (21)

(
E2 − f

)
η î′′− f ′

2
η î′+

f ′

2r
η î = 0. (22)

The analytical solutions of Eqs. (21) and (22) may be ex-
pressed in the following general form, for the radial compo-
nent

η 1̂(r) =
√

E2 − f

[
C1 +C2

∫
dr

(E2 − f )3/2

]
, (23)

and for the angular components

η î(r) =

[
C3 +C4

∫
dr

r2(E2 − f )1/2

]
r, (24)

where C1, C2, C3 and C4 are constants of integration. Now
we specialize to Reissner-Nordström spacetime. We con-
sider the geodesic corresponding to a body released from
rest at r = b > r+. Then the solutions to the geodesic devia-
tion equations about this geodesic can be written as follows:

η 1̂(r)=
b3

Mb−q2 η̇ 1̂(b)
(
E2 − f

)1/2
+

Mb−q2

b(2Mb−q2)
η 1̂(b)g(r),

(25)

where

g(r) =
q2

M2 − (1−E2)q2

(
M− q2

r

)
+2r

+
3

1−E2

[
r(E2 − f )+

M(E2 − f )1/2

(1−E2)1/2
cos−1 (1−E2)r−M

M−q2/b

]
,

(26)
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for 0 ≤ q ≤ 1.
For q > 0, the angular components read

η î(r) =

[
1
b

η î(b)+
b

q
η̇ î(b)cos−1 M−q2/r

M−q2/b

]
r,

(27)

and, for q = 0, they read

η î(r) =

[
1
b

η î(b)+ η̇ î(b)

[
2b

M

(
b

r
−1

)]1/2
]

r. (28)

Here, η 1̂(b) and η î(b) are the radial and angular compo-
nents of the initial geodesic deviation vector at r = b and

η̇ 1̂(b) and η̇ î(b) are the corresponding derivatives with re-
spect to the proper time τ . We plot in Figs. 4 and 5 the radial
and angular components, respectively, of the geodesic devi-
ation vector of a body infalling from rest at r = b towards
the black hole for different choices of the black hole charge.
Here we consider two different initial conditions, IC I and
IC II, for the radial and angular components of the geodesic
deviation vector at r = b. For the first type, IC I, we choose

η 1̂ > 0, η î > 0, η̇ 1̂ = 0, and η̇ î = 0, at r = b. For the second
type, IC II, we choose η 1̂ = 0, η î = 0, η̇ 1̂ > 0, and η̇ î > 0,
at r = b. The condition IC I corresponds to releasing a body
consisting of dust at rest with no internal motion. The con-
dition IC II, on the other hand, corresponds to letting such a
body ‘explode’ from a point at r = b. The behavior of the
geodesic deviation vector is almost identical for different
values of q until r becomes of the same order as the hori-
zon radius. This is as expected because for large r the space-
time looks similar for all values of q. It can be seen from
Fig. 4 that, for IC II (figures on the right), during the infall
from r = b to r+, the radial component always increases. If
q 6= 0, while the body falls from the outer horizon (r = r+) to
the inner horizon (r−), the radial component of the geodesic
deviation vector keeps increasing, reaches a maximum, and
then starts decreasing until it reaches r−. While the body
falls in the region between r− and Rstop, the radial compo-
nent of the geodesic deviation vector keeps decreasing, fi-
nally shrinking to zero at Rstop. (Recall, however, that, since
the inner (Cauchy) horizon is unstable, the region between
r = r− and Rstop is unphysical.) The radial component of
the geodesic deviation vector with the initial condition IC I
(shown on the left of Fig. 4) behaves similarly to IC II, ex-
cept that in the former case it becomes zero at some r satis-
fying Rstop < r < r− 2.

With the initial conditions IC II, it can be seen from Fig. 5
(figures on the right) that the angular components increase

2For the radial component of the geodesic deviation vector with the

initial condition IC I, we have η 1̂(r)|r=Rstop ≃ −10−6 (i.e., it is zero at
some value of r satisfying Rstop < r < r−), while for initial condition

IC II, we have η 1̂(r)|r=Rstop = 0.

in the beginning but start decreasing around r = b/2, reflect-
ing the compressing nature of the angular tidal force. They
then start increasing at some point before the body reaches
r = Rstop if q 6= 0 because of the change in the sign of the an-
gular components of the tidal force. If the initial conditions
are IC I, the angular components of the geodesic deviation
vector decrease linearly in r, as shown in the figures on the
left of Fig. 5. This is expected because all geodesics with no
angular velocity trace out straight radial lines.

We also can see from these figures that for Schwarzschild
spacetime (q= 0) the radial component of the geodesic devi-
ation vector becomes infinite at the singularity r = 0 whereas
the angular components vanish there, as expected [13, 25].

6 Conclusion

In this paper we investigated tidal forces in Reissner-Nordström
spacetimes, which depend on the charge-to-mass ratio of the
black hole. For certain values of these parameters, the ra-
dial tidal force can change from stretching to compressing
outside the event horizon. We also noted that angular tidal
forces can only be zero between the two horizons of the
charged black hole.

We pointed out that the tidal forces in Schwarzschild
and Reissner-Nordström spacetimes can be quite different
close to the black hole. In Schwarzschild spacetime the tidal
forces always cause stretching in the radial direction and
compression in the angular directions whereas in Reissner-
Nordström spacetime they may cause either stretching or
compression in any direction, depending on the charge-to-
mass ratio of the Reissner-Nordström black hole and the ra-
dial coordinate.

We also noted that the geodesic deviation equations about
a radially free-falling geodesic can be solved analytically. In
particular, we examined the behavior of the geodesic devia-
tion vector for such a geodesic under the influence of tidal
forces created by static charged black holes. We noted that
the behavior of the geodesic deviation vector is qualitatively
the same for both Schwarzschild and Reissner-Nordström
black holes away from the horizon. However, its behavior
is considerably different for Schwarzschild and Reissner-
Nordström black holes inside the event horizon, as we showed
in Sec. 5. For instance, for charged black holes, at its clos-
est approach to the singularity, the radial component of the
geodesic deviation vector becomes zero for a certain initial
condition though its angular components remain finite there
(though this point is beyond the Cauchy horizon and, hence,
in an unphysical region). In contrast, for the uncharged black
hole the radial component of the geodesic deviation vector
increases all the way to the singularity whereas the angular
components shrink to zero at the singularity.
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