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Abstract 

Apartment buildings have evolved to be self-sufficient for occupants. Thus, energy use is individually 

controlled in apartment units, which can be considered as independent thermal zones within buildings. 

However, this has been disregarded in conventional energy modelling which is mainly applicable for 

reducing energy demands of buildings with standardised conditions, rather than reflecting actual 

consumption. This approach has been questioned due to the high levels of uncertainty formed with real 

buildings. In this study, a model considering occupant random behaviour consuming heating and 

electricity is developed to reflect variations in actual energy consumption in apartments. Moreover, the 

effects of various parameters of occupant behaviour in relation to the model were examined. In total 96 

apartment blocks in Seoul were used as samples. Gaussian Process Classification was applied to modify 

occupant random behaviours corresponding to the probability of energy consumption.  As a result, it 

has been found that occupants’ general heating controls (25% deviation) are between three and eight 

hours, with 17 – 20 °C set temperatures. Moreover, the operating hours of electric appliances and 

lighting are also approximated with the probabilities. This methodology could reduce uncertainties in 

building simulations, and provide a broader application in buildings with similar development stages. 
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1. Introduction 

Apartment buildings are one of the most common types of housing in Asia (Yuen, 2011). Their high 

capacity of accommodating a large number of residents has attracted the fast grown and growing 

countries, such as China, South Korea, Hong Kong and Singapore (Yuen, 2011). One of the 

representative countries for a great number of apartment construction, South Korea, experienced great 

economic growth in the 1960s, and the country became rapidly urbanised (Chung, 2007). This 

urbanisation also resulted in a dramatically increased urban population (Chung, 2007). Apartment 

buildings were introduced to accommodate this increased size of the urban population, particularly for 

the working class (Lim, 2011). However, the main target for apartment buildings was gradually 

transferred from the working class, to the “new” middle class that rapidly grew during the economic 

growth in the 1970s and 1980s (Lett, 2001). This transfer meant that living in apartment buildings 

became a representative of rising social status (Gelézeau, 2007). For this reason, the proportion of 

housing that were apartment buildings was much greater (Statistics Korea, 2010a). Seoul was one of 

the main centres in this significant transformation. In the 1970s and 1980s, 48% and 26% of national 

apartment construction was concentrated in Seoul, respectively (Statistics Korea, 2010a). They still 

comprised about 50% of housing in the city (Kim, 2010).  

Improving thermal performance in existing buildings has been discussed in many countries (Ouyang et 

al., 2011) as carbon emissions is an international issue. Refurbishing old existing apartment buildings 

has been importantly investigated in Asian countries, such as (Yuen et al., 2006; Ouyang et al., 2011). 

In South Korea, apartment buildings built in the 1970s and 1980s have been highlighted due to their 

large population, as well as high energy consumption (Kim, 2010), in accordance with the intensified 

building thermal regulations (Kim et al., 2013). Existing literature (Kim et al., 2006; Lee, 2009; Song, 

2009; Son et al., 2010; Kim et al., 2010; Roh, 2012) has focused on reducing the energy demand of 

apartment buildings in standardised conditions defined by the Energy Performance Index (Ministry of 

Land, Infrastructure and Transport, 2015a) and Building Energy Efficiency Rating System (Ministry of 

Land, Infrastructure and Transport, 2015b). These standards have provided deterministic conditions to 

identify changes in the energy demands of buildings. Thus, they have been used to verify energy 

efficiency in buildings, and guide buildings to improve their energy performance. However, this 

approach has been questioned in its relation of real situations. Many studies pointed out the limitations 

and uncertainties contained in the standard conditions of buildings used in existing literature (Ryan & 

Sanquist, 2012). One of difficulties in refurbishing existing buildings is the lack of interaction with the 

occupants (Gholami et al., 2015). 

Apartment buildings have evolved to be self-sufficient for occupants despite the unified features of 

buildings (Gelézeau, 2007). The usage of heating and electricity is individually controlled in each 
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apartment unit, which can be considered as an independent thermal zone in these buildings. Therefore, 

energy consumption in apartment buildings can significantly vary. Besides, some empirical data in 

existing studies (Kang et al., 1995; Lee et al., 2012), showed variation in actual energy consumption in 

apartment buildings despite the similar thermal conditions. However, energy models with standardised 

conditions in the existing literature are not flexible enough to take into account the possible variations 

in energy consumption. Furthermore, the results would contain a high amount of uncertainty due to 

random behaviours of energy consumption.   

Existing field studies have indicated how much energy consumption can vary by occupant energy 

behaviour. One of the existing studies (Galvin, 2013) divided consumers living in the same apartment 

buildings by the heating consumption levels, due to the normality of the three distributions in the 

frequency density: lower than 500 kWh, 501 – 3000 kWh and higher than 3000 kWh. Except for the 

consumption of space heating, electricity consumption could also vary from 50 to 750 kWh among 100 

households, and the consumption for standby was between 0 and 1300 kWh per year (Gram-Hanssen, 

2013). The monitored usage of electric appliances, apart from the consumption for space heating and 

hot water, was differed between 35% and 40% depending on the characteristics of the consumers’ 

behaviours (Sidler et al., 2002).  

In order to take these variations caused by occupants’ controls into building simulations, energy 

modelling in existing literature has attempted to integrate the variations with a probabilistic approach, 

rather than deterministic values. One of the probabilistic approaches is to use stochastic models. The 

concept of stochastic occupants’ behaviours considers human behaviour as not deterministic, but 

complex and unpredictable actions which are represented by a composition of observable states (Virote 

& Neves-Silva, 2012). Therefore, the stochastic model of occupants’ behaviours takes the probability 

of actions which brings about energy consumption or a change in indoor environment. Virote & Neves-

Silva (2012) used the hidden Markov Chain model to integrate observable motivations of occupant 

behaviour taking the actions consuming energy. Nicol (2001) considered occupants’ behaviours as 

binary – heating on or off – and applied the probit regression analysis for modelling the proportion of 

occupants’ actions in relation to outdoor temperatures. The stochastic models refine the ranges of 

possible consumption behaviours with the quantified probability. Therefore, the models draw uncertain 

factors with the more distinctive boundaries in building simulations. However, the limitations of 

stochastic models can be that they do not provide consistent results that can be directly input in building 

simulations (Virote & Neves-Silva, 2012), even the results are within the probable ranges.   

This study, therefore, aims to develop a probabilistic model of occupant random behaviour consuming 

heating and electricity, regarding the variation in actual energy consumption for old high-rise apartment 

buildings. Three objectives are designed: to identify the variation in actual energy consumption in old 
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high-rise apartment buildings built between the 1970s and 1980s; to integrate the variation in actual 

consumption into energy models; and to identify the possible occupant random behaviours controlling 

heating and electricity corresponding to the probability of energy consumption. 

2. Methods 

In order to identify probabilistic occupant random behaviours controlling heating and electricity the 

procedure was designed in four steps. At first, actual energy consumption in apartment buildings was 

surveyed, and then its variation was measured. Second, energy models of the random control of heating 

and electricity were analysed with their uncertainty. Estimated energy consumption of the energy 

models was optimised to reflect the distribution of the actual usage. Third, the probability of energy 

consumption was predicted by Gaussian Process Classification. At the same time, the possible ranges 

of occupant random controls were updated. Last, the probabilistic random behaviour was evaluated. 

2.1 Evaluating variation in actual energy consumption in apartment buildings constructed in the 
1970s – 1980s 

2.1.1 Sampling   

There are many factors interrelating with energy consumption. Thus, it was important to control effects 

from unrelated factors in this study. Three sampling units were chosen: 1) locations; 2) physical 

conditions; 3) data availability. Firstly, the locations of apartment buildings were used to eliminate 

external effects. Sixteen apartment districts in Seoul were chosen. These districts were mainly 

developed for apartment constructions under an enforcement decree of the Urban Planning Act since 

1976 (Son, 2004). Thus, apartment buildings in these districts were constructed in a similar time frame 

and near distance, which can minimise the difference in climate effects. Afterwards, these 16 districts 

were separated by socio-economic factors to avoid the impact of urban segregation in Seoul. Existing 

literature has identified that the disparities of education levels and occupations are highly correlated to 

the income levels of residents in Seoul (Yoon, 1998; Lee, 2008; Chung, 2015). Yoon (2011) compared 

the geographical disparities of various indices related to the socio-economic factors: population, fiscal 

self-reliance ratio, health and welfare, education, prices of housing and land, industrial structure and 

transportation. Five boroughs representing relatively better living conditions were chosen from a total 

of 25 boroughs in Seoul by comparing a standard score of the indices. Residents with high level 

education were densely populated in these five boroughs. The robust correlation between the high-

education residents in these five boroughs and their housing types (apartment buildings) has been found 

(Zchang, 1994). Sixteen apartment districts are affiliated to these five boroughs. Four of the five 

boroughs (13 apartment districts), all with apartment buildings constructed in the mid – 1970s and 1980s, 

were chosen for this study. The residents in the four boroughs, especially those who live in high-rise 
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apartment buildings, were called “new” urban middle class (Lett, 2001; Zchang, 1994). Zchang (1994) 

described the “old” middle class as small business owners and a higher income than the average. In 

contrast to the “old” middle class, Lett (2001) discovered the seven categories of occupations in the 

“new” urban middle class in the four boroughs: scholars, government bureaucrats, corporate salary men, 

business owners, professionals, religious leaders, nouveaux riches. The life styles of the “new” urban 

middle class are varied (Lett, 2001; Gelézeau, 2007), but people in this class can afford not to be 

concerned about energy consumption.         

Secondly, the physical conditions of apartment buildings need to be constrained to avoid giving impact 

on energy consumption. Two of the most influential factors affecting energy consumption, thermal 

conditions of building envelopes (Kim, 2013) and heating methods (Lee et al., 2004; Moon et al., 2001) 

were chosen. Therefore, apartment buildings constructed in the 1970s and 1980s were divided into two 

groups depending on the thermal conditions of building envelopes, which were filtered by construction 

years. The first group, period A, was comprised of apartment buildings constructed before 1980 when 

a legislation of building thermal regulations was enacted. The second group, period B, contained 

buildings built between 1981 and 1988 before the building regulation has a professional form. Therefore, 

the buildings in both periods need to be refurbished to reduce high energy consumption (Kim, 2010), 

although buildings in period B can be expected to have relatively advanced thermal conditions 

compared to buildings in period A. The district heating method was considered only, which was mainly 

applied to many apartment buildings constructed in the four boroughs.  

Lastly, energy bills were collected through the Apartment management information system (Korea 

Appraisal Board, 2015). The monthly consumption in 2014 was transformed from Won/m2/year to 

kWh/m2/year, according to calculation methods by the Korea District Heating Corporation (2015) and 

Korea Electric Power Corporation (2014). The bills were separated by heating and electricity. This study 

only considered energy bills consumed for individual units. Energy bills used for communal purposes 

were, therefore, excluded even though they were consumed in buildings. In total 96 apartment blocks 

(44 blocks in period A and 51 blocks in period B) were chosen in this sample study. They occupy 37.1% 

and 16.3% of apartment buildings built in both periods A and B in Seoul, respectively. 

2.1.2 Normality tests 

Central limit theorem states that frequencies in empirical populations show bell-shape curves if the 

number of independent random samples is large enough (Ross, 2002). The collected samples were 

evaluated for this normality. Firstly, Kolmogorov-Smirnov and Shapiro-Wilk tests were conducted to 

measure the deviations of the samples from the normal distribution with the same mean and standard 

deviation. If ȡ-values in both tests are not significant (ȡ> 0.05), then the normality of the samples can 
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be accepted (Ross et al., 2014). Secondly, Q – Q plots were drawn to supplement the limitation of the 

previous normality tests through visual inspection (Field, 2009). Lastly, skewness and kurtosis were 

measured to identify how far the sample data is different from the normal distribution; ±1.96 limits were 

considered as normally distributed (Field, 2009). SPSS (Field, 2009) was used to conduct these tests. 

The results of normality tests are illustrated in Section 3.1. 

2.2 Integrating occupant random behaviour reflecting actual energy consumption into energy 
modelling 

A probabilistic approach was applied to reflect variation in the actual energy consumption in energy 

models. Energy models were created by the possible behaviours in controlling heating and electricity. 

The possible energy consumption in the energy models was compared to the variation in the actual 

energy consumption. The model estimation was optimised to be as similar as possible to the real 

consumption, which indicates the possible ranges of occupant behaviours determining the variation in 

the actual consumption. 

2.2.1 Energy models of occupant random behaviours controlling heating and electricity 

Energy modelling consisted of three parts: building form, thermal properties and energy controls. First, 

building form was fixed by choosing the most typical unit design (Kim & Kim, 1993; Park, 2003) and 

building design (fifteen-story and south-facing (Son, 2004; Lim, 2011), as shown in Figure 1. This unit 

design made up about 80% of apartment buildings built until the 1980s (Kim & Yoon, 2010). The 

apartment buildings with 15 floors make up the largest proportion, 31.7% (Ministry of Land, 

Infrastructure and Transport, 2004). Energy models were created with six units: two units on three floors 

(ground, middle and top floors). The energy consumption in the two units on the middle floor was 

multiplied to estimate the total amount of energy consumption from the 2nd to 14th floors by using 

multiplier in EnergyPlus8.0 (EnergyPlus Documentation, 2010). Each room was separately modelled 

as individual thermal zones to be controlled by different schedules as it occurs in real situations. 

Second, thermal properties (U-values) for the two periods (before 1980, and between 1981 and 1988) 

were identified by reviewing the building thermal regulations and existing literature (Seo, 2012; Kim 

et al., 2013). The specific applications were also verified by the site survey collecting actual 

architectural drawings in three apartment blocks. The thermal condition in apartment units is divided 

into two different areas: unconditioned and conditioned areas (Figure 1). Unconditioned areas mean the 

bathroom and two balconies, which are directly exposed to the outside without heating facilities, 

whereas conditioned areas are the main living spaces, which are enclosed by the unconditioned areas to 

be protected from the outside, apart from the bedroom C. Therefore, thermal protection was focused on 

the conditioned areas. The profiles of the building envelopes are described in Table 1. 
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Figure 1 Description of the apartment units 

 

Table 1 Profile of thermal properties in energy models  

Locatio
n 

Exposure 
to the 
outside 

Materials (mm) 
(In  out, up  down) 

Thickness 
(mm) 

(Period A/ 
B) 

Thermal 
conductivity 

(W/m.K) 

Density 
(kg/m3) 
(Period 
A/ B) 

Specific 
heat 

(J/kg.K) 
(Period A/ 

B) 

U-value 
(W/m2K) 

Period A  
(Before 1980) 

Period B 
(1981 – 1988) 

Period 
A  
 

Period 
B 
 

External 
wall 

Direct  
 

Mortar Mortar 18 1.081 1950 921  
 

2.08 

 
 

2.08 
Cement brick  Cement brick  90 0.605 1700 1550 
Cavity  Cavity  50 0.15(m2.K/W) - - 
Cement brick  Cement brick  90 0.605 1700 1550 
Mortar Mortar 18 1.081 1950 921 

Indirect  Mortar Mortar 18 1.081 1950 921  
 

2.08 

 
 

0.50 
Cement brick  Cement brick  90 0.605 1700 1550 

Cavity  Insulation  50 0.033 -  / 50 - / 838 
Cement brick  Cement brick  90 0.605 1700 1550 
Mortar Mortar 18 1.081 1950 921 

Side 
wall 

Direct  Mortar  Mortar  18 1.081 1950 921  
3.24 

 
0.59 Cement brick  Insulation 90 / 50 0.605 1700 / 50 1550 / 838 

Concrete  Concrete 200  1.400 2240  879  
 Mortar  18 1.081 - / 1950 - / 921 

Roof  Direct  Mortar  Mortar  24 1.081 1950 921  
0.52 

 
0.52 Concrete  Concrete  200 1.400 2240 879 

Cavity  Cavity  220 0.18(m2.K/W) - - 
Insulation  Insulation  50 0.033 50 838 

Plaster board  Plaster board   10 0.209 940 1130 
Floor 
between 
ground 
and 
undergr
ound 
floors 
 

Indirect  Mortar + Mortar + 100 1.081 1950 921  
4.36 

 
0.55 Gravels  

(heating tubes)  
Gravels 
(heating 
tubes)  

 1.260 1522 908 

Concrete  Concrete  200 1.400 2240 879 
 Insulation  50 0.033 - / 50 - / 838 
 Plaster board 10 0.209 - / 940 - / 1130 

Window Direct Single glazing  Single 
glazing  

3 0.900 - - 5.89 5.89 
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Third, heating and electricity controls were set differently depending on uncertainty. Heating supply in 

each room is controlled by supplying valves, and the controller manipulates set-point temperatures and 

operations. Heating controls in this study concentrated on the set-point temperatures and operating 

hours in each room. The possible range of heating set-point temperatures was set between 16 ºC and 22 

ºC. The operating hours were gradually increased from three to nine hours per day. In terms of electricity 

controls, the national surveys investigating behaviours of electricity consumption (Korea Electric Power 

Corporation, 1990; Korea Electric Power Corporation, 2013) were used to identify the possible range 

of operations in households. Daily routines of using electric appliances in 500 households were 

collected in this survey. Lighting and four electric appliances showing variations in their operating hours 

with higher penetration rates (60%) were chosen: air-conditioner, electric blanket, computer and rice-

cooker. Lighting operation was separated by the living room and the bedrooms. The operating hours 

were increased from 1 to 7 hours per day with maximum 70% fluorescent lights in operation among the 

500 households (Korea Electric Power Corporation, 1990).  The control of air-conditioners was 

separated by set-point temperatures and hours. The temperatures were increased from 23ºC to 29ºC. 

Overall, operating hours of cooling did not exceed more than 32%, which is relatively lower compared 

to other appliances. The maximum hours of using an air-conditioner was 7 hours in a day with 10% 

probability. Rice-cookers showed the highest operating hours, with an average of 3800 per year in 

consuming electricity for warming rice (Korea Electric Power Corporation, 2013). The maximum 

operating hours was identified to be 16, with about 40% in operation, and the minimum hours was 10, 

with about 60% in operation. The computer was mainly used at night. The maximum usage is distributed 

between 7pm and 11pm with about 30% in operation. The electric blanket was generally used between 

five to six hours per day, but the number of days used in a year indicated more prominent variations 

from 60 to 120 days. This variation was taken into account in models. In total 19 input parameters were 

set with the possible range of values (Table 2). 

Some appliances, such as the TV, refrigerator, and Kimchi refrigerator, also indicated high electricity 

consumption, but their operations were much unified: always on for refrigerators and five hours on for 

the TV, according to the national survey (Korea Electric Power Corporation, 2013). Therefore, they 

were set in the energy models, but with consistent values. Two air-conditioners were equipped in the 

living room and the largest bedroom A. Electric blankets for supplementary heating were applied in the 

living room and two bedrooms. A computer and rice cooker were placed in the living room, including 

the kitchen. Four occupants were set in each apartment unit, which is the most representative type of 

household living in apartment buildings (Statistics Korea, 2010b). Electric power for appliances was 

taken from the average values in the national survey (Korea Electric Power Corporation, 2013): TV 

(130.6W), refrigerator (40.0W), kimchi refrigerator (22.6W), computer (263.3W), fluorescent light 

(55.0W in bed rooms, and 165W in the living room), rice-cooker (1022.9W in cooking, and 143.4 in 
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warming). Ventilation rates were set at 0.82ACH for conditioned area and 2.00ACH for unconditioned 

area (Ministry of Land, Infrastructure and Transport (2015b). 

 

Table 2 Prior distributions of uncertain parameters in building energy models 

Categories Input parameters Prior 
distributions 

Optimised 
distribution 

Locations Units No. 

Period A Period B 
Heating Set-point 

temperatures 
16 – 22 16– 20  15 – 21  Living room °C(winter) 1 

16 – 20 16–21 Bed room A – C 2,3,4 
Operating hours 

 
3 – 9 3–6 3 – 9  Living room Hour/day 

(winter) 
5 

- - Bed room A – C 6,7,8 
Electricity Air-conditioner 

(set-point 
temperatures) 

 
23 – 29 

- Living room °C(summer) 9 
Bed room A 10 

Air-conditioner 
(operating hours) 

 
0 – 7 

 
0 –7 

 

Living room Hour/day 
(summer) 

11 

Bed room A 12 

Rice-cooker 
(operating hours) 

10 – 16 7 – 16 Living room 
(kitchen) 

Hour/day 
 

13 

Computer 
(operating hours) 

1 – 4 0.5 – 3.5 Living room   Hour/day 
 

14 

Lighting 
(operating hours) 

1 – 7 0 – 7 Living room Hour/day 
 

15,16 
Bed rooms 

Electric Blanket 
 

60 – 120 - Living room Day/year 
(winter) 

17,18,19 

2.2.2 Optimisation of model estimation reflecting variation in the actual energy consumption 

The energy models defined in the previous section were used to estimate the possible ranges of energy 

consumption. A great number of possible cases were created due to the uncertain controls of heating 

and electricity. 200 random samples were chosen by Latin Hyper-Cube Sampling (LHS) to conduct the 

Monte Carlo Method. The LHS method is more robust than other sampling methods (Macdonald, 2009), 

and has been widely applied to the uncertainty analysis in building simulations such as (Hyun et al., 

2008; Silva & Ghisi, 2014). EnergyPlus 8.0 (Crawley et al, 2001) was used to conduct building 

simulations. Historical weather data for Seoul in 2014, which is provided by White Box Technologies 

weather data for energy calculations (White Box Technologies, 2014), was applied.  Both LHS 

samplings and simulations were managed by jEPlus (Zchang, 2012). Heating and electricity 

consumption were separately accumulated. The Probability Density Function (PDF) of the estimated 

energy consumption was compared to the PDF of the actual energy consumption. The Coefficient of 

Variation of Root-Mean-Square Deviation (CV RMSE) was used to measure the discrepancy between 

the model estimation and the actual energy consumption.  

The previous occupant random behaviour in energy models could not be specified for the residents 

living in the old apartment buildings. This can bring about high amounts of discrepancy, compared to 

the actual energy consumption. This discrepancy was optimised in order to reflect the actual energy 
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consumption. The procedure was divided into two parts. Firstly, multivariate regression analysis was 

conducted to create linear models of energy consumption only with influential parameters of occupants’ 

random controls. Above all, the linearity was examined by the coefficients of determination (R-squared) 

and F-ratio values (Field, 2009). Standardised Regression Coefficient (SRC) values were used to 

determine the influential parameters in the linear models. A stepwise method was applied to create 

possible linear models automatically. Secondly, the ranges and values of the uncertain parameters were 

revised for their regenerated random samples to have a similar mean and standard deviation of the actual 

energy consumption. Random sampling was conducted by uniformly distributed pseudorandom 

integers in MATLAB 2014a (Hunt et al., 2014). The linear models identified above were used to 

estimate energy consumption of the regenerated samples. The distribution of the re-estimated energy 

consumption was compared to the actual energy consumption. CV RMSE was used to evaluate the 

difference between them. The results are shown in Section 3.2.1. 

2.3 Generalisation of probability of occupant random behaviours consuming heating and 
electricity 

Based on the optimised model estimation, this section conducted stochastic processes to identify the 

probability of energy consumption. Stochastic processes deal with the sets of all possible random 

parameters (Ross, 2014), and form the generalised probability distributions to functions (Rasmussen 

and Williams, 2006). In particular, Gaussian Processes easily deal with the many random variables that 

are approximately considered normally distributed, according to the probability theory (Parzen, 1999). 

The processes follow Bayes theorem (Rasmussen and Williams, 2006) that modifies prior distributions 

through observed data to achieve target distributions (Kalbfleisch, 2012). This inference has been used 

to calibrate parameters of energy models in building simulations, as shown in (Heo et al., 2012). 

Depending on the types of outputs, either regression or classification is determined in conducting 

Gaussian processes; regression deals with continuous outputs that deal with real values while 

classification considers discrete outputs classified by labels (Neal, 1998).  

This study focused on classification to predict the probability of heating and electricity in the old 

apartment buildings, rather than exact calibration case-by-case. The process was divided into three steps. 

Firstly, the optimised random samples were prepared as training data. The energy consumption was 

subdivided by 25% deviation. Heating consumption with 25% deviation was defined between 107 and 

138 kWh/m2/year in period A, and between 87 and 112 kWh/m2/year in period B. The electricity 

consumption between 30.1 and 33.3 kWh/m2/year decided the medium class for the both periods.  

Secondly, Gaussian Process priors such as covariance functions were formed. Many covariance 

functions can be applicable. The details of covariance functions were studied by Neal (1997). More 
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than that, the suitable values of hyper-parameters defining covariance functions is more problematic 

(Rasmussen and Williams, 2006; Neal, 1997). Prior distributions of hyper-parameters are required to 

be predefined, although the values are optimised during the process. In this study, the Squared 

Exponential (SE) covariance function, which has been the most widely used (Rasmussen and Williams, 

2006), was chosen. This covariance function necessarily requires two hyper-parameters: length-scale 

and magnitude. The inverse of length-scales demonstrates the relevance of inputs in the process, while 

magnitude indicates the variances of unknown function values (Neal, 2012). Gaussian distribution was 

applied for the hyper-parameters in this study.  

Thirdly, Gaussian Process models were structured by multinomial probit models with nested 

Expectation Propagation (nested EP) algorithm (Riihimaki, 2013) to take into account the classes of 

energy consumption with four to six parameters for heating and electricity consumption. Comparing to 

MCMC, nested EP algorithm also showed consistent results with small inaccuracy (Riihimaki, 2013), 

but much less operating time was required. The calculations were conducted by GP-Stuff (Vanhatalo et 

al., 2013), run by MATLAB 2014a (Hunt et al, 2014). Contour plots were used to draw the predictive 

probability. The results are illustrated in Section 3.2.2. 

2.4 Evaluating estimated energy consumption of probabilistic models 

The previous section identified the probability of energy consumption, and the previous identification 

of behaviours controlling heating and electricity were modified. The updated random behaviours were 

evaluated to whether or not the predicted energy consumption reflects the variation in the actual energy 

consumption with reduced uncertainty.  100 random samples were chosen with different probabilities: 

high probability (50 – 90%) and total probability (0 – 90%). Their estimated energy consumption is 

compared in Section 3.3. 

3. Results 

The conventional energy modelling used for high-rise apartment buildings has estimated energy 

consumption based on the standardised conditions, which are provided from the international or national 

guidelines. Therefore, the estimation could contain high levels of uncertainties when it is applied to 

specific types of buildings and groups of occupants. The methodology in this study was designed to 

reduce the uncertainties, caused by applying the standardised conditions, by identifying the probability 

of occupant energy behaviour from the national survey and the variation in actual energy consumption. 

Thus, the result of the probabilistic model can be adjusted for the specific resident group and the 

conditions of apartment buildings. This section presents the probabilistic model for the “new” urban 

middle class living in old apartment buildings constructed in the 1970s and 1980s in Seoul. The section 

is designed in three parts. The first part describes the analysis of variation in actual energy consumption 
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in Section 3.1. The second part illustrates the probability of standardised conditions in Section 3.2. 

Specifically, the optimisation of estimated energy consumption regarding the actual energy 

consumption is interpreted in Section 3.2.1, and the results obtained from Gaussian Process 

Classification are shown in Section 3.2.2. Finally, the estimated energy consumption with the 

probability of standardised conditions is evaluated in Section 3.3. 

3.1 Variation in actual energy consumption in apartment buildings built between the 1970s and 
1980s 

The results of normality tests demonstrate that the collected samples are normally distributed (Figure 

2). The ȡ-values in the Kolmogorov-Smirnov tests are unified with 0.200 in the heating and electricity 

consumption for both periods. Shapiro-Wilk tests also show the ȡ-values 0.362 – 0.792, which are not 

significant. This means that the normality of the samples can be accepted. The Q – Q plots of the samples 

show slight deviations from the normal distribution at the tails. The deviations are interpreted by 

Kurtosis and Skewness. The largest Kurtosis is 1.30 in the electricity consumption in period A, while 

the greatest skewness is found in the heating consumption in period A. However, these deviations are 

within ±1.96 limits of Kurtosis and Skewness. Therefore, the samples can be regarded as normally 

distributed, which means that the number of samples is large enough to represent their population. 

Figure 3 gives the overview of energy consumption in old high-rise apartment buildings constructed 

between the 1970s and 1980s. The average heating energy consumption in apartment buildings 

constructed before 1980 (Period A) is 123.2 kWh/m2/year, while the consumption is reduced to 99.66 

kWh/m2/year in apartment buildings built between 1981 and 1988 (Period B). The comparison of the 

two average values reveals the significant impacts of thermal conditions of building envelopes on 

heating consumption. However, the electricity consumption is similar in both periods, A and B, with 

31.77 kWh/m2/year and 31.67 kWh/m2/year, respectively. 

The more interesting aspect is the variation in energy consumption in each period (Figure 3). Heating 
consumption is deviated 20.6 kWh/m2/year among buildings in period A, while a greater deviation about 
30.1 kWh/m2/year is identified in period B. Furthermore, the difference between minimum and 
maximum values in heating consumption is 98.0 kWh/m2/year in period A, and is enlarged to 128.5 
kWh/m2/year in period B. The relatively lower variation in period A could reveal their desperate need 
of heating due to the low energy-efficient building conditions. The higher variation in period B would 
result from the diverse preference in controlling heating by occupants. In electricity consumption, the 
standard deviation for both periods is about 3.5 kWh/m2/year, and the minimum and maximum ranges 
are about 15 – 20 kWh/m2/year.  In general, the actual energy consumption in apartment buildings is 
10 –30% deviated from average values. The difference between minimum and maximum consumption 
is extended up to 50 – 128%. 
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Figure 2 Results of normality tests of actual energy consumption 

 

Figure 3 Optimisation of model estimations in comparison to the variation in actual energy consumption 
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3.2 Probability of standardised conditions regarding variation in actual energy consumption 

The probabilistic approach integrating the variation into energy modelling is illustrated in this section. 

Firstly, energy models with the prior distributions are optimised to reflect the variation in the actual 

energy consumption in Section 3.2.1. Secondly, the probability of energy consumption is calculated by 

Gaussian Process Classification. At the same time, the possible ranges of influential parameters are 

modified. The results are illustrated in Section 3.2.2.  

3.2.1 Optimisation of the estimated energy consumption in energy modelling 

The model estimation with the prior distribution of input parameters (thick dashed lines in Figure 3) is 

dissimilar from the distribution of the actual energy consumption (solid lines with dots).  At first, the 

average values of the model estimation are greater than the actual values, apart from the heating 

estimation for period A. The average values of heating consumption in period B is overestimated by 

about 23 kWh/m2/year with the prior distribution, while a nearly 3 kWh/m2/year reduction is required 

in the average value of electricity consumption. Second, the distribution of the estimated heating 

consumption is far greater than the one of actual consumption: 62% discrepancy in period A (Figure 3 

– a) and 51% in period B (Figure 3 – b). This wider distribution of the estimated heating consumption 

indicates that the ranges of occupants’ random controls would be wider than the actual usage, which 

needs to be narrowed down. On the contrary, the ranges of the parameters for electricity consumption 

are required to be wider to reduce the about 35% discrepancy from the variation in the actual use (Figure 

3 – c and d). This opposite trend of estimation, compared to the actual use, implies that different 

parameters respectively affect heating and electricity, and their modification needs to be different.  

Multivariate regression analysis is used to choose the most rigid linear models with less residual. In the 

results of the R-squared values (Figure 4 – a and b), the highest R-squared values of more than 0.7 are 

generally achieved by increasing the number of parameters. However, the increasing of R-squared 

values in heating models becomes significantly steady after the fourth model (0.84 and 0.70 for period 

A and B), while the sixth model (0.94 and 0.78 for period A and B) in electricity models. These models 

also show higher F-ratios with less numbers of input parameters: 256.2 in period A and 114.6 in period 

B for heating (degree of freedom: 4), and 554.4 in period A and 112.2 in period B for electricity (degree 

of freedom: 6) (Figure 4 – c and d). Hence, they are chosen as the most fitted models. 

These linear models for heating and electricity consumption are respectively comprised of four and six 

parameters, as shown in Table 3. In the heating models, set-point temperature is the most significant 

factor, followed by operating hours. Specifically, the volume of space determines their impacts on 

heating consumption. Thus, set-point temperature in the living room presents the highest SRC of 0.587 

and 0.526 in periods A and B. Their operating hours has the second highest SRC, which are 0.504 and 
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0.469 for period A and B, respectively. The third parameter is set-point temperatures in the bedroom A 

with SRC of 0.320 and 0.271 for both periods A and B. This is because the bedroom A is the largest 

bedroom. The fourth parameter is set-point temperatures in the bedroom C with SRC of 0.285 and 0.260 

for both periods A and B, which is the bedroom directly exposed to the outside. 

 

 

Figure 4 Changes in the coefficient of determination (R-squared) and F-ratios of energy models 

Electricity models are structured by operating hours of six parameters that can be categorised by three 

groups: lighting, appliances used in daily routines and cooling. The most influential factors are the 

operating hours of lighting in the bedrooms (SRC 0.527 and 0.475 in periods A and B) and living room 

(SRC 0.475 and 0.433). The operating hours of rice-cookers and computers show the fourth and fifth 

highest SRC of 0.343 and 0.339 in period A, and 0.336 and 0.329 in period B. In terms of the seasonal 

devices, cooling hours is the most influential compared to the other factors, including cooling set-point 

temperatures. Their impact on electricity consumption is determined by the size of volume. Thus, 

cooling hours in the living room have SRC of 0.459 and 0.383 in periods A and B, while cooling 

operation in the bed room show SRC 0.239 and 0.220 in the two periods, respectively. 

Diverse ranges of the input parameters in the linear models are examined for their estimation to be as 

close as the distribution of the actual energy consumption. As a result, the discrepancy is significantly 

declined with the new sets of random samples, as depicted by ‘optimised’ in Figure 3. The lowest 
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discrepancy is achieved: 1.2% of the heating energy model for period A and 3.7% for period B. The 

modified electricity consumption in period A shows 3.8% discrepancy. The discrepancy became higher 

to 9.8% for period B by applying the same set of the modified samples used for period A. In comparison 

to the previous distribution (Table 2), the large discrepancy in annual energy consumption is reduced 

by little change in daily routines. In the heating models, the range of set-point temperatures is reduced 

from 16 – 22 ºC to 16 – 20 ºC, and the operating hours are also reduced from 3 – 9 hours to 3 – 6 hours 

in the heating models for period A. For period B, the range of set-point temperatures is moved to 15 – 

21 ºC in the living room, and reduced to 16 – 21 ºC in the bedroom A and C. In the electricity model, 

the possible ranges of operating hours of lighting and rice-cooker are extended by about 1 – 3 hours. 

The range of the computer is moved to 0.5 – 3.5 hours. Overall, the changes in set temperatures are 

within 2 ºC, while operating hours are revised within 3 hours from the previous distributions. 

 

Table 3 Result of multivariate regression analysis 

 Period A (Before 1980) 
 

Period B (1981 – 1988) 

Unstandardised Coefficients Standardised 
Coefficients 
 (p-value) 

Unstandardised Coefficients Standardised 
Coefficients 
 (p-value) B Std. Error B Std. Error 

 
 
 
Heating 
 

Set temperatures in living room -303.777 16.520  (0.000) -346.219 26.161 -(0.000) 

Heating hours in living room 10.070 0.500 0.587 (0.000) 10.444 0.792 0.526 (0.000) 

Set temperatures in bedroomA 8.669 0.497 0.504 (0.000) 9.347 0.787 0.469 (0.000) 

Set temperatures in bedroomC 5.470 0.495 0.320 (0.000) 5.651 0.784 0.285 (0.000) 

Set temperatures in living room 4.649 0.492 0.271 (0.000) 5.157 0.779 0.260 (0.000) 

 
 
 
 
Electricity 
 

(Constant) 15.134    8.036  (0.000) 16.546 15.921 (0.000) 

Lighting in bedrooms 0.835 0.027 0.527 (0.000) 0.740 0.053 0.475 (0.000) 

Lighting in living room 0.755 0.027 0.475 (0.000) 0.676 0.053 0.433 (0.000) 

Cooling hours in living room 0.729 0.027 0.459 (0.000) 0.597 0.054 0.383 (0.000) 

Operating hours of rice-cooker 0.544 0.027 0.343 (0.000) 0.523 0.054 0.336 (0.000) 

Operating hours of computer  1.079 0.055 0.339 (0.000) 1.028 0.109 0.329 (0.000) 

Cooling hours in bedroom A 0.378 0.027 0.239 (0.000) 0.343 0.054 0.220 (0.000) 

 

3.2.2 Probability of energy consumption with Gaussian Process Classification  

Figures 5 and 6 show that the probability of energy consumption with 25% deviation (medium class) is 

formed by various combinations of the influential parameters. In other words, the definition of 

standardised conditions can also be varied by the probability of energy consumption. All parameters 

linearly effect energy consumption, but they are paired depending on the relevance and the order of 

coefficient values for the presentation. Pairs of the parameters can be organised in different ways. 

However, each parameter interacts in an inverse proportion in determining the probability of energy 

consumption. For instance, the operating hours of the living room is reduced, while the set-point 

temperature is increased. Hence, the distribution taken from the actual consumption can be maintained. 

At the same time, this interaction allows the standardised conditions flexible in determining the 
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probability of energy consumption. In addition, impacts of the parameters shift the probability of energy 

consumption. This is shown by the dispersion of contour lines. Thus, wider dispersion reveals that the 

parameters are not significantly relevant to determine the probability of energy consumption as found 

in heating set-point temperatures in the bedroom A and C (Figure 5 – b) and cooling hours (Figure 6 – 

c). 

The 90% probability of the medium class (25% deviation) is overall formed by the range of heating set-

point temperature from about 17 to 20 ºC (Figure 5). Heating operating hours are about 3 – 6 hours for 

period A, and 5 – 8 hours for period B: three hours (19:00 – 22:00), four hours (19:00 – 23:00), five 

hours (19:00 – 24:00), six hours (18:00 – 24:00), seven hours (18:00 – 01:00) and eight hours (18:00 – 

02:00). This range is lower than the conventional standardised conditions that include 20 or 24 ºC set 

temperatures and its operation controlled by the set temperatures. Furthermore, the possible 

deterministic value of heating set temperature can be closer to 18 ºC by regarding the actual energy 

consumption rather than the 20 ºC mostly used in existing literature. The conventional conditions in 

calculating energy demands are not perfectly out of range, but heating energy consumption can be 

overestimated. 

Interestingly, the probability in heating consumption for period A (Figure 5 – a and b) is formed by the 

slightly lower values of set temperatures and operating hours, than the values for period B (Figure 5 – 

c and d), despite higher heating consumption in period A. This can be interpreted by realistic 

compromise, possibly due to the cost of energy. The medium class for period A consumes about 107 – 

138 kWh/m2/year by the possible setting identified above. However, the medium class for period B 

spends less heating energy, between 87 and 112 kWh/m2/year with the setting above because of their 

relatively advanced thermal conditions, compared to period A. This reveals that occupants in period A 

would tactically suppress their heating controls despite the significant heat loss through building 

envelopes. 

Electricity consumption with 90% probability is generally derived from diverse ranges in operation 

(Figure 6). Specifically, lighting is possibly used from 1 to 5 hours. The rice-cooker can be operated 

about 9 – 14 hours in warming rice, and the computer is operated for 0.5 – 3.5 hours per day. The air-

conditioner can be used for up to 6 hours during summer. The results provide more realistic operations 

for the appliances with intermittent operations by linking between the actual energy consumption and 

the national survey about using electrical appliances. 
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Figure 5 Results of Gaussian Process Classification for heating consumption 

 

 

 

Figure 6 Results of Gaussian Process Classification for electricity consumption 
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3.3 Evaluation of estimating energy consumption with the probability of the standardised 
conditions   

Energy consumption is estimated by 100 random samples with different probability: high (50 – 90%), 

and total probability (0 – 90%). Figure 7 demonstrates the comparison between the two different 

probabilities. The random samples with high probability (on the long-dashed lines in Figure 5 and 6) 

result in a much lower distribution compared to the samples with total probability (on the dotted lines). 

The estimated heating consumption of the samples with high probability is distributed from 104 

kWh/m2/year to 136 kWh/m2/year for period A (Period A_a in Figure 7), while the estimation for period 

B is from 76 kWh/m2/year to 119 kWh/m2/year (Period B_a). In contrast, the samples chosen with total 

possibility create a much extended distribution, 46 – 195 kWh/m2/year heating consumption for period 

A (Period A_b) and 23 – 179 kWh/m2/year for period B (Period B_b). In terms of electricity 

consumption, the samples with a high probability estimate electricity consumption between 30 and 32 

kWh/m2/year for both periods (Period A_a and Period B_a). The distribution of estimation is enlarged 

with total probability from about 24 to 44 kWh/m2/year. Depending on the form of the probability, 

combinations of random samples can be diverse, and their estimation can be different each other. 

However, the estimation with high probability closely represents the standard deviation identified in the 

actual energy consumption in each period, while the estimated consumption with total probability 

reflects the minimum and maximum range of the actual energy consumption. 

 

 

Figure 7 Estimated energy consumption with the probability of the standardised conditions 
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4. Conclusions 

This study questioned the inflexible conventional modelling which disregards the various occupant 

random behaviour of controlling energy consumption in apartment buildings. The actual energy 

consumption shows 10 – 30% deviation from average values in apartments built in the 1970s – 1980s. 

Moreover, the range between minimum and maximum values is much greater, up to 128%. This 

variation reveals that deterministic values of defining typical conditions in apartment buildings could 

provide a limited interpretation of energy consumption in these buildings. This study attempted to 

identify the probability in energy consumption in apartment buildings, regarding the variation in actual 

energy consumption.  

The probability of energy consumption with a 25% deviation was drawn through Gaussian Process 

Classification. The updated values of input parameters represent the probability of the standardised 

condition in apartment buildings, according to Bayesian inference. The 90% probability of heating 

consumption is formed by 17 – 20°C set temperatures and 3 – 8 operating hours.25% deviation in 

electricity is derived from 3 – 6 hours of ranges in operation. Compared to the values in conventional 

modelling, these results imply that conventional modelling may overestimate energy consumption. 

Overall, sets of parameter in 50 – 90% probability could achieve nearly the standard deviation, 10 – 

30%, in real energy use, whereas sets of parameters in total probability showed a far greater distribution 

of estimating energy consumption, nearly about the minimum and maximum ranges. Hence, the 

standardised conditions in apartment buildings can be varied depending on the probability of energy 

consumption.  

This paper applies the actual energy consumption and develops the probabilistic models of occupant 

random behaviour controlling heating and electricity in apartment buildings. How people consume 

energy is difficult to be determined by a certain value, which is often preferred for building simulations. 

However, stochastic data provide the probability of occupant energy behaviour for more specified 

occupants’ groups, which reduces uncertainties and discrepancies in the estimation in building 

simulations. In the case of South Korea, the general characteristic of residents living in apartment 

buildings is comprised of parents with one or two offspring. By taking socio-economic factors the group 

of residents became more specific. The deviations in energy consumption of the resident group led to 

refine most of the possible range of energy behaviours. Moreover, the generalisation process drew the 

specific operating hours of heating and electric appliances. The result provides the adapted energy 

controls of the resident group, called “new middle class”, living in old apartment buildings constructed 

before 1980 and 1981 – 1988, respectively. It is noted that the behaviour model developed in this study 

is specified for residents living in apartment buildings in particular districts in Seoul, so that residents 

in a different context could be difficult, due to the different life styles, such as types of domestic 

http://dx.doi.org/10.1016/j.enbuild.2016.03.037


Hyunju Jang & Jian Kang: Energy and Buildings  doi:10.1016/j.enbuild.2016.03.037 

appliances and their usage, although the application for South Korean residents would be applicable, 

because the original surveyed data are based on South Korean residents. Moreover, the behaviour model 

only included several influencing factors into the stochastic model. Although these factors were selected 

by their generalities of usage in households and the high levels of correlation with energy consumption, 

the impacts of the disregarded appliances and operating hours could contain uncertainties in the model 

in certain situations. 
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