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Abstract An important aspect of eruption forecasting is predicting the path of propagating dikes. We
show how lateral dike propagation can be forecast using the minimum potential energy principle. We
compare theory to observed propagation paths of dikes originating at the Bárðarbunga volcano, Iceland, in
2014 and 1996, by developing a probability distribution for the most likely propagation path. The observed
propagation paths agree well with the model prediction. We find that topography is very important for the
model, and our preferred forecasting model considers its influence on the potential energy change of the
crust and magma. We tested the influence of topography by running the model assuming no topography
and found that the path of the 2014 dike could not be hindcasted. The results suggest that lateral dike
propagation is governed not only by deviatoric stresses but also by pressure gradients and gravitational
potential energy. Furthermore, the model predicts the formation of curved dikes around cone-shaped
structures without the assumption of a local deviatoric stress field. We suggest that a likely eruption site for a
laterally propagating dike is in topographic lows. The method presented here is simple and computationally
feasible. Our results indicate that this kind of a model can be applied to mitigate volcanic hazards in regions
where the tectonic setting promotes formation of laterally propagating vertical intrusive sheets.

1. Introduction

Physically complete and realistic numerical models of dike propagation have not yet been developed. This is
due to the complexity and computational impracticality of considering all factors that may affect dike prop-
agation [Rivalta et al., 2015]. The aim of this study is to present a simple and fast approach for forecasting the
path of a laterally propagating dike. In earth science, simplifying assumptions are required due to the Earth’s
heterogeneous nature, the details of which are unknown. A forecasting model of any sort should consider
such simplifications and assumptions, as well as propagate errors of the input parameters whenever possible.
For complex and computationally expensive numerical models, such error propagation might be difficult on
the time scale in which dikes propagate and when results are required as soon as possible.

To achieve this goal we present an approach that is able to hindcast the path of the 2014 and 1996 intru-
sions originating at the Bárðarbunga volcano, Iceland [Sigmundsson et al., 2015; Einarsson et al., 1997]. The
2014 dike intrusion is well documented and demonstrates segmented propagation with significant changes
in strike. A dike’s direction of propagation is influenced by the orientation of the least compressive stress (𝜎3)
[Anderson, 1951]. However, it has been shown that other factors (e.g., dike driving pressure, structural, elas-
tic, and/or density discontinuities) may favor different opening directions. Moreover, measuring deviatoric
stresses in the crust is difficult, and verifying with observations whether a dike propagates exactly perpen-
dicular to 𝜎3 is thus challenging. The Bárðarbunga 2014 intrusion showed that dike emplacement was not
completely perpendicular to the least compressive stress. This was seen in modeling of geodetic data, as sig-
nificant strike-slip motion accompanied dike formation [Sigmundsson et al., 2015, supplementary Figure 4].
Few lateral diking events have been monitored with such high accuracy in hypocentral locations and geode-
tic measurements as the 2014 Bárðarbunga dike, where relative errors of relocated hypocenters are generally
less than 200 m in longitude and latitude, thus providing excellent constraints on models of geodetic data.
Modeling of the Upptyppingar 2007–2008 dike in Iceland also demonstrated that geodetic data could not
be explained without a shear displacement along the plane of the dike [Hooper et al., 2011]. This strongly sug-
gests that emplacement is not perpendicular to 𝜎3. While it is evident that orientation of the principal stresses
plays an important role in determining dike propagation orientation, the cases of the 2014 Bárðarbunga dike
and Upptyppingar 2007–2008 dike confirm that other factors should also be considered.
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Several studies have found that factors other than deviatoric stresses can influence dike formation. Pollard
and Muller [1976] found that a gradient in magma pressure or lithostatic pressure was a plausible explana-
tion for the tear-drop shape some dikes show in horizontal cross section. This indicates that the equilibrium
configuration of the crust after a dike intrusion, where the total potential of an elastic body is at a minimum
[Reddy, 2013], is influenced by pressure gradients. Dahm [2000] concluded that the tectonic stress gradient,
length of fractures, and buoyancy all influenced the orientation of vertically propagating magma. Watanabe
et al. [2002] demonstrated, using analog experiments, that there is an interplay between dike driving pres-
sure and directions of principal stress. Mériaux and Lister [2002] concluded that the dike alters the stress field
as it propagates and, therefore, does not follow the principal stress trajectories in the crust before the diking
event. The study by Sigmundsson et al. [2015] showed that a dike propagation model that considered strain
and gravitational energy changes due to topography could well explain the observed changes in strike. Here
we explore further the role of topography and how the fact that it is easily measurable can help us to fore-
cast lateral dike propagation with reasonable accuracy when we also have a reasonable model of the plate
motion strain.

A propagating dike tip can be expected to be emplaced in such a way that the total potential of the system
is at a minimum. The minimum potential energy principle is a far-reaching variational principle [Reddy, 2013].
One can equivalently state that the emplacement should be such that it allows for the greatest energy release.
This can be interpreted as the path of least resistance. We apply it here to quasi-static dike propagation, which
means we do not consider the details of the magma flow within the dike. Similar methods have been used
successfully in studying dike propagation [e.g., Dahm, 2000; Maccaferri et al., 2011, 2014]. We introduce several
new aspects to this approach, including pressure changes due to realistic topography.

The total potential energy function UT can be written as a sum of the relevant terms

UT = Θs + Φg (1)

where Θs = 𝜃c + 𝜃f , i.e., the sum of the strain energy of the crust and of the fluid inside the crack, respectively,
andΦg = 𝜙c +𝜙f is composed of the gravitational energy of the crust and the gravitational energy of the fluid
inside the crack, respectively. When an isolated blob of magma propagates, such as was studied by Dahm
[2000] and Maccaferri et al. [2011] we expect all these terms to contribute the total potential and influence
the dike propagation in a straightforward manner. However, a laterally propagating dike, as is studied here, is
only a part of a more complicated system, i.e., a system of a coupled magma chamber, the crust and a dike.
Due to the difficulty of knowing the details of a magma chamber a priori, we only look at the dike, whose
position, depth, and geometry can all be constrained relatively well with seismic and geodetic data. However,
the energy released due to deflation of a magma chamber is proportional to the volume that is released and is
thus proportional to the dike tip opening. We can therefore infer how including it in a model might influence
the results. See further discussion of this effect and other considerations of the energy changes of the more
complicated system in section 4.4.

In our model, the dike tip is a vertical, laterally propagating crack where the upper and lower margins are
at fixed depth with respect to the elevation of the topography. Because the Bárðarbunga volcano and sur-
roundings are covered by an ice cap with a thickness of about a few hundred meters, we essentially have two
topographic surfaces, of the ice and bedrock. We reference the depth to a single surface by taking the ice
thickness and multiplying by the ratio of the density of the ice and bedrock and then add to the elevation of
the bedrock topography.

The path of the dike is systematically lengthening as the crack tip is emplaced in such a way that it minimizes
the potential energy. In the following we will consider the change in the potentialΔUT rather than its absolute
value when evaluating different propagation directions. We determine the propagation path that causes the
greatest energy release or, in other words, the greatest lowering of the potential energy, so evaluating the
absolute potential energy is not necessary. We have assumed that the magma is incompressible, so the strain
energy change of the magma is zero (Δ𝜃f = 0), which is one of the four terms initially presented in equation (1).
This assumption is reasonable because we consider a laterally propagating dike tip that is propagating at the
level of neutral buoyancy (LNB) and thus not exposed to significant changes in confining pressure.

The approach we present here allows us to create a probability density function (PDF) for dike propaga-
tion paths in near-real time without requiring great computational power. All computations presented in this
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paper were carried out on a regular laptop. Although the method presented by Sigmundsson et al. [2015] could
have been implemented for a similar purpose, it was too computationally expensive to be used for building
a distribution of the most likely path of the dike in near-real time. We estimate the approach presented here
to be on the order of 1000 times faster than that of Sigmundsson et al. [2015]. In Sigmundsson et al. [2015],
the dike was assumed to propagate at a fixed depth with respect to sea level. Here we look at a dike propa-
gating at the LNB and is thus at fixed depth below the topography. LNB propagation has been proposed as a
likely explanation for lateral flow of magma in dikes [e.g., Lister and Kerr, 1991; Fiske and Jackson, 1972; Fialko
and Rubin, 1999] and is thus perhaps more realistic than fixed-depth propagation. Furthermore, the depth
changes in seismicity and changes in lithostatic pressure were found to be correlated for the Bárðarbunga
2014 dike, suggesting LNB propagation [Heimisson, 2015]. The dike is assumed to propagate at 2.5 km below
the topographic elevation, having a width (height) of 5 km. This is in broad agreement with estimates from
the geodetic modeling of the 2014 Bárðarbunga dike [Sigmundsson et al., 2015]. We presented a method to
evaluate the gravitational energy change due to topography in Sigmundsson et al. [2015] that assumed the
topography to be point masses distributed on the surface of a half-space. Here we apply a different method,
which allows us to relax many of the assumptions behind that model, such as fixed depth propagation. The
crack model presented by Sigmundsson et al. [2015] to evaluate the propagation path assumed the opening
to be constant, and the crack tip was composed of only one rectangular dislocation. Assuming constant open-
ing, which is independent of strike, requires information about the actual dike opening, which is difficult to
attain without first modeling geodetic displacement. Here the crack tip is a single column of 10 rectangular
dislocations and is generally shorter in the along-strike direction. In Sigmundsson et al. [2015], we required ad
hoc measures to avoid stress singularities in a volumetric strain energy integral, which may have led to inac-
curate integral evaluations. Based on Dahm [2000], we use a boundary element method (BEM) coupled with
evaluating the energy change of the crust as a surface integral to resolve these issues of the volumetric strain
integral. The BEM allows us to solve for opening of the dike tip. This resolves the aforementioned problems of
assuming constant opening independent of strike. Furthermore, we expand on the work by Maccaferri et al.
[2011], which looked at vertical migration of magma with constant mass in two dimensions. We extend their
formulation into three dimensions, which allows us to study laterally propagating dikes. For the sake of sim-
plicity and computational efficiency, however, we do not model changes in the vertical extent of the dike. We
also compare our results to actual observations of dike propagation and show that the topography has a large
influence on the propagation path. Our results show that even though a large uncertainty affects the model
of the stress field, the influence of the topography is so great that a dike propagation path can be constrained
with relatively good accuracy and therefore that near-real-time prediction of the propagation path of laterally
propagating dikes is possible.

2. Propagation Model
2.1. Energy Change of the Crust
The energy change Δ𝜃c + Δ𝜙c due to slip on surface Σ is given by equation (2) [Dahlen, 1977; Savage and
Walsh, 1978]. Note that this equation accounts for not only the strain energy change, as is often stated, but
also the total energy change of the crust (see section 4.2 for a detailed explanation of this issue). One side of
the surface is Σ− and the other one Σ+. 𝝂 is the normal to Σ. The displacement is described by [u], which is
the difference between displacements on Σ+ and Σ−. We have

Δ𝜃c + Δ𝜙c = −1
2 ∫Σ

[ui]
(
𝜎0

ij + 𝜎1
ij

)
𝜈jdΣ (2)

where𝜎0
ij is the stress tensor acting at a point onΣbefore slip and/or opening and𝜎1

ij after slip and/or opening.

To evaluate the energy change from crack opening, we need the absolute stress field. From the stress field, we
can calculate traction on a crack surface. Once the crack is opened and filled with low-viscosity fluid, the shear
traction will vanish; however, the normal component of the traction vector does not. From these changes in
traction we can calculate the displacements of the crack surface using a BEM. Once the displacements are
estimated, we can calculate the energy change of the crust.

In the following, we adapt the methodology described by Maccaferri et al. [2011] to three dimensions
to evaluate this integral. The crack surface is discretized into rectangular patches, each assumed to have
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uniform stress change on the surface. We can write the stress before slip as the sum of the following terms on
one patch:

𝜎0
ij = Plitho𝛿ij + 𝜎T

ij (3)

where Plitho is the lithostatic pressure, 𝛿ij the Kronecker delta, and 𝜎T
ij the stress contribution of plate motion

or other causes that contribute to stresses in the crust other than pressure. Lithostatic pressure is calculated
assuming the density model for the crust described in Appendix A.

It is more convenient for the BEM if equation (3) is written in terms of components of the traction vector in
the basis of the unit normal 𝜈i , the dip vector 𝜈d

i , and the strike vector 𝜈s
i of each point of the crack:

Normal: T 0
n = 𝜎0

ij 𝜈j𝜈i Dip: T 0
d = 𝜎0

ij 𝜈j𝜈
d
i Shear: T 0

s = 𝜎0
ij 𝜈j𝜈

s
i (4)

The traction vector in the basis of these orthogonal vectors before crack opening is thus

T0 =
(

T 0
n , T 0

d , T 0
s

)
(5)

The traction vector after crack opening is

T1 = ( T 0
n − ΔP , 0 , 0 ) (6)

Once a crack opens and is filled with low-viscosity fluid, all shear terms will become zero. ΔP is the difference
between the fluid pressure and the confining pressure:

ΔP = Pfluid − Pconf (7)

The fluid pressure can be written as
Pfluid = 𝜌f g(zT − z) + Pex + P1

litho (8)

where 𝜌f is the density of the magma, z is the vertical location of the patch, and zT is the top rim of the dike
at the starting point of propagation. The term 𝜌f g(zT − z) thus represents the hydrostatic pressure inside the
dike tip. The z axis is considered positive upward. Pex is extra pressure which may be caused by a connection
to a pressurized magma reservoir and may decay as the dike propagates. P1

litho is the lithostatic pressure at
the top rim of the dike where it first opens and begins to propagate. Where the dike first opens, it must have
fluid pressure equal to the effective normal stress on the crack surface plus overpressure to fracture the rock.
However, it is unrealistic to change the assumed fluid pressure depending on the strike of the segment. We,
therefore, use the lithostatic pressure in equation (8) to estimate the fluid pressure. The dike is therefore guar-
anteed to have nonnegative opening in any direction because, at a divergent plate boundary the lithostatic
pressure functions as an upper limit to the effective normal stress. The assumed magma pressure will conse-
quently not be a function of strike. The confining pressure, however, should be a function of the strike, and
we account for that in equation (9). Determining the extra pressure Pex is difficult. Some studies might sug-
gest that extra pressure would be needed to fracture the rock and should account for the tensile strength of
the host rock. Schultz [1995] estimated an intact block of basalt at room temperature to have tensile strength
of 14.5 ± 3.3 MPa. This value would suggest that considerable extra pressure would be needed. However,
[Jónsson, 2012] studied kilometer-scale tensile strength of granite and found it to be up to an order of magni-
tude less than the typical laboratory values, which suggests that a much lower extra pressure, if any, is needed
for propagation. For the final model runs presented in the results we set Pex = 0. We found that relatively
small values of the extra pressure in the range 0–5 MPa did not have significant influence on the results; how-
ever, larger values cause unrealistic behavior as is discussed further in section 4.3. Because the dike tends to
propagate downhill, the hydrostatic pressure increases in the tip. This effect causes inflation of the dike tip
in topographic lows (Figure 1). Even though the lithostatic pressure is constant in LNB propagation, the fluid
pressure and overpressure is generally increasing.

The confining pressure is
Pconf = Plitho(z) + 𝜎T

ij 𝜈i𝜈j (9)

where 𝜎T
ij 𝜈i𝜈j is the component of stress other than pressure that is normal to Σ. Note that the normal trac-

tion on Σ after opening of the dike is just the magma pressure at that depth. We calculate ΔP according to
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Figure 1. Example of how the dike tip opening changes depending on the topography. In this example simulation, the
dike path was constrained to go along a straight line to make the figure simpler. The blue line above shows the bedrock
topography. Notice how low topography correlates with large opening. This is because the magma pressure is increased
in topographic lows.

equation (7), however, because −ΔP is the change to the normal traction before and after opening and it is
the quantity we require to solve for opening in the BEM.

Now, equation (2) can be replaced by a sum over k patches:

Δ𝜃c + Δ𝜙c ≈ −1
2

k∑
l=1

[
bl

n

(
T 0,l

n + T 1,l
n

)
+ bl

dT 0,l
d + bl

sT 0,l
s

]
Σl (10)

where l is the number of a patch and Σl is the area of patch number l. T 0,l
i + T 1,l

i are the ith component of the
traction vector acting on patch number l, where 0 indicates the traction vector before opening and 1 indicates
the traction vector after opening.

The components of the vector bl = (bl
o, bl

d, bl
s) represent opening, slip in the strike direction, and slip in the dip

direction at patch number l, respectively. In LNB propagation, the fluid pressure (equation (8)) is a function of
the elevation of the topography. It therefore influences the overpressure of the dike tip (equation (7)), which in
turn, changes the normal traction after opening in equation (10). The energy change of the crust thus becomes
a function of the elevation of the topography. We find that this hydrostatic pressure gradient induced by the
topography is very important because it heavily influences how much strain energy can be released during
the dike emplacement. Note that if the dike does not follow LNB, equation (9) also becomes a function of the
elevation of the topography because the dike will be exposed to changes in confining pressure.

2.2. Gravitational Potential Change of the Magma
The gravitational potential of the magma in a dike tip can be written:

𝜙f = 𝜌f VgZ1 (11)

where Z1 is the z component of the center of mass of the magma in the tip and V is the volume of the tip. To get
the change in potential energy, we must consider where the magma is being supplied. Assuming that it being
transported laterally from the starting point of the first segment of the dike, we can express the difference in
gravitational energy change of the magma:

Δ𝜙f = V𝜌f g(Z1 − Z0) (12)

where Z0 is the center of mass of the first segment. Note that if the dike is always traveling at a fixed depth
with respect to sea level, this model predicts no change in gravitational energy of the magma, as would be
expected.

If we consider a LNB propagation laterally away from a cone, the dike begins by traveling downhill, but once
outside the cone, it will move at fixed depth with respect to the z axis. At first glance one might think that
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the magma would, at that point, have no change in gravitational energy. This is not the case, however, as the
initial downhill emplacement of the dike results in magma flowing downhill when new segments are added
to the end. This favors the crack orientation that allows for the greatest opening, because that results in the
largest downhill mass transfer. This is also the orientation that is perpendicular to 𝜎3.

We assume that the magma has a density 𝜌f = 2700 kg/m3, which is the same as the average density for
the layer in which the dike is assumed to propagate (see Appendix A). The criteria for LNB propagation is
therefore met.

2.3. Plate Boundary Stress Model
Our model is highly dependent on the state of stress in the crust. One of the major causes for deviatoric stress
accumulation at plate boundaries is motion of the tectonic plates. We compare results obtained by different
models for the stress accumulation due to rift spreading. One model that has been used to model plate bound-
ary deformation is the so called buried dislocation model [e.g., Árnadóttir et al., 2006; LaFemina et al., 2005].
Such a model was used to estimate plate boundary strain in Sigmundsson et al. [2015]. It was also used by
Heimisson [2015] who noted, however, that for a divergent plate boundary, a buried dislocation stress model
has a minimum in tensional stress along the axis of the plate boundary and maxima on either side of the axis.
For a buried dislocation at depths in the same range as the brittle-ductile boundary in Iceland, the least com-
pressive stress becomes close to zero at the center of the rift zone at the surface. This is caused by close-to-zero
gradients in the displacement field in the immediate vicinity of the plate boundary central axis (Figure C1a).
Although observations, such as presented by LaFemina et al. [2005], cannot constrain if this change in slope
occurs in nature, we nevertheless suggest that this is unlikely to be a realistic representation of the strain field.
For example, in a study of the Reykjanes peninsula in SW Iceland, Keiding et al. [2009] considered strain rates
from GPS velocities and showed that the area of highest tensional strain accumulation lies mostly in a single
belt along the plate boundary. This contradicts the strain field predicted by a buried dislocation.

From the velocity profiles over the divergent plate boundaries in Iceland, such as presented by LaFemina
et al. [2005] and Pedersen et al. [2009], we propose a function of the following form to describe the horizontal
velocity or displacement field due to plate movements:

u(d) = U
𝜋

arctan
( d

D

)
(13)

where d is the distance perpendicular to the axis of plate spreading. The value of d can be both negative and
positive depending on which side of the plate boundary u is being evaluated. The surface displacement u is a
vector with direction that is perpendicular to the axis of plate spreading and always pointing away from the
axis. D is a free parameter that should be proportional to the locking depth and has the same unit as d. The
separation of the two tectonic plates in the far field is U. Equation (13) is very similar to the screw dislocation
model, which has been applied to plate boundary deformation of transform plate boundaries in Iceland and
elsewhere [e.g., Savage and Burford, 1973; Árnadóttir et al., 2006]. An equation equivalent to (13) was also
proposed by Islam and Sturkell [2015] to fit horizontal surface velocities at the divergent plate boundary in the
Eastern Volcanic Zone of Iceland. Further implementation of this model is described in Appendix C.

2.4. Probability Distribution and Path Prediction
To infer where a dike is most likely to propagate, we carry out multiple simulations of the preferred path of
propagation while varying the stress model input parameters.

The simulation process goes as follows (Figure 2):

1. Stress model parameters are randomly sampled from a uniform distribution within plausible ranges.
2. The starting point of the first vertical dike segment is located at predetermined x-y coordinates. We assume

all segments are 2 km long.
3. The dike segment is rotated around its starting point, and a strike is picked randomly based on a proba-

bility distribution that strongly favors strikes close to the value that minimizes the potential energy (see
section 2.5).

4. Another segment is added to the end of the previous one and again the most favorable strike is found. This
process is repeated for a fixed number of times.

5. Steps 1 to 4 are repeated to generate multiple simulations.

We randomly sample the parameters of the stress model from within a plausible range at the start of each sim-
ulation. For the Bárðarbunga dikes, we assume the far-field separation of the tectonic plates, or the opening
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Figure 2. Schematic figure of the dike emplacement process in
each simulation. Segments 1 and 2 have already been
emplaced, here under a simple cone-shaped volcano, with
orientation minimizing the potential energy. Segment 3 is being
rotated around the end point of segment 2 to determine the
most favorable orientation. This process is then repeated for the
next segment.

below locking depth, U in equation (13), varies
from 1.0 m to 4.2 m. This roughly corresponds to
the buildup of tectonic stresses in Iceland for 50
to 220 years of plate motion. From seismic mon-
itoring in Iceland, we infer that in the years prior
to the 2014 Báðarbunga event no dike has prop-
agated in the same direction. A fissure eruption
fed by the Bárðarbunga system is inferred
to have occurred between 1794 and 1864
[Hartley and Thordarson, 2013]. The 2014–2015
eruption reactivated the same craters as this
previous eruption. It is thus likely that a similar
diking event caused that eruption. The location
of the center axis of the rift zone is through
the center of the Askja volcanic system, which
geodetic measurements have suggested to be
the center of the plate boundary in that region
of Iceland [Sturkell and Sigmundsson, 2000]. We
vary this location by ±2.5 km in easting to esti-
mate the error in the actual location of the plate
boundary. Comparison of the average 𝜎3 from
the slab model over 1–5 km depth range and 𝜎3

produced by the arctangent function revealed
the optimal range for D in equation (13) to be 4.6 km to 7.8 km. This range provides the best stress estimate
for a slab of 6–8 km thickness, which is the suggested depth of the brittle-ductile boundary. The strike of
the center axis of the rift is varied from E13.30∘N to E15.85∘N. We estimate these values by considering what
three different commonly used plate motion models (NUVEL 1A [DeMets et al., 1994], MORVEL [DeMets et al.,
2010], and REVEL [Sella et al., 2002]) predict for the strike of the plate motion vector of the Eurasian plate with
respect to the North American plate at the north and south ends of the Bárðarbunga 2014 dike. The largest
difference in the angle is between NUVEL 1A, predicting 105.85∘ at the northern end, and REVEL, which pre-
dicts 103.30∘ at the southern end. The rift axis should be perpendicular to that vector. These ranges for the
parameters are summarized in Table 1. The step size in the simulations is 2 km; considering a smaller step size
is not reasonable because the bedrock topography has a 0.5 km posting, and any interpolation is likely to bias
the results.

The starting point of all simulations is fixed where the earthquake swarm exits the caldera for the 2014
Bárðarbunga dike. This is the beginning of the first segment identified with relative hypocenter locations pre-
sented by Sigmundsson et al. [2015]. The first segment in the simulation is forced to have strike between 97∘

and 157∘. This is done so that the simulation starts in the direction of the propagating swarm which exited the
caldera, which was 127∘. We allow for a range of about ±30∘ to test the stability of the method. Once the first
segment has been emplaced, the next one is added by searching for the most favorable orientation within
± 85∘ of the strike of the previous segment; this allows the dike path to have a sharp turn, as was observed by
Sigmundsson et al. [2015]. The orientations are evaluated in 50 equally spaced steps. We pick the most favor-
able strike at random but give weights to the probability of each strike based on how much it deviates from
the lowest value. Our weighting discriminates strongly against values that are significantly higher then the
lowest value. This is done so that some orientations that give values very close to the lowest one can also be

Table 1. Randomly Sampled Stress Parameter Ranges

Parameter Range

D equation (13) 4.55–7.80 km

U equation (13) 1.0–4.2 m

𝛼 (strike of rift axis) 13.3∘ –15.85∘

Horizontal shift of rift axis ± 2.5 km

picked. More details follow in section 2.5.

For implementation of the boundary ele-
ment method to forecast the location of a
new segment, we consider the conditions at
the dike tip by superimposing stresses from
the previous five segments when solving for
opening and evaluating energy changes on
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the segment for which the optimal strike is being determined. Perhaps a more obvious approach is to resolve
for opening on all previous emplacements at each step. There is, however, a physical reason for favoring our
approach over resolving for opening of all segments, as it may in reality be unlikely that energy changes
in the dike, other than the tip, will influence the propagation path because instantaneous communication
between the tip and other parts of the system is probably not occurring. This is discussed further in section 4.4.
Our approach is also more computationally feasible since it requires considerably fewer function calls to the
dislocation function, which is the most computationally expensive part of the simulations. Furthermore, con-
sidering energy changes of the whole dike results in the G matrix (equation (B1)) becoming much larger than
in the approach we implemented, which would slow down computation and require more memory.

We collect the locations of the start and end point of each segment of every simulation in the x-y plane and
form a histogram by binning the frequency of points in a two-dimensional grid of 5 km × 5 km. We then
normalize the frequency of each bin by the maximum frequency, removing bins with a value lower than 0.01
to reflect that the dike is unlikely to propagate there. In each simulation, the total dike length is 50 patches
along strike, so that each simulation results in a 100 km long path prediction. This results in longer paths than
observed for the Bárðarbunga dikes; however, for the hindcasting we should assume that we would not know
beforehand how long the dike is going to be. The extent of the bedrock topographic map used is limited, so
we remove points which fall outside this area. Because the most frequent bin is always inside that area, the
relative value of the remaining bins inside the boundary is unchanged. The bedrock digital elevation model
(DEM) is displayed in Sigmundsson et al. [2015]. The description of the bedrock DEM is given by Björnsson and
Einarsson [1990].

2.5. Random Sampling of Strikes
When the strike that gives greatest energy release is identified, there maybe other orientations that give simi-
lar results. Even though one orientation might give a slightly lower value than another, this could, for example,
be an artifact of the resolution of the bedrock topography, uncertainties in density structure, or due to numer-
ical error. We take this into account by not always picking the strike that gave the minimum, but randomly
sample with weighted probability to form a probability density function of the dike path. The weight of the
ith element of the strike vector is

wi = exp
⎛⎜⎜⎝−

(
a

ΔUi
T − ΔUmin

T

ΔUmax
T − ΔUmin

T

)2⎞⎟⎟⎠ (14)

where ΔUi
T is the total energy change for the ith element of the strike vector, ΔUmin

T is the energy change for
the strike that minimizes the total potential energy, ΔUmax

T is the energy change which maximizes the total
potential energy and a is a constant. The higher the value of a, the more likely it is that the strike with lowest
potential is picked. When ΔUi

T = ΔUmin
T , then wi = 1; however, when ΔUi

T = ΔUmax
T , then wi = e−a2

. We set
a = 6. This means that when the ratio (ΔUi

T − ΔUmin
T )∕(ΔUmax

T − ΔUmin
T ) = 1∕4, then wi ≈ 0.1. The quadrant

of the strike values that give the lowest potential energy values will thus have significant chances of being
picked, whereas other strikes have very little chance of being picked.

3. Results
3.1. Cone-Shaped Topography
We compare the model predictions based on our approach to the classical case of a dike propagating laterally
away from a cone-shaped volcano. We assume an isotropic deviatoric stress field and that the topography
only induces pressure variations that are equal to the topographic load. Figure 3 shows the results for a cone
with elevation of 1000 m and radius of 10 km which is exposed to 1 MPa of tensional stress along the y axis.

Both the LNB model and fixed depth model predict curved dikes that do not align perpendicular to the
regional stress field under the volcanic edifice, even without the assumption of local deviatoric stress field.
Assuming that the dike propagates at fixed depth makes Δ𝜙f (equation (12)) irrelevant, but both depth mod-
els predict somewhat similar paths in the presence of the edifice, although including Δ𝜙f does increase
the influence of the topography. This is because the gravitational energy change of the magma tends to
be at a minimum where the energy change of the crust is also at a minimum, i.e., where the opening of
the dike tip is the largest. In the fixed depth case, the magma pressure remains constant, but the confining
pressure changes, and the dike overpressure responds in similar manner to topography as in the LNB model.
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Figure 3. Predicted dike propagation paths (lines) for a cone-shaped
topography. The black dot in the center is the top of a 1000 m high
cone with radius of 10 km, shown as a black line. The first segment is
assumed to be radial away from the top of the cone. After that the dike
tip can be emplaced at any strike in the range of ±85∘ from the
previous strike. The first radial segments are all oriented at a constant
angle to each other. The imposed deviatoric stress is 1 MPa of tension
in the direction of the y axis. Here we compare a LNB model with a
fixed-depth model to explore the model’s sensitivity to depth changes.
Arrows indicate direction of tensional stress.

This suggests that the Δ𝜙f term is not
important to the model and that similar
results can be attained without that term.
We found, in a more complex simulation
(section 3.2) that including that term only
marginally improved the model’s agree-
ment with observations. From this we
can conclude that if the dike is propa-
gating at a fixed depth or somewhere
between the LNB and a fixed depth,
we can expect similar results for the
forecasting model.

In a study by Roman and Jaupart [2014],
they found that radial dikes which curve
and eventually align to the regional stress
field at Spanish Peaks, Colorado, could be
explained by stress field changes induced
by loading of a volcanic edifice. This could
explain why these dikes are not always
connected to a central magma chamber
and, therefore, unlikely to be created by
the rotation of a stress field due to a pres-
surized magma reservoir. However, load-

ing stresses, other than pressure, will eventually be, at least partially, released through faulting and fracturing.
It is difficult to estimate the remaining deviatoric loading stresses in the brittle crust at time of diking. Our
results suggest that topography alone, if all the deviatoric loading stresses have been released, can explain
curved dikes in the vicinity of volcanic edifices. We tested running the model such that the stresses of the pre-
vious segments were not considered. In that case, the model predicted a curved path beneath the edifice, but
a sudden alignment perpendicular to the regional 𝜎3 direction once it propagated outside the edifice. The
reason the path curves outside the edifice is, therefore, due to stress field perturbations caused by the dike
itself. This is equivalent to the effect where the dike alters its surrounding stress field, which was captured in
the dike propagation model of Mériaux and Lister [2002].

3.2. Probability Distribution for Bárðarbunga Dikes
We compare the probability distribution from our path prediction model to the observed path of the 2014
and 1996 Bárðarbunga dikes (Figure 4). The region of high probability for the dike propagation is in a good
agreement for the observed paths in 2014 and 1996, which appear to have exited the caldera in a similar
location. It should be noted that the epicenter locations for the 1996 dike are less certain than for the 2014 dike.

To explore further the role of topography versus stress, we consider a few end-member cases (Figure 5) where
we change the deviatoric stress or topography models, which alters pressure in the crust. When there are
no stresses from plate motion considered (Figure 5a), the propagation model is only governed by pressure
changes due to the topography. The path of the 2014 dike is resolved reasonably well, although the whole
distribution shows considerable scatter. However, the 1996 dike and fissure extend into a low-probability
area. Due to the 1996 dike being considerably shorter than that of 2014, we would expect it to be pre-
dicted with higher accuracy. The other end-member is a model purely determined by the plate boundary
strain (Figure 5b), in which the topography is assumed to be flat. In that case, the model predicts propa-
gation perpendicular to 𝜎3. The 1996 dike is well constrained, but the 2014 is not hindcast. Comparison of
Figures 5a and 5b suggest that the 1996 dike released deviatoric stresses in the vicinity of the exit path
from the Bárðarbunga caldera, which sent the 2014 dike on a more topography-driven route. By comparing
Figure 5b and Figure 4, the great importance of topography on the model becomes evident, as the influence
of topography on the magma pressure is the only difference between these hindcasts.

We have so far assumed topography to only change pressure in the crust; however, in reality, loading the
crust also induces deviatoric stresses. These stresses caused by buildup of topographic structures decay
with time by faulting and fracturing. Figure 5c considers the end-member case where the topography is
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Figure 4. The dike path PDF. Small black dots are relative relocations of epicenters associated with the 2014 diking
event between 16 August and 6 September [Sigmundsson et al., 2015]. Larger grey dots are located events from the
1996 unrest and inferred dike propagation to the south, and the row of black stars traces the approximate location of
the 1996 Gjálp eruptive fissure [Einarsson et al., 1997]. The color bar shows scaled frequency, and colored square patches
are top view of a 3-D histogram. The most probable location gets a value of 1 and the least probable, 0. All areas with a
value less than 0.01 are removed. The green triangle is the starting point for all simulations, coinciding with the starting
of the first segment identified by Sigmundsson et al. [2015]. Upper case A, B, G, and K indicate centers of the Askja,
Bárðarbunga, Grímsvötn, and Kverkfjöll volcanoes, respectively. The four black dots are the corners of the continuous
bedrock DEM used; all segments that lie outside or on this box are removed before binning to form the histogram.

acting as a load on the crust, both changing pressure and also inducing deviatoric stresses. The topographic
stresses are computed by assuming all topography within a 0.5 km × 0.5 km area and above 500 m.a.s.l.
acts as a point load on a elastic half-space. The stress tensor at each point is calculated by integrating
Boussinesq’s equation [Boussinesq, 1885] for all point loads acting on the surface. We find that this model does
not hindcast the 2014 dike. The reality is somewhere between the two end-members of all deviatoric load-
ing stresses having been released and no deviatoric loading stresses having been released. Figures 4 and 5c
display these two end-member cases. Comparison of the two suggests that the end-member where all devi-
atoric loading stresses have been released is a better approximation for the state of stress in the crust, at least
for a very tectonically active area such as the east and north rift zones of Iceland that we are considering.

Here we have shown that the model can hindcast the paths of the 1996 and 2014 laterally propagating dikes.
Moreover, we have found topography to have significant influence on the path. In spite of large uncertainty in
the model of the tectonic stresses, the path is nonetheless quite well resolved. It is evident that having such a
model during monitoring of the Bárðarbunga 2014 dike would have been very helpful in hazard assessment
and mitigation. In Iceland, basaltic dikes are of great concern due to the relatively high likelihood of eruptions
under ice, leading to explosive eruptions and catastrophic floods [Guðmundsson et al., 1997]. Dikes do not
form only at divergent plate boundaries, such as in Iceland or the Afar region of Ethiopia [Wright et al., 2012],
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Figure 5. The same as Figure 4 except the stress model has been changed. (a) No deviatoric stress assumed in the crust. (b) All influence of topography on the
model has been removed, and only the plate boundary stress model determines the path. (c) All topography above 500 m.a.s.l. is assumed to be loading the
crust, causing both pressure changes and deviatoric stresses.

but also in different tectonic settings. Eroded stratovolcanoes, such as the Summer Coon volcano, Colorado,
demonstrate that some stratovolcanoes can produce lateral dikes in almost any direction [Poland et al., 2008].
This leads to difficulty in forecasting the dike path because dikes are not restricted to well-defined zones and,
therefore, of great concern in hazard mitigation. We suggest that a model such as the one presented here
will help in volcanic hazard mitigation in those tectonic settings also, given an appropriate stress model. Our
model, or models based on similar principles, should be used in more locations to hindcast in order to establish
better it’s utility and limitations

4. Discussion
4.1. The Influence of Topography
Lister and Kerr [1991] argued that the dominant pressure in fracturing of the rock as a dike propagates is the
dynamic pressure, i.e., the pressure that results from the fluid velocity. In the modeling presented in this study,
only static pressure is assumed to influence the energy release of the dike and determine its path. We tested
running the model with the dike tip always at constant overpressure, i.e.,ΔP = constant as opposed to being a
function of fluid and confining pressures (equation (7)), thereby mimicking a certain pressure threshold, such
as induced by dynamic pressure, that is required to cause the fracture to propagate. Even for a wide range of
overpressure values, the simulations were very unrealistic. At lower overpressure values (1–5 MPa), the dike
paths were typically very erratic, for example, showing zigzag motion and very little agreement with obser-
vations. It is unclear why this is the case, but in this situation the overpressure is not proportional to 𝜎3, and it
might therefore be energetically more favorable to emplace the dike such the strain energy is released as shear
rather than relaxation of tensional strain. At larger overpressure values of 10–50 MPa, the dike mostly went
in circles, not propagating more than a few kilometres away from its starting point. This behavior stopped if
the stress from previous emplacement was not included, and the dike then showed similar propagation as
for lower overpressures values. The circular propagation is thus suggesting that the dike is being emplaced
parallel to 𝜎3, which is created by compression of the medium surrounding previous emplacements. We thus
conclude that the model agrees in almost no way with observations if the overpressure is constant.

Assuming constant overpressure may be an oversimplification due to the directional properties of the
dynamic pressure, which may be mostly responsible for the fluid fracturing caused by the magma. Due to the
viscous nature of the magma, a small cavity is formed in front of the propagating dike tip, whose pressure may
be maintained by exsolved magmatic volatiles or inflow of host rock pore fluids [Rubin, 1993]. The force which
results from the dynamic pressure is dependent on the direction of the fluid flow field. Assuming that the
flow into the dike is mostly directed along strike, it will mostly contribute to lengthening the crack, thus push-
ing the cavity further; however, the static pressure applies force in all directions and thus deforms the crack
surface once it has been formed. Perhaps the deformation of the crack surface can ultimately be responsible
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for the direction changes by perturbing the stress field in front of the dike or restricting flow channels so that
magma cannot flow in certain directions. These are, however, only speculations, and we conclude that more
research is needed to explain this possible discrepancy.

Several studies have indicated that topography can influence dike formation. Hjartardóttir and Einarsson
[2015] showed that fracture density in rift zones decreases greatly in the vicinity of shield volcanoes in Iceland.
This indicates that such structures might act as barriers for dikes or even arrest them. Sigmundsson et al. [2015]
found that the Bárðarbung 2014 dike halted for 4 days in a topographic low, where it met a steep topographic
increase. It still inflated at the tip until it could break through the “barrier.” This furthermore suggests that dike
propagation is influenced by topography. Even though our model does not say anything about the changes
in propagation speed, it still predicts that the dike will, if faced with such structures, try to change direction,
if possible, and the opening of the tip will correlate negatively with the elevation of the topography
(see Figure 1). Poland et al. [2008] found radial dikes to widen with increasing distance from a central magma
chamber at the eroded Summer Coon volcano. This can be explained by topographic influence and is in
agreement with our model. For example, if the dike follows the LNB, the magma pressure will increase
(as the dike propagates away from the volcanic edifice) which causes widening of the dike. The same can be
expected for a dike that propagates at a fixed depth; however, in that case, the decrease in confining pressure
as the dike reaches shallower depth will result in widening of the dike. This corresponds well with the findings
of Pollard and Muller [1976], which suggest that the increase in lithostatic pressure or decrease in magma
pressure restricts the opening of the dike. If the opening is restricted, this will influence the fluid flow, which
can cause the dike to halt and allow pressure buildup. While the dike halts, a narrow dike tip may start to freeze,
thus further increasing the pressure threshold required for forward propagation. During that process, new
fractures might form, and the dike can find an alternative path, erupt, or eventually break through the barrier.
From this, we suggest that topographic lows are plausible eruption sites for laterally propagating dikes, as
has been previously suggested [Pinel and Jaupart, 2004]. If a dike is propagating at the LNB, pressure must
build in the tip in order for the dike to move upward, promoting fractures to propagate closer to the surface.
During uphill propagation, the kinetic energy of the magma is quickly turned into gravitational potential
energy, which should remove the influence of dynamic pressure.

4.2. Energy Change of the Crust
It is appropriate to address a common misconception in the literature about energy change in faulting.
Commonly, equation (2) is stated to describe the strain energy change associated with faulting of any kind.
However, as was demonstrated by Dahlen [1977] as well as Savage and Walsh [1978], this equation accounts
for the total potential energy change of the crust. In fact, it inherently accounts for the work done by body
forces. Dahlen [1977] rigorously investigated the energy change in faulting by applying a very generalized
theoretical framework. In his derivation of equation (2), he assumes slip tangential to the fault plane. At first
glance, it seems that his results may not apply to dikes; however, that assumption is only required so that the
equation holds where slip occurs on internal solid-fluid interfaces. Here we consider energy changes of the
fluid separately, so this is not a concern in our model. Savage and Walsh [1978] elegantly demonstrate that
this formula may be derived simply by calculating the work done by tractions when the walls of a crack are
displaced. They furthermore argue that since the Earth is a closed system, the work of the traction must also
account for work of body forces. Their derivation is in no way dependent on an assumption of tangential slip.

4.3. Extra Pressure
The parameter Pex in equation (8) is the extra pressure to which the whole dike is exposed. This can be caused
by the connection to a magma reservoir that has a certain overpressure. As was mentioned earlier, this extra
pressure could roughly represent the tensile strength of the crust. It is, however, unclear what that may be. This
is due to the large differences in values found for rock in laboratory settings and for inferred kilometer-scale
tensile strength. Here we set the extra pressure to 0. However, we also explored how other values influenced
the forecasting model. Extra pressure of less than 5 MPa did not cause significant changes in the forecast. We
did, however, find that for the cone topography, higher extra pressure resulted in greater deflection of the
dikes away from the x axis. A extra pressure of 5 MPa resulted in maximum shift in the y direction of about
1–1.5 km.

At 10 MPa extra pressure, the model began to behave strangely in a manner that is typically not observed
in dikes. This unrealistic propagation included zigzag paths or odd curves and kinks. This is probably caused
by the dike over inflating so that it is predominantly not releasing stresses but superimposing a new stress
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field that becomes the primary influence in its path, compared to the external influences of plate boundary
strain or topography. It is unlikely that a dike would, in reality, inflate in such a manner without propagating
further or breaking the surface. Our model is therefore strongly dependent on the pressure distribution. If
dikes propagated along the 𝜎1 principal stress trajectories, which were present in the crust before the dike
propagation, this would not be the case. More sophisticated modeling of the dike tip stresses by Mériaux
and Lister [2002] that considers the stress changes induced by the dike as it propagates, also found strong
dependence between the overpressure distribution and the dike path.

After evaluating how the model reacts to different extra pressure, we decided to set it to 0 MPa. This may not
be an unreasonable assumption, because the magma chamber overpressure will not typically be felt by the
dike tip due to the viscous resistance to flow [Lister and Kerr, 1991] This value gives a certain lower limit to the
influence of topography and assures that the paths do not exhibit unrealistic propagation modes.

4.4. Energy Changes of the System
In this study, we have mostly disregarded energy considerations of the deflating magma chamber that pro-
duces the dikes or changes in a dike once it has been emplaced. The strain release of the crust surrounding
this chamber and of its magma as well as the gravitational energy decrease of the crust due to its deflation
is not straightforward to include in a dike propagation forecast model. This is because of the many unknown
parameters that control the magnitude of these energy terms, such as the geometry of the magma chamber,
degree of inflation, depth, and volume. We consider the case of a lateral dike fed from a magma chamber at
the same depth level as the dike. When it deflates, the magma chamber releases energy proportional to its
volumetric contraction. We can thus infer that when a segment is emplaced, the magma chamber will release
the greatest energy for the segment that has the greatest volume or, in other words, the largest opening. This
is also, generally, when the energy change of the crust (Δ𝜃c+Δ𝜙c) andΔ𝜙f show the greatest energy release. It
may therefore be that if the energy change of the magma chamber were considered, it would promote similar
propagation paths as the Δ𝜃c and Δ𝜙f terms and, therefore, predict similar paths as our propagation model.

We also ignore the changes that might occur in the dike once it has been emplaced. These changes could be
taken into account by always resolving for opening of the whole dike during the emplacement of each seg-
ment. Instead of doing that we focus solely on the tip and only solve for opening of the dike tip; however, we
include the stress field from the previous segments when solving for opening of the tip. This approach is sig-
nificantly more computationally feasible, as was mentioned earlier. However, considering parts of the dike or
the system other than the propagating tip may also be unrealistic, as it implies instantaneous communication
between the propagating tip and other parts of the system. This raises a fundamental question of whether or
not the geometric emplacement of the dike is determined by the energy criteria of the dike tip or of the whole
system. While some studies [e.g., Dahm, 2000; Maccaferri et al., 2011] would favor the latter perspective, other
studies [Mériaux and Lister, 2002] suggest that the propagation is governed by stresses acting at the dike tip.
It is clear that energy dissipation must occur first in the advancing region of the dike before energy changes
occur in other regions of the system through material transport. This would suggest that changes that occur
in the magma chamber region or parts of the dike except the very tip will not significantly affect the direction
of the advancing tip. The model we have presented here agrees well with observations. This may be either
because our assumption that orientation is determined by the energy criteria of the tip only is correct or sim-
ply, as was suggested in the previous paragraph, that other factors may not affect the results considerably.
We suggest that a model of dike propagation based on time-dependent variational principles, rather than
quasi-static ones, is needed to better understand the determining factors in dike propagation.

4.5. Propagation Depth and Dike Height
We assumed a depth range for the dike based on what was inferred from geodetic modeling. The LNB model
we have considered here is a simplification. The depth and height of laterally propagating dikes is likely
to be governed by multiple processes and factors that are very difficult to estimate. These include density
changes, changes in material properties, previous dike emplacements, stress history, and viscoelastic relax-
ation. We acknowledge that our LNB model, where the dike stays at a fixed depth below the topography, is a
simplification. For example, Pinel and Jaupart [2004] suggested that the LNB could be even deeper beneath
topographic loads.

To be able to present a model that can forecast a dike propagation path based on easily observable param-
eters, we assume that all aforementioned processes have secondary influences on the path. Our agreement
with observations strengthens this assumption. Furthermore, we show with the cone-shaped topography
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that a dike propagating at fixed depth with respect to sea level gives somewhat similar prediction as the LNB
dike. It is thus likely that the prediction is not very dependent on the depth model used, although this may
not be the case if the topographic effects on the stress field were considered to decrease with depth.

The vertical extent of the dike is, contrary to our assumption, likely to be influenced by the magma overpres-
sure [Lister, 1990]. We suggest that such considerations, coupled with a similar model as presented here, may
be applied to identify likely eruption sites. Perhaps the first step toward such a model would be to apply sim-
ple relationships derived by Fialko and Rubin [1999] that associate dike height and overpressure. It should be
noted that these relationships may be overly simplified, as they consider the dike to be two-dimensional and
ignore the influence of the free surface.

4.6. Modeling Dike Arrest
As shown by Dahm [2000] and Maccaferri et al. [2011, 2014], estimating the arrest of a dike is possible by
considering when the energy release does not exceed a specific fracture energy threshold; however, modeling
a dike growing in mass, as we have done, and determining the arrest is more complicated. This is because
the energy release will depend on the overpressure and how the overpressure decays with time. To model
this process accurately requires consideration a coupled system of a dike and a magma chamber feeding the
dike. If we were to apply the model presented here for forecasting, we would not know beforehand how the
overpressure decays. It is therefore not reasonable to include such considerations of arrest for this purpose
due to the extremely variable possible decay rates. It should be noted that the energy release for the crack tip
in our model at most favorable strike was generally on the order of 500–1500 TJ.

5. Conclusions

We have developed a method for forecasting the path of laterally propagating dikes given the starting point
of propagation. The method is computationally feasible and can be used to form a probability distribution for
dike location in near-real time. We have compared our model to the propagation of the 2014 and 1996 dikes in
the Bárðarbunga volcanic system and found good agreement between predicted and observed propagation.

Our results suggest that topography plays a very important role in determining the path of laterally prop-
agating dikes. It influences the pressure changes in the dike and thus the strain energy change and the
gravitational energy change of the crust that results from dike opening. It also influences the gravitational
energy change of the magma, which may influence the path.

The observed paths of the 2014 and 1996 Bárðarbunga dikes can only be explained by taking into account
the deviatoric stress field from plate motion and lithostatic pressure changes from topography. It should be
noted that a model that only includes pressure changes from topography can explain the observed path of
the 2014 reasonably well, albeit with considerable scatter. It appears that the 1996 dike was more dominated
by deviatoric stress due to plate motion, while the 2014 dike was dominated by topography. We suggest that
the 1996 dike released deviatoric stress in the vicinity of the caldera, and therefore, the 2014 dike was directed
on a path which is better explained by topography.

We found that curved dikes around cone-shaped topography can be explained by topography alone with-
out the assumption of a local deviatoric stress field. This agrees with the observation that radial dikes are not
always connected to a central pressurized reservoir. This has been explained by rotation of deviatoric stresses
due to the loading of a volcanic edifice; however, such deviatoric stresses are not permanent (they are even-
tually, partially, released through faulting and diking), while pressure change remains. Nevertheless, it is likely
that such dikes are influenced by both local deviatoric stress and topography. We found that a model including
both deviatoric stress and pressure changes from topographic loading showed significantly less agreement
with observations than a model that only considers pressure changes from topography.

We found that the commonly used buried dislocation model may, at divergent plate boundaries, poorly
represent the deformation and stress field. We formulated a simple stress model based on the assumption
that horizontal displacements are reasonably well described by an arctangent function. We found that an
arctangent function better represents the deformation and stress of a stretched elastic slab than a buried
dislocation model.

We suggest that laterally propagating dikes are most likely to erupt in topographic lows. In topographic lows
the magma pressure is highest and thus the dike will be more inflated. To propagate out of a low, the dike
needs to inflate further, which promotes the propagation of fractures toward the surface.
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Appendix A: Density Model

The height of a dike may be on the order of kilometers, as was the case at Bárðarbunga 2014. The dike
is therefore likely to be exposed to significant changes in crustal density. We apply a simple correction, in
which we assume that the dike propagates in crust of density 𝜌2, but above the dike the crust has density 𝜌1.
Guðmundsson and Högnadóttir [2007] estimated from the work of Carlson and Herrick [1990] and Christensen
and Wilkens [1982] a plausible density range for the crust in Iceland as a function of depth. We have taken
these ranges and estimated average values of 𝜌1 =2400 kg/m3 and 𝜌2 =2700 kg/m. The density of the magma
was taken to be 𝜌m = 2700 kg/m3, so the criteria for LNB propagation is met. We note, however, that this
model for the density of the crust is a simplification, made for computational simplicity.

Most of the propagation path of the dikes were under the Vatnajökull icecap, so we need to also consider the
ice thickness and density in this model. We take the ice thickness li and multiply with the ratio between the
ice density and rock density 𝜌i∕𝜌t and add to the bedrock topography’s elevation. Because the ice is about
three times less dense then the rock, it is less important than the bedrock topography.

Appendix B: Boundary Element Crack Model

To solve for crack tip opening using the changes in traction on the crack surface, we use a boundary element
method (BEM). Assuming the crack tip is composed of a finite number of rectangular dislocations, we use
Okada’s Green’s functions [Okada, 1992] to form the matrix G presented in (B1).

𝚫T = GB ⇒ B = G−1𝚫T (B1)

𝚫T is the vector of change in traction and B is the vector displacement of the crack surface. Given 𝚫T, we use
(B1) to solve for B, which contains the strike-slip b1

s , · · · , bk
s , the dip-slip b1

d, · · · , bk
d , and opening b1

o, · · · , bk
o

of the dislocations, respectively. 𝚫T is given by

𝚫T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−T 0,1
s

⋮
−T 0,k

s

−T 0,1
d
⋮

−T 0,k
d

−ΔP1

⋮
−ΔPk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B2)

Figure B1. Figure shows a patch of area Σl viewed along
strike, on a crack surface approximated by a single
dislocation. (left) Patch before opening and (right) after
opening. The traction vector before opening T0 includes
a shear component. After opening, the shear is removed
and the stress vector T1 is normal to the patch and equal
to the magma pressure at that depth. The vector of
displacement is b, and its components are the opening,
strike-slip, and dip-slip motion of the dislocation.

Figure B1 shows the stress vectors before and after
the crack is filled with magma as well as the vector of
displacement b for one finite crack surface Σl .

G has dimensions 3k × 3k, where k is the number of
dislocations at the crack tip. Elements 1 to k of column
l in G are the contributions of traction in the strike
direction at the center of all dislocations induced by a
unit strike-slip displacement of dislocation l. Elements
k + 1 to 2k are the traction in the dip direction induced
by a unit strike slip in dislocation l, and elements 2k+1
to 3k in the same column are the contributions to the
normal traction due to a unit strike slip on l. In the same
way, column l + k contains the strike, dip and normal
tractions induced by a unit dip slip on l, and column
l + 2k the strike, dip and normal tractions induced by
opening on dislocation l. This matrix is calculated for all
dislocation 1 to k.
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Appendix C: Arctangent Stress Model

To investigate stress field at divergent plate boundaries, we applied a finite element method (FEM) for elas-
tostatic problems [Alberty et al., 2002]. We considered a two-dimensional cross section and model the brittle
crust as a rectangular slab of elastic material. The slab was assumed to extend from x = −60 km to x = 60 km,
which assures that the ends extend outside the deformation zone, believed to be at least 80 km wide in North
Iceland [Pedersen et al., 2009]. The thickness of the slab corresponds to the depth to the brittle-ductile bound-
ary or, equivalently, the locking depth, which has been suggested in the Askja area to be 6–8 km [Soosalu
et al., 2010; Key et al., 2011]. A zero-traction boundary condition is applied to the top surface at z = 0, but the
boundary condition on other surfaces is given by the displacement vector:

u =

[
U
2

sgn(x)
0

]
(C1)

where U is the far-field separation of the tectonic plate; we assume the center of the slab is at x = 0. Note that
sgn(x) = x∕|x| if x ≠ 0 and sgn(0) = 0 and is called the sign function.

We compare the results from the FEM modeling to our hypothesis that an arctangent function can explain
the deformation at the plate boundary and from two buried dislocation models (Figure C1). One buried
dislocation model consists of a single vertical tensile dislocation extending infinitely far and deep below a
certain locking depth at the plate boundary axis. The other buried dislocation model consists of two infinitely
long and wide horizontal faults that meet at plate boundary and slip in opposite directions, with slip vectors

Figure C1. Comparison of deformation and stress produced by different models assuming a locking depth of 7 km for
the elastic slab model and buried dislocation models and D = 7 km in the arctangent model. Far-field separation of the
tectonic plates of 4 m is assumed in all models. Tensile stress is positive. (a) Horizontal displacements at the surface.
(b) The least compressive stress at the surface. (c) Horizontal displacements at 3 km depth. (d) The least compressive
stress at 3 km depth.
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Figure C2. Comparison of average deformation and stress produced over depth range of 1–5 km by different models
assuming locking depth of 7 km for the elastic slab model and dislocation models and D = 6.25 km in the arctangent
model. Far-field separation of the tectonic plates of 4 m is assumed in all models. (a) The average horizontal
displacements. (b) The average least compressive stress (tensile stress is positive).

perpendicular to the axis of plate spreading. As Figure C1 demonstrates, these two models (shown with green
and black lines) create extremely similar deformation and stresses.

We conclude that the arctangent model resembles much more closely the deformation and stress of the elas-
tic slab than the buried dislocation models. Although at the surface, the elastic slab suggests a local minimum
in the least compressive stress, it is far less pronounced than for the buried dislocation models that predict zero
tension in the center of the rift zone. In Figures C1b and C1c, which are calculated for 3 km depth, the arctan-
gent and elastic slab models show very good agreement, while the buried dislocation models are significantly
different.

The problem with just using the elastic slab model directly is that it is too computationally expensive, which
is a problem due to the large number of simulations, where stress model parameters are varied and energy
function evaluations need to be performed. By looking at the average stress over a depth range of 1–5 km,
we calibrate the arctangent model using the FEM slab model and pick a value for D that best represents the
average stress (Figure C2). The results are presented in Table 1.
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In order to implement an arctangent model for plate boundary stress, we need a general equation for the
displacement and strain. Let us assume the center axis of the plate spreading is a line with strike 𝛼 east of
north and that the point (x0, y0) is sitting on this line, where x represents easting and y northing. The slope of
this line is then a = tan(90 − 𝛼), and the intersection with the y axis is b = y0 − ax0

The equation of the line is
y = ax + b ⇒ y − ax − b = 0 (C2)

The distance from this line to any point in the x-y plane is given by

|d(x, y)| = |y − ax − b|√
a2 + 1

(C3)

Equation (C3) is always positive, meaning that we do not get the direction of u(d) at a point P = (xp, yp). If
we drop the absolute values in equation (C3), then, if P is located under the line, d will be negative because
yp < axp+b. If P is above the line, d is positive, and if P is on the line, d = 0. The unit vector parallel to the line is

el =
1√

1 + b2

[
1
b

]
(C4)

By rotating vector el counterclockwise by 90∘, using the rotation matrix R, we get a new vector Rel that is
parallel to the line segment between point P and the perpendicular projection of P on to the line. Let us call
that point P′.

If the unit vector Rel is on the line segment PP′, it always points toward any P located above the line but away
from point P located below the line. Since u(d) has the same sign as d, we can have an expression for the x
and y components of u(d) so that the displacement vector always points away from the plate boundary:[

ux

uy

]
= u(d)Rel (C5)

To infer stress changes due to plate motion from the model in equation (13), we assume that the displacement
field is independent of depth. The derivatives needed to calculate the strain tensor are[

𝜕ux

𝜕x
𝜕uy

𝜕x

]
= 𝜕

𝜕x
u(d)Rel and

[ 𝜕ux

𝜕y
𝜕uy

𝜕y

]
= 𝜕

𝜕y
u(d)Rel (C6)

From equation (C6), the strain and stress tensors can be calculated.

If the rift axis is oriented parallel to the y axis, then the expressions derived here are not valid because the line
will not have a defined slope. Although simpler expressions can be derived for that case, one can also make
use of the equations presented here by rotating the coordinate system 90∘ and thus assuming the rift axis is
parallel to the x axis instead of the y axis.
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