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Abstract

This paper considers estimation and inference in semiparametric smooth coefficients

dynamic panel data models. It proposes a class of local estimators that can be given an

interesting information theoretic interpretation, and a number of test statistics that can

be used to test for the (local) correct specification of the model and for the constancy of

the smooth coefficients. The results of the paper are rather general as they allow for the

three cases of "large N , small T", "small N , large T" and "large N , large T", for the pos-

sibility that some of the regressors might be correlated with the unobservable errors and

for the possibility that some of the variables used in the estimation might not be directly

observable. Simulations show that the proposed method have competitive finite sample

properties.
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1 Introduction

This paper considers estimation and inference for semiparametric dynamic panel data models.

Panel data are particular type of longitudinal data very popular in both economics and finance,

where they are used to control for individual heterogeneity and identify and measure effects

that are simply not detectable in pure cross-section or pure time series models. Dynamic panel

data models include lags of the dependent variable and are particularly useful to characterize,

for example, dynamic (short, medium and long run) economic relationships and the dynamic

implications of various financial policies. There is a vast literature on parametric panel data

models, see for example Hsiao (2003) and Baltagi (2010). There is also a rapidly expanding

literature on nonparametric and semiparametric panel data models. Examples include Hen-

derson, Carroll and Li (2008) who considered a nonparametric fixed-effect panel data model,

Henderson and Ullah (2005) and Lin and Carroll (2006) who both considered nonparametric

random-effects panel data models. Li and Stengos (1996) and Baltagi and Li (2002) considered a

partially linear dynamic panel data models with some regressors possibly being correlated with

the unobservable errors, whereas Lee (2014) considered a nonparametric fixed-effect dynamic

panel data model. Sun, Carroll and Li (2009) considered a smooth (or varying) coefficient fixed

effect panel data model, while both Cai and Li (2008) and Tran and Tsionas (2010) considered

smooth coefficients dynamic panel data models. Su and Ullah (2011) provide a recent review

on nonparametric and semiparametric panel data models.

Smooth coefficient models, originally proposed by Cleveland, Grosse and Shyu (1991) and

Hastie and Tibshirani (1993), include both pure nonparametric and partially linear regression

model as special cases; they are very versatile and have been used, for example, in the context

of generalized linear models and quasi-likelihood estimation (Cai, Fan and Li 2000), time series

(Cai, Fan and Yao 2000) and longitudinal data (Fan and Wu 2008) - see Fan and Zhang (2008)

for a recent review. This paper considers a smooth coefficients dynamic panel data model and

proposes an estimation approach alternative to that proposed originally by Cai and Li (2008) and

by Tran and Tsionas (2010). The former proposed a one step nonparametric generalized method

of moment (NPGMM henceforth) estimator that is based on local linear estimation (Fan and

Gijbels 1996), whereas the latter proposed a (typically more efficient) two step nonparametric

GMM (2NPGMM henceforth) estimator that is based on local (constant) estimation.

This paper proposes a local estimation method for the unknown smooth coefficients para-

meters that is similar to that proposed by Tran and Tsionas (2010), but as opposed to the

latter it does not require the additional estimation of a certain unknown matrix, which is one

of the causes of the bias in local GMM estimation of nonparametric estimating equations mod-

els, see Bravo (2014) for more details. The proposed method jointly estimates the unknown

parameters and a set of probability weights that reflect some auxiliary information character-

izing the unknown distribution of the observations using a local version of the Cressie-Read
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(power) divergence discrepancy. Baggerly (1998) introduced the Cressie-Read discrepancy as a

generalization of Owen’s (1988) empirical likelihood method for identically and independently

distributed observations; Bravo (2002) proposed a modified version of the Cressie-Read dis-

crepancy for α-mixing processes. The proposed estimator is defined as the minimizer of the

Cressie-Read discrepancy between the empirical distribution and a constrained multinomial dis-

tribution supported on the observations, where the constraint is an estimating equation that

represents the available auxiliary information. Given that the Cressie-Read discrepancy can be

interpreted as a generalized entropy measure it seems natural to call the resulting estimators

nonparametric information theoretic (NPIT henceforth) estimators. Examples of NPIT estima-

tors include the exponential tilting estimator of Kitamura and Stutzer (1997), defined as the

minimizer of the Kullback-Liebler divergence (or relative entropy) between the empirical and a

constrained multinomial distribution, which was used for example by Bravo (2005) to construct

various specification tests in time series regressions. Another important example is the empirical

likelihood estimator, which can be interpreted as the minimizer of the reverse Kullback-Liebler

between the empirical and the constrained distribution. DiCiccio and Romano (1990) provided

a detailed analysis of the connections between empirical and exponential likelihood with the

Kullback-Liebler divergence in the context of constructing nonparametric confidence intervals.

Associated with the NPIT estimator there are the estimated multinomial probabilities which

can be used to construct an efficient estimator of the unknown distribution of the observations,

and, as shown by Guggenberger, Ramalho and Smith (2012), to construct Pearson-type good-

ness of fit test statistics that can be used for inferences in the context of possibly unidentified

estimating equations with time series data.

This paper makes three main contributions: first it establishes the asymptotic normality of

the proposed NPIT estimator for the three possible scenarios of "largeN , small T", in which only

the cross section dimension of the panel grows as the sample sizes increases, of "small N , large

T", in which only the time series dimension of the panel grows as the sample size increases, and of

"largeN , large T", in which both the cross section and time series dimensions grow as the sample

size increases. This result is rather general since it is also valid when some or all of the regressors

are possibly correlated with the unobservable errors, and when some (or all) of the variables

used in the estimation, the so-called instruments in the econometric literature, are not directly

observable but can be consistently estimated using either fully parametric or nonparametric

methods. These two features are important because often in economic and financial applications

correlation between regressors and unobservable errors is very likely, and optimal instruments

are effectively unknown because they come in the form of conditional expectations of observable

variables, see for example Baltagi and Li (2002). This result complements and extends that

obtained by Cai and Li (2008) and by Tran and Tsionas (2010) because it considers the case of

unobservable instruments and proposes a two step estimation procedure, in which the first step
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is used to estimate the instruments.

Second it considers the important issue of local correct specification and constancy of (part or

all of) the smooth coefficients and proposes two general, easy to implement, test statistics. The

first one is based on the Cressie-Read discrepancy criterion itself, whereas the second one uses

estimated probabilities to construct statistics that are in the same spirit of Pearson’s classical

goodness of fit testing. The tests are local in nature, and are asymptotically distribution free

being distributed either as a chi-squared random variable or as a nonstandard distribution that

is independent of nuisance parameters, hence can be easily simulated. Interestingly these type

of test statistics seem not to have been previously considered in the semiparametric panel data

literature.

Finally the paper illustrates the finite sample properties of the proposed method using Monte

Carlo simulations and compare them with those based on alternative NPGMM estimators. The

results of the simulations are encouraging and suggest that the proposed estimators and test

statistics have competitive finite sample properties.

The rest of the paper is organized as follows: next section introduces the statistical model and

the nonparametric information theoretic estimator. Section 3 develops the asymptotic theory

for both the estimators and the test statistics. Section 4 contains the results of the Monte Carlo

study and some concluding remarks. All the proofs can be found in a supplementary Appendix.

The following notation is used throughout the paper: a prime indicates transpose, "tr (·)"

denotes the trace operator, "⊗" denotes Kronecker product, and for any vector v v⊗2 = vv′.

2 The statistical model and the estimators

The smooth coefficients dynamic panel data model considered is

yit = x
′
itβ0 (uit) + εit i = 1, ..., N ; t = 1, ..., T, (1)

where xit and uit are, respectively, a k and p dimensional vectors of observable regressors, εit is an

unobservable error term and β0 (·) is a vector of unknown smooth functions. The vector xit may

contain lagged dependent values, typically only yit−1, and a set of contemporaneous and possibly

lagged regressors, say x̃it, while εit may contain an unobserved time-invariant random variable

ηi, which represents unknown heterogeneity in the sample. It is assumed that ηi is uncorrelated

with x̃it and uit, which excludes the fixed effect specification, and that the regressors x̃it might

exhibit nonzero correlation with the errors, that is E (εit|x̃is) 6= 0 (s ≤ t). Note also that by

construction E (ηi|yit−1) 6= 0. Model (1) encompasses many nonparametric and semiparametric

panel data models: without the regressors xit, (1) is a nonparametric random effect model, see

Henderson and Ullah (2005), whereas with x′itβ0 (uit) = x′1itβ10 + x
′
2itβ20 (uit) (1) becomes a
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partially linear (possibly dynamic) model, see for example Li and Stengos (1996), Li and Ullah

(1998) and Baltagi and Li (2002).

Because of the potential correlation between the unobserved heterogeneity variable ηi and

the lagged dependent variables and possibly between the regressors x̃it and the errors, any

semiparametric least squares type of estimator of β0 (·) would be inconsistent. Instead, as in

Cai and Li (2008) and Tran and Tsionas (2010), this paper assumes that there exists an l

dimensional (l ≥ k) vector of additional variables zit, called instruments in the econometric

literature, such that

E (zitεit|uit) = 0 a.s.. (2)

The restriction (2) provides the basis for the local estimation method of this paper. To be

specific for a given point uit = u ∈ R
p, let πit (i = 1, ..., N ; t = 1, ..., T ) denote a set of unknown

multinomial weights supported on the observations and let

1

γ (γ + 1)

N∑

i=1

T∑

t=1

[
(NTπit)

γ+1 − 1
]

(3)

denote the Cressie-Read discrepancy family, where γ ∈ R is a user specific parameter with the

values γ = 0 and γ = −1 to be interpreted as limits. Then the local minimum Cressie-Read

discrepancy estimator is defined as the solution of the following program

min
β,πit

{
N∑

i=1

T∑

t=1

[
(NTπit)

γ+1 − 1
]

γ (γ + 1)
|
N∑

i=1

T∑

t=1

πit = 1,
N∑

i=1

T∑

t=1

πitzitεitKh (uit − u) = 0

}
, (4)

where Kh (·) = K (·/h) /h is a kernel function in Rp and h is the bandwidth. By a Lagrange

multiplier argument it is possible to show that for a fixed β the solution to (4) is

π̂CRit (u) =
1

NT

[(
η̂ + ξ̂

′
zit (yit − x

′
itβ (uit))Kh (uit − u)

)] 1
γ

, (5)

where the estimated Lagrange multipliers η̂ and ξ̂ are associated with the restrictions
∑N

i=1

∑T
t=1 πit =

1 and
∑N

i=1

∑T
t=1 πitzit (yit − x

′
itβ (uit))Kh (uit − u) = 0, respectively. Inserting (5) into (3) gives

the profile local Cressie-Read function

ΓCR
(
β, λ̂, u

)
= −

N∑

i=1

T∑

t=1

(
1 + γλ̂ (u)′ zit (yit − x

′
itβ (uit))Kh (uit − u)

) γ+1
γ

γ + 1
, (6)

where λ̂ (u) = ξ̂ (u) / (γµ̂). Thus the nonparametric estimator

β̂ (u) := argmin
β
ΓCR

(
β, λ̂, u

)
(7)

can be interpreted as the minimizer of the local Cressie-Read discrepancy between the probability

weights used by the empirical distribution function and those of a nonparametric likelihood
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consistent with the localized restriction (2) that is E (zitεit|uit = u) = 0. For example the

profile nonparametric empirical likelihood (NPEL) function (corresponding to the limit case

γ = −1) and the exponential tilting (NPET ) (corresponding to the limit case γ = 0) are given,

respectively, by

ΓEL
(
β, λ̂, u

)
=

N∑

i=1

T∑

t=1

log
(
1− λ̂ (u)′ zit (yit − x

′
itβ (uit))

)
Kh (uit − u) , (8)

ΓET
(
β, λ̂, u

)
= −

N∑

i=1

T∑

t=1

exp
(
λ̂ (u)′ zit (yit − x

′
itβ (uit))

)
Kh (uit − u) ,

and the resulting NPEL and NPET estimators are

β̂ (u) : = argmin
β
ΓEL

(
β, λ̂, u

)
,

β̂ (u) : = argmin
β
ΓET

(
β, λ̂, u

)
.

Note that (6) (and (8)) corresponds to the dual formulation of (4) (see Newey and Smith (2004))

which is very useful both in the analysis of the asymptotic properties of the local estimator β̂ (·)

and in its computation.

3 Asymptotic results

This section contains the main result of the paper. As mentioned in the Introduction the results

of this paper are valid for the three possible cases of "large N , small T","small N , large T" and

"large N , large T". The latter two are particularly useful for economic and financial type of

data since they typically exhibit temporal dependence. In terms of estimation, Theorems 1 and

2 consider the case where the instruments are observable; the results for the "large N , small

T" and "large N , large T" cases complement those of Cai and Li (2008) and Tran and Tsionas

(2010); the result for the "small N , large T" case is new. Theorem 3 is also new as it considers

the case of unobservable instruments that can however be estimated either using a parametric or

a nonparametric estimator. The theorem shows that there is no estimation effect coming from

the first step estimation, that is the proposed two step NPIT (2NPIT henceforth) estimator has

the same asymptotic distribution as that of Theorems 1 and 2. In terms of inference, this section

considers two general classes of test statistics, calculated at either one specific point or at a set

of finite number of points. It is shown that, under a (standard) undersmoothing condition the

test statistics are asymptotic distribution free with either a standard asymptotic χ2 calibration

or a nonstandard asymptotic distribution that can easily simulated as it is nuisance parameter

free. The tests are also shown to have power against local alternatives and to be consistent.

Theorems 4-6 and Corollaries 5.1 and 6.1 consider the hypothesis of local correct specification
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of (2); Theorems 7-9 and Corollary 9.1 consider the hypothesis of local constancy of some or all

of the smooth coefficients.

3.1 One step estimation

Assume that the instruments zit are observable, and let

Ω0 (u) = V ar (zitεit|uit = u) ,Σ0 (u) = E (zitx
′
it|uit = u) ,

Ω1t (ui1, uit) = E (zi1z
′
itεi1εit|ui1, uit) .

Furthermore assume that

either

A1 (yit, x
′
it, z

′
it, u

′
it)
N,T
i=1,t=1 are i.i.d. across i for fixed t, and are strictly stationary across t for

fixed i,

A2 (i) E (εit|zit, uit) = 0 a.s., rank {Σ (u)} = k for all u, (ii) E ‖zitx
′
it‖

2 <∞, E
∥∥z⊗2it

∥∥2 <∞,
Eε2it <∞,

A3 (i) for each t Ω1t (u1, u2) and the joint density f1t (u1, u2) of ui1 and uit are continuous at

u1 = u, u2 = u, (ii) for each u Σ (u), the marginal density f (u) of uit and the joint density

f (z, x, u) of zit, xit and uit are positive, and supt ‖Ω1t (u, u) f1t (u)‖ <∞ (iii) β0 (u), f (u),

f (z, x, u) are twice continuously differentiable at u ∈ Rp,

A4 K is a symmetric, nonnegative and bounded second order kernel having compact support,

A5 h→ 0 and Nhp →∞ as N →∞,

or

A1’ (yit, x
′
it, z

′
it, u

′
it)
N,T
i=1,t=1 are i.i.d. across i for fixed t, and are α-mixing with mixing coefficient

α (k) = O (k−τ ) with τ = (2 + δ) (1 + δ) /δ and δ > 0 is defined in A6,

A5’ h→ 0 and Thp →∞ as T →∞,

A6 for the same δ > 0 defined in A1’ E
(
‖zitεit‖

2(1+δ) |uit = u
)
and E

(
‖zitx

′
it‖

2(1+δ) |uit = u
)

are continuous at u,

A7 T (τ+1)/τhp(2+δ)/(1+δ) →∞,

or

A5” h→ 0 and NThp →∞ as both N →∞, T →∞,

A7’ (NT )(τ+1)/τ hp(2+δ)/(1+δ) →∞.

The above regularity conditions are fairly standard in the literature on semiparametric panel

data models and cover the three possible cases of "largeN , small T" (A1-A6), "smallN and large

T" (A1’, A2-A4, A5’, A6-A7) and "large N and large T" (A1’, A2-A4, A5”, A6, A7’). A1 and

A1’ exclude deterministic and stochastic trends; the rate assumption on the mixing coefficient in

A1’ is standard in the literature on semiparametric smooth coefficient models for time series, see

for example Cai, Fan and Yao (2000). A2(i) implies (2), while the rank condition is sufficient to
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show the consistency of the NPIT estimator; A2(ii) contains mild moment assumptions on the

regressors and the unobservable errors. A3 is a standard smoothness condition on the conditional

covariance of the estimating equations of the smooth coefficients and on the marginal density

and the joint density of the observable variables. A4 is standard in kernel estimation, but it

could be replaced with a weaker one at the expense of a more involved proof. A6 is used to

establish the asymptotic normality of the NPIT estimator. Finally the rate assumption in A7

and A7’ are standard for local estimators with time series, see for example Cai (2003) and Cai

and Li (2008).

Let ν0 =
∫
K (v)2 dv, µ2 =

∫
v⊗2K (v) dv;

Theorem 1 Under A1-A6

(NThp)1/2
(
β̂ (u)− β0 (u)−

h2

2
B (u)

)
d
→ N

(
0,

ν0
f (u)

Ξ0 (u)
−1

)
,

where

B (u) = Ξ (u) Σ0 (u)
′Ω0 (u)

−1 [B1 (u) , ..., Bp (u)]
′ , Ξ0 (u) = Σ0 (u)

′Ω0 (u)
−1Σ0 (u) ,

Bj (u) = E

{
xitz

′
it

[
tr

(
f (u)µ2

∂2β0 (u)

∂u′∂uj

)
+ 2

∂f (zit, xit, uit)

f (zit, xit|uit = u) ∂uj

∂β0 (u)

∂u′

]
|uit = u

}
,

for j = 1, ..., p.

Theorem 1 shows that the NPIT estimator has the same asymptotic variance and the same

asymptotic mean squared error as that of the 2NPGMM estimator proposed by Tran and Tsionas

(2010). Note also that as mentioned in the Introduction, the proposed estimator is typically

more efficient than the NPGMM estimator of Cai and Li (2008).

An immediate consequence of the theorem is that the optimal bandwidth hopt minimizing

the asymptotic mean squared error is

hopt =

(
1

NT

)1/(p+4)(
pν0
f (u)

tr
(
Ξ0 (u)

−1) ‖B (u)‖−2
)1/(p+4)

,

which shows that the optimal convergence rate is of order (NT )−4/(p+4). Next theorem shows

that the result of Theorem 1 holds also for the cases of finite N and T → ∞ and both N

and T → ∞. Note that for the latter case the asymptotic distribution is obtained as T and

N →∞ simultaneously, rather than sequentially, and without imposing any restrictions on the

relative expansion rate of N and T . This differs from the case of dynamic fixed effect panel

data models, where, because of the presence of the fixed effect itself, it is typically assumed that

limN,T→∞N/T = c, where 0 < c < ∞, see for example Hahn and Kuersteiner (2002) and Lee

(2014).

Theorem 2 Under A1’, A2-A4, A5’, A6-A7, or under A1’, A2-A4, A5” , A6, A7’

(NThp)1/2
(
β̂ (u)− β0 (u)−

h2

2
B (u)

)
d
→ N

(
0,

ν0
f (u)

Ξ0 (u)
−1

)
.
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3.2 Two step estimation

This section considers the case where the instruments are not directly observable but are unique

(at least locally and/or possibly up to an additive constant) and can be consistently estimated.

For example as in Baltagi and Li (2002) the instruments could take the form of a conditional

expectation z(j)it = E
(
v(j)it|w(j)it

)
, where for j = 1, ..., l v(j)it and w(j)it ∈ R

q are both observable

and can contain, respectively, lagged values of the dependent variable and some of the regressors

and uit. For the parametric estimation case we assume that

z(j)it = g
(
w(j)it, γ

)

for some known continuously differentiable function g : Rq × Rq → R, and that there ex-

ists a unique unknown parameter vector γ0 ∈ Γ, such that rank
[
E
(
∂g
(
w(j)it, γ0

)
/∂γ′

)]
= q

(j = 1, ..., l). In this case the estimated instruments are ẑ(j)it = g
(
w(j)it, γ̂

)
. For the nonparamet-

ric estimation case, identification of the instruments follows by the uniqueness (up to a constant)

of the conditional expectation and the condition rank
(
∂z(j)it/∂w(j)it

)
= q a.s. (j = 1, ..., l). In

this case the instruments are estimated using the leave one out kernel

ẑ(j)it =
∑

1≤m6=i≤NT

Wb

(
w(j)mt − w(j)it

)
v(j)it,

where Wb (·) = W (·/b) /b is a kernel function in Rq and b is another bandwidth. Let

Ω∂g1t (ui1, uit) = E

(
∂g (wi1, γ0)

∂γ

∂g (wit, γ0)

∂γ′
εi1εit|ui1, uit

)
, (9)

Ω∂gz1t (ui1, uit) = E

(
∂g (wi1, γ0)

∂γ
z′itεi1εit|ui1, uit

)
;

assume that

A3’ (i) for each t Ω1t (u1, u2) and the joint density f1t (u1, u2) of ui1 and uit are continuous

at u1 = u, u2 = u, (ii) for each u the marginal density f (u) of uit are positive, and

supt ‖Ω1t (u, u) f1t (u)‖ < ∞, supt

∥∥∥Ω∂g1t (u, u) f1t (u)
∥∥∥ < ∞, supt

∥∥∥Ω∂gz1t (u, u) f1t (u)
∥∥∥ < ∞,

(iii) β0 (u), f (u), f (z, x, u) are twice continuously differentiable at u ∈ R
p, (iv) for each

w the marginal density f (w) of wit is positive,

A4’ The kernels K andW are symmetric, nonnegative and bounded second order kernels with

compact support,

A8 either (i) ‖γ̂ − γ0‖ = Op

(
(NT )−1/2

)
, E supγ∈Γ ‖[∂g (wit, γ) /∂γ

′]‖2 <∞ or (ii) b→ 0 and

NTbq/ log (NT )→∞ as NT →∞.

The following theorem shows that the 2NPIT estimator is asymptotically equivalent to the

NPIT estimator.

Theorem 3 Under conditions A1-A2, A3’—A5” or A1’, A2, A3”-A5’, A6-A7 the result of The-

orems 1 and 2 holds.
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3.3 Inference

This section considers the important problem of testing for the local correct specification of (2)

and for the constancy of the smooth coefficients β (·). Two types of test statistics are proposed:

the first one is based on the profile Cressie-Read function (6), whereas the second one is based

on the local estimated probabilities π̂it (·) defined in (5) .

The null hypothesis of correct local specification1 at a point uit = u is

H0 : E (zitεit|uit = u) = 0, (10)

which can be tested using the local NPIT distance statistic DCR (·)

DCR (u) = 2
(
ΓCR

(
β̂, λ̂, u

)
− ΓCR

(
β̂, 0, u

))
.

Theorem 4 Under the assumptions of Theorems 1, 2 or 3, if NThp+4 → 0, then under the

null hypothesis (10)

DCR (u)
d
→ χ2 (l − k) .

An alternative way to test (10) is to use the estimated probabilities (5) expressed in their

dual formulation

π̂CRit (β, λ, u) =
1

NT

(
1 + γλ (u)′ zit (yit − x

′
itβ (uit))Kh (uit − u)

) 1
γ .

Since in the absence of the restriction (10) the estimated probabilities solutions to (4) are given

by π̂CRit (β, 0, u) = 1/ (NT ), it follows that the following two Pearson’s goodness of fit type of

statistics

PCR1 (u) =

N∑

i=1

T∑

t=1

(
NTπ̂CRit

(
β̂, λ̂, u

)
− 1
)2
, (11)

PCR2 (u) =
N∑

i=1

T∑

t=1

(
NTπ̂CRit

(
β̂, λ̂, u

)
− 1
)

NTπ̂CRit

(
β̂, λ̂, u

)
2

can be used to test (10).

Theorem 5 Under the same assumptions of Theorem 4

PCR1 (u) , PCR2 (u)
d
→ χ2 (l − k) .

1It is important to emphasize the local nature of the hypothesis, meaning that the model could still be

misspecified even if H0 is true. I am indebited to a referee for pointing this out.

10



To investigate the power properties of DCR (·) and PCRj (·) (j = 1, 2) the following Pitman

type alternative at the point uit = u is considered

Ha : E (zitεit + γNT (uit) |uit = u) = 0, (12)

for a continuous bounded function γNT : R
p → R

l that may depend on NT .

Corollary 5.1 Under the same assumption of Theorem 4, if NThp+4 → 0 and (NThp)1/2 γNT (u)→

γ (u) > 0 (for some ‖γ (u)‖ <∞), then under the alternative hypothesis (12)

DCR (u) , PCR1 (u) , PCR2 (u)
d
→ χ2 (κ, l − k) ,

where χ2 (κ, l − k) is the noncentral chi-squared distribution with noncentrality parameter

κ = f (u) γ (u)′
(
Ω0 (u)

−1 (I − Σ0 (u) Ξ0 (u)−1Σ0 (u)
)
Ω0 (u)

−1) γ (u) /v0.

If NThp+4 → 0 and (NThp)1/2 γNT (u)→∞, then under the alternative hypothesis (12)

DCR (u) , PCR1 (u) , PCR2 (u)
p
→∞.

Corollary (5.1) shows that the proposed tests have power against Pitman type alternatives

and are consistent against any fixed alternatives of the form γNT (·) = γ (·).

It is important to note that the test statistics of Theorems 4 and 5 are asymptotically valid

at a single point u; if one wants to consider them over a fixed range of values of u, say {uj}
m
j=1,

they can be replaced by the following test statistics

max
1≤j≤m

DCR (uj) , max
1≤j≤m

PCR1 (uj) and max
1≤j≤m

PCR2 (uj) . (13)

Theorem 6 Under the same assumptions of Theorem 4 for distinct {uj}
m
j=1

max
1≤j≤m

DCR (uj) , max
1≤j≤m

PCR1 (uj) , max
1≤j≤m

PCR2 (uj)
d
→ max

1≤j≤m
χ2j (l − k) .

Notice that the distribution of Theorem 6 is nonstandard but it can be evaluated numerically

or easily simulated since it does not depend on any nuisance parameters. Alternatively for m

large enough one could use the fact that the asymptotic distribution of an appropriately scaled

maxj χ
2
j (p) random variable converges to a Gumbel distribution

2 (see Embrechts, Kluppelberg

and Mikosch (1997, p.156)).

The power properties of the test statistics (13) are established in the next corollary.

2To be specific, if γ ∼ Γ (α, β) (Gamma distribution with shape parameter α and scale parameter β), then

am
(
maxj γj − bm

) d
→ Λ as m → ∞, where , am = β, bm = β (lnm+ (α− 1) ln lnm− ln Γ (α)) and Λ is a

Gumbel random variable, that is Pr (Λ ≤ x) = exp (− exp (−x)). Given that a chi-squared with p degrees of

freedom is a Γ (p/2, 2) random variable, it follows that

2

(
max
j
χ2j (p)− 2 (lnm+ (p− 2) /2 ln lnm− ln Γ (p/2))

)
d
→ Λ.

11



Corollary 6.1 Under the same assumptions of Theorem 4 for distinct {uj}
m
j=1 if NTh

p+4 → 0

and (NThp)1/2 γNT (uj) → γ (uj) > 0 (for some ‖γ (uj)‖ < ∞, j = 1, ...,m), then under the

alternative hypothesis (12) at uit = uj (j = 1, ...,m)

max
1≤j≤m

DCR (uj) , max
1≤j≤m

PCR1 (uj) , max
1≤j≤m

PCR2 (uj)
d
→ max

1≤j≤m
χ2j (κj, l − k) ,

where

κj = f (uj) γ (uj)
′
(
Ω0 (uj)

−1 (I − Σ0 (uj) Ξ0 (uj)−1Σ0 (uj)
)
Ω0 (uj)

−1) γ (uj) /v0.

If NThp+4 → 0 and (NThp)1/2 γn (uj)→∞ (for some ‖γ (uj)‖ <∞, j = 1, ...,m), then under

the alternative hypothesis (12) at uit = uj (j = 1, ...,m)

max
1≤j≤m

DCR (uj) , max
1≤j≤m

PCR1 (uj) , max
1≤j≤m

PCR2 (uj)
p
→∞.

The null hypothesis of constancy of some (or all) of the smooth coefficients β (·) at uit = u

can be expressed as

H0 : β
(p) (u) = β(p), (14)

where β(p) (·) denotes the vector containing the first p (1 ≤ p ≤ k) elements of β (·) (p ≤ k), so

that for p = k (14) implies that the whole smooth coefficients vector β (·) is assumed constant.

Let

β̃ (u) = argmin
β
ΓCR

(
β, λ̃, u

)
s.t. β(p) (u)− β(p) = 0

denote the constrained estimator3 and let

DCR
(p) (u) = 2

(
ΓCR

(
β̂, λ̂, u

)
− ΓCR

(
β̃, λ̃, u

))
,

denote the resulting NPIT distance statistic.

Theorem 7 Under the same assumption of Theorem 4, then under the null hypothesis (14)

DCR
(p) (u)

d
→ χ2 (p) .

The null hypothesis (14) can also be tested using the same Pearson goodness of fit type of

statistics based on comparing the unconstrained π̂CRit

(
β̂, λ̂, u

)
and constrained π̃CRit

(
β̃, λ̃, u

)

estimated probabilities; let

PCR3 (u) =
N∑

i=1

T∑

t=1

(
NTπ̃CRit

(
β̃, λ̃, u

)
−NTπ̂CRit

(
β̂, λ̂, u

))2
,

PCR4 (u) =

N∑

i=1

T∑

t=1

(
NTπ̃CRit

(
β̃, λ̃, u

)
−NTπ̂CRit

(
β̂, λ̂, u

))2

NTπ̂CRit

(
β̂, λ̂, u

) or

=
N∑

i=1

T∑

t=1

(
NTπ̃CRit

(
β̃, λ̃, u

)
−NTπ̂CRit

(
β̂, λ̂, u

))2

NTπ̃CRit

(
β̃, λ̃, u

) .

3Note that for p = k the resulting constrained estimator does not depend on u, that is β̃ (u) = β̃.

12



Theorem 8 Under the same assumptions of Theorem 4, then under the null hypothesis (14)

PCR3 (u) , PCR4 (u)
d
→ χ2 (p) .

As with the statistics DCR (·) , PCR1 (·) and P 22 (·) the following theorem allows for the possi-

bility of testing the null hypothesis (14) at different points {uj}
m
j=1.

Theorem 9 Under the same assumptions of Theorem 4 for distinct {uj}
m
j=1

max
1≤j≤m

DCR
(p) (uj) , max

1≤j≤m
PCR3 (uj) , max

1≤j≤m
PCR4 (uj)

d
→ max

1≤j≤m
χ2j (p) .

Finally to investigate the power properties of the test statistics DCR
(p) (·), P

CR
3 (·) and PCR4 (·)

and their max version it should be noted first that none of them can detect Pitman alternatives

drifting at the parametric rate (NT )−1/2 . The test however will still be consistent for β̃
p
→ β,

where β is such that
∥∥E
[
zit
(
yit − x

′
itβ
)]∥∥ > 0. To specify an alternative Pitman hypothesis we

consider

Ha : β
(p) (uit) = β

(p) + γ
(p)
NT (uit) a.s., (15)

for a continuous bounded function γ
(p)
NT : R

p → R
p that may depend on NT . The following

corollary shows that the proposed tests have power against the Pitman alternatives given in

(15) at the point uit = u and/or different points {uj}
m
j=1 , and are consistent against any fixed

alternative.

Corollary 9.1 Under the same assumptions of Theorems 7- 9, if NThp+4 → 0 and (NThp)1/2 γ
(p)
NT (u)→

γ(p) (u) > 0 (for some
∥∥γ(p) (u)

∥∥ <∞), then under the alternative hypothesis (15) at uit = u

DCR
(p) (u) , P

CR
3 (u) , PCR4 (u)

d
→ χ2 (κ, p) ,

where κ = γp (u)′
(
Ξ
(pp)
0 (u)

)−1
γp (u) f (u) /v0, and Ξ

(pp)
0 (u) is the upper left p × p block of the

matrix Ξ0 (u)
−1 defined in Theorem 1. For distinct {uj}

m
j=1

max
1≤j≤m

DCR
(p) (uj) , max

1≤j≤m
PCR3 (uj) , max

1≤j≤m
PCR4 (uj)

d
→ χ2 (κj, p) ,

where κj = γ
p (uj)

′
(
Ξ
(pp)
0 (uj)

)−1
γp (uj) f (uj) /v0.

If NThp+4 → 0 and (NThp)1/2 γ
(p)
NT (u) → ∞ (for some

∥∥γ(p) (u)
∥∥ < ∞), then under the

alternative hypothesis (15) at uit = u

DCR
(p) (u) , P

CR
3 (u) , PCR4 (u)

p
→∞,

and for distinct {uj}
m
j=1

max
1≤j≤m

DCR
(p) (uj) , max

1≤j≤m
PCR3 (uj) , max

1≤j≤m
PCR4 (uj)

p
→∞.
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4 Monte Carlo evidence

This section uses a dynamic panel data model with a random effect component to both illustrate

the finite sample performance of the proposed estimators and test statistics and compare them

with those based on the two step nonparametric GMM (2NPGMM) approach. The 2NPGMM

estimator is defined as

β̂ (u) = argmin
β
J
(
β, Ω̂, u

)
, (16)

where

J
(
β, Ω̂, u

)
=

(
1

NT

N∑

i=1

T∑

t=1

zit (yit − x
′
itβ (uit))Kh (uit − u)

)′
Ω̂ (u)−1 ×

(
1

NT

N∑

i=1

T∑

t=1

zit (yit − x
′
itβ (uit))Kh (uit − u)

)
,

Ω̂ (u) =
1

NT

N∑

i=1

T∑

t=1

ε2itz
⊗2
it Kh (uit − u) f̂ (u)

∫
K2 (v) dv,

with εit = yit−x
′
itβ (u) for a preliminary consistent estimator β (·) and f̂ (·) is a kernel estimator.

The 2NPGMM test statistics for both the hypotheses of local correct specification (10) and

smooth coefficient constancy (14) are defined, respectively, as

DGMM (u) = NTJ
(
β̂, Ω̂, u

)
,

DGMM
(p) (u) = NT

(
J
(
β̃, Ω̃, u

)
− J

(
β̂, Ω̂, u

))
,

where

Ω̃ (u) =
1

NT

N∑

i=1

T∑

t=1

ε̃2itz
⊗2
it Kh (uit − u) f̂ (u)

∫
K2 (v) dv,

ε̃it = yit − x
′
itβ̃ (u) and β̃ (·) is the constrained 2NPGMM estimator defined as

β̃ (u) = argmin
β
J
(
β, Ω̂, u

)
s.t. β(p) (u)− β(p) = 0.

The asymptotic equivalence betweenDGMM (·),DGMM
(p) (·) and the corresponding NPIT statistics

DCR (·), DCR
(p) (·) implies that

DGMM (u)
d
→ χ2 (l − k) , DGMM

(p) (u)
d
→ χ2 (p) , (17)

max
1≤j≤m

DGMM (uj)
d
→ max

1≤j≤m
χ2j (l − k) , max

1≤j≤m
DGMM
(p) (uj)

d
→ max

1≤j≤m
χ2j (p) .

The Monte Carlo design is similar to that considered by Tran and Tsionas (2010), that is

yit = β10 (uit) yit−1 + β20 (uit) xit + ηi + εit, (18)
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where

β10 (uit) = exp
(
− (0.5uit − 2.5)

2) , β20 (uit) = sin (2πuit) ,

uit is i.i.d. U [2, 4], the uniform distribution between 2 and 4, xit is i.i.d. U [0, 3], εit is

i.i.d. N (0, σ2ε), ηi is i.i.d. N
(
0, σ2η

)
. The simulations consider the two most commonly

used (in empirical work) members of the nonparametric Cressie-Read discrepancy, namely

nonparametric empirical likelihood (NPEL) and nonparametric exponential tilting (NPET)

(both defined in (8)). As in Tran and Tsionas (2010) two sets of instruments are considered:

zit = [yit−2, uit−1, xit, xit−1]
′ and the optimal (unobserved) instruments

zit = [E (yit−1|uit−1) , E (yit−1|uit−2) , E (yit−1|uit−1, uit−2) , xit]
′

(see Baltagi and Li (2002)). The unknown smooth coefficients βj0 (·) (j = 1, 2), density f (·)

and optimal instruments are estimated using the Epanechnikov kernel with bandwidth chosen

by least squares cross-validation. Tables 1 and 2 report the mean square error (MSE) of the two

estimators β̂j (·) for two combinations of the variances σ
2
ε and σ

2
η, sample sizes N , T using both

the observed instruments zit and the optimal (estimated) instruments

ẑit =
[
Ê (yit−1|uit−1) , Ê (yit−1|uit−2) , Ê (yit−1|uit−1, uit−2) , xit

]′
,

respectively. The results are based on 5000 replications, which implies that the Monte Carlo

standard error is approximately 0.003.

Tables 1 and 2 approx here

The results of Tables 1 and 2 suggest that both the NPEL and the NPET estimators perform

better than the 2NPGMM estimator. As expected, the estimators based on the optimal instru-

ments are characterized by a smaller MSE than those based on the observed instruments. Note

also that increasing the time dimension results in estimators with a slightly lower MSE. Between

the NPEL and the NPET estimator, the former seems to have an edge over the latter, which is

consistent with the theoretical findings of Bravo (2014).

The finite sample properties of the test statistics of Section 3.3 are investigated considering

only the case of optimal instruments with the null hypothesis specified as

H0 : β10 (u) = β10 = 0.3,

versus a sequence of alternatives indexed by δ = [0.0.2, 0.4, 0.6, 0.8, 1]

H1 = β10 + δ (β10 (u)− β10) .

Table 3 reports the finite sample size (corresponding to δ = 0) at a 0.01 and 0.05 nominal

level for the NPEL DEL
(p) (·), NPET D

ET
(p) (·) and 2NPGMM DGMM

(p) (·) statistics, and for the two
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Pearson type statistics PEL3 (·) and PET3 (·)4 obtained, respectively, as a by-product of the local

empirical likelihood and exponential tilting estimation used to compute DEL
(p) (·) and DET

(p) (·).

The test statistics are computed at the points u = 2.5 and u = 3.5 and for two sample sizes:

N = 100, T = 5 and N = 100, T = 50, using 5000 replications and bandwidth fixed at h = have,

where have is the average of the 5000 bandwidths used to obtain Table 2.

Figures 1- 4 show the size adjusted power (δ = [0.2, 0.4, 0.6, 0.8, 1]) for the five test statistics

considered in Table 3 obtained using 1000 replications for each value of δ.

Figures 1-4 approx here

Table 3 and Figures 1-4 illustrate that the NPIT statistics perform well and are superior to

the 2NPGMM statistic both in terms of size and power. NPEL and NPET have similar finite

sample properties with the exponential tilting having a slight overall edge in terms of power.

Interestingly the local Pearson’s goodness of fit type of statistics seem to be characterized by

slightly better finite sample properties than those based on the local distance statistics. In

particular Table 3 suggests that the Pearson’s goodness of fit statistics are the only one with a

statistically insignificant (at the 0.05 level) size distortion. It also suggests that the 2NPGMM

statistics is always characterized by a statistically significant size distortion.

Table 4 and Figure 5-6 report, respectively, the finite sample size and power of the statistics

maxj D
EL
(p) (·), maxj D

ET
(p) (·), maxj D

GMM
(p) (·), maxj P

EL
3 (·), maxj P

ET
3 (·) evaluated at {uj}

10
j=1

where uj = 2 + 0.15j.

Figures 5-6 approx here

Table 4 and Figures 5-6 confirm the findings of Table 3 and Figures 1-4 as they suggest that

the tests based on NPEL and NPET have better finite sample properties than those based on

2NPGMM with the exponential tilting having an edge over the empirical likelihood. Note that

in this case also the NPEL and NPET statistics have a statistically significant size distortion.

Overall the results of the simulations are encouraging and suggest that the NPIT approach

can be a valid alternative to the 2NPGMM approach that has been used for smooth coefficients

dynamic panel data models. NPIT estimators seem to be characterized by a smaller MSE while

NPIT test statistics are typically less size distorted and more powerful than those based on

2NPGMM.

5 Supplemental appendix

Throughout the Appendix “CMT”, “CLT” and "LLN" denote Continuous Mapping Theorem,

Central Limit Theorem, and Law of Large Numbers, respectively. C denotes an arbitrary

4The results for the statistics PEL
4

(·) and PET
4

(·) are similar to those of PEL
3

(·) and PET
3

(·) and thus are

not reported.
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positive constant that may differ from line to line, n = NT and finally unless otherwise stated∑
=:
∑N

i=1

∑T
t=1.

Proof of Theorem 1. Suppose that for a given u, β̃ (u)
p
→ β0 (u); let ε̃it = yit−x

′
itβ̃ (u) , and

note that

ε̃it = εit + x
′
it

(
β̃ (u)− β0 (u)

)
. (19)

The same arguments of Cai and Li (2008, Proposition 2(i)) show that

∥∥∥∥
hp

n

∑(
z⊗2it εitx

′
it

(
β̃ (u)− β0 (u)

)
Kh (uit − u)

2
)∥∥∥∥ = op (1) ,

∥∥∥∥
hp

n

∑(
zitx

′
it

(
β̃ (u)− β0 (u)

)
Kh (uit − u)

)⊗2∥∥∥∥ ≤

∥∥∥β̃ (u)− β0 (u)
∥∥∥
2
∥∥∥∥
hp

n

∑
(zitx

′
itKh (uit − u))

⊗2

∥∥∥∥ = op (1)Op (1) ,

∥∥∥∥
hp

n

∑
(zitεitKh (uit − u))

⊗2 − f (u) Ω0 (u) ν0

∥∥∥∥ = op (1) ,

hence ∥∥∥∥
hp

n

∑
(zitε̃itKh (uit − u))

⊗2 −
hp

n

∑
(zitεitKh (uit − u))

⊗2

∥∥∥∥ = op (1) , (20)

and therefore by the triangle inequality

∥∥∥∥
hp

n

∑
(zitε̃itKh (uit − u))

⊗2 − f (u) Ω0 (u) ν0

∥∥∥∥ = op (1) . (21)

By a second order Taylor expansion about λ = 0 and (21) we have that

0 ≤
1

n
ΓCR

(
β̃, λ, u

)
−
1

n
ΓCR

(
β̃, 0, u

)
= −λ (u)′

1

n

∑
zitε̃itKh (uit − u)−

1

2
λ (u)′

1

n

∑
(zitε̃itKh (uit − u))

⊗2 λ (u)

= −λ (u)′
1

n

∑
zitε̃itKh (uit − u)−

1

2hp
λ (u)′Ω (z) f (u) ν0λ (u) + op (1) ,

so that by the quadratic approximation lemma (Fan and Gijbels 1996) the maximizer λ̂ (u) of

ΓCR
(
β̃, λ, u

)
is given by

λ̂ (u) = − (Ω0 (u) f (u) ν0)
−1 h

p

n

∑
zitε̃itKh (uit − u) + op (1) . (22)

Using (19) the triangle inequality and the CLT applied to
∑
zitεitKh (uit − u) /n (see Cai and

Li (2008, Theorem 2)) imply that

∥∥∥λ̂ (u)
∥∥∥ ≤ C

∥∥∥∥
hp

n

∑
zitεitKh (uit − u)

∥∥∥∥+ op (1) = Op
( n
hp

)−1/2
+ op (1) . (23)
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Let θn = − (n/h
p)−1/2 ρθ, where ‖θ‖ = 1 and ρ = Op (1); note that

max
i,t
‖zitεitKh (uit − u)‖ ≤

∑ 1

hp
‖zitεitK (uit − u)‖ (24)

≤ n1/2(1+δ)
(
1

nhp

∑
‖zitεitK (uit − u)‖

2(1+δ)

)1/2(1+δ)

= Op
(
n1/2(1+δ)

)

by Jensen’s inequality and a standard kernel calculation that shows that

1

nhp

∑
‖zitεitK (uit − u)‖

2(1+δ) = Op (1) .

Similarly maxi,t ‖zitx
′
itKh (uit − u)‖ = Op

(
n1/2(1+δ)

)
, hence

max
i,t
|θ′nzitε̃itKh (uit − u)| ≤ max

i,t
|θ′nzitεitKh (uit − u)|+ (25)

∥∥∥β̃ (u)− β0 (u)
∥∥∥max

i,t
‖θ′nzitx

′
itKh (uit − u)‖ = op (1) .

Note also that by (19), (20) and A3, for any unit vector θ

σmax

(
hp

n

∑
(zitεitKh (uit − u))

⊗2

)
+ op (1) ≥ θ

′h
p

n

∑
(zitε̃itKh (uit − u))

⊗2 θ (26)

≥ σmin

(
hp

n

∑
(zitεitKh (uit − u))

⊗2

)
+ op (1) > 0 + op (1) ,

where σmax (·) and σmin (·) denote, respectively, largest and smallest eigenvalues and ε̃it is defined

in (19).

Let β̂ (u) denote the local minimizer of ΓECR (β, λ, u),

ε̂it = yit − x
′
itβ̂ (u)

denote the resulting residual and assume that
∥∥∥β̂ (u)− β0 (u)

∥∥∥ = op (1). Using (26) and as in
the proof of Lemma A3 of Newey and Smith (2004), a Taylor expansion about θn = 0 shows

that

1

n
ΓCR

(
β̂, θn, u

)
=

1

n
ΓCR

(
β̂, 0, u

)
− θ′n

1

n

∑
(zitε̂itKh (uit − u))− (27)

1

2
θ′n
1

n

∑
(zitε̂itKh (uit − u))

⊗2 θn

≥
1

n
ΓCR

(
β̂, 0, u

)
−

(
hp

n

)1/2
ρ

∥∥∥∥
1

n

∑
(zitε̂itKh (uit − u))

∥∥∥∥− Cρ
2

(
1

n

)
,

which implies

1

n
ΓCR

(
β̂, 0, u

)
+ ρ

∥∥∥∥∥

(
hp

n

)1/2
1

n

∑
(zitε̂itKh (uit − u))

∥∥∥∥∥−Op
(
1

n

)
≤

1

n
ΓCR

(
β̂, θn, u

)
≤
1

n
ΓCR

(
β̂, λ̂, u

)
≤
1

n
ΓCR (β0, 0, u) +Op

((
hp

n

))
.
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Rearranging (27) it follows that

ρ

∥∥∥∥
1

n

∑
(zitε̂itKh (uit − u))

∥∥∥∥ ≤ op
((

hp

n

)1/2)
+Op

((
1

nhp

)1/2)
→ 0,

which, given (19) with β̂ (·) replacing β̃ (·), implies
∥∥∥∥
1

n

∑
(zix

′
itKh (uit − u))

∥∥∥∥
∥∥∥β̂ (u)− β0 (u)

∥∥∥ = op (1) .

By the rank condition A2(i) it then follows that
∥∥∥β̂ (u)− β0 (u)

∥∥∥ = op (1). The asymptotic

distribution of β̂ (·) is obtained by a standard mean value expansion. By the consistency of λ̂ (·)

and β̂ (·) the first order conditions 0 = ∂ΓECR
(
β̂, λ̂, u

)
/∂ (λ′, β′)

′
are satisfied with probability

approaching 1, hence expanding about 0 and β0 (·) we have

0 = −

[
1
n

∑
(zitεitKh (uit − u)) + bn (u)

0

]
+

1

n



∑ ∂2ΓCR(β,λ,u)

∂λ⊗2

∑ ∂2ΓCR(β,λ,u)
∂λ∂β′∑ ∂2ΓCR(β,λ,u)

∂β∂λ′

∑ ∂2ΓCR(β,λ,u)
∂β⊗2



[

λ̂ (u)

β̂ (u)− β0 (u)

]
,

where

bn (u) =
1

n

∑
xitz

′
it (β (uit)− β0 (u))Kh (uit − u) , (28)

and β =: β (u) , λ =: λ (u) are the mean values. By (25) with θn = λ,maxit

∣∣∣λ′zitεitKh (uit − u)
∣∣∣ =

op (1), where εit = yit−x
′
itβ (u) is the mean value residual, hence as in Newey and Smith (2004)

max
i,t

∣∣∣
(
1 + γλ (u)′ zitεitKh (uit − u)

) 1
γ
−j
− 1
∣∣∣ = op (1) for j = 0, 1; (29)

the triangle inequality and (29) show that
∥∥∥∥∥
1

n

∑ ∂2ΓCR
(
β, λ, u

)

∂λ⊗2

∥∥∥∥∥ ≤ max
i,t

∣∣∣
(
1 + γλ (u)′ zitεitKh (uit − u)

) 1
γ
−1
− 1
∣∣∣×

∥∥∥∥−
1

n

∑
(zitεitKh (uit − u))

⊗2

∥∥∥∥+
∥∥∥∥−
1

n

∑
(zitεitKh (uit − u))

⊗2

∥∥∥∥

=

∥∥∥∥−
1

n

∑
(zitεitKh (uit − u))

⊗2

∥∥∥∥+ op (1) ,

hence by (21) ∥∥∥∥∥
hp

n

∑ ∂2ΓCR
(
β, λ, u

)

∂λ⊗2
+ f (u) Ω0 (u) ν0

∥∥∥∥∥ = op (1) . (30)
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Similarly

∥∥∥∥∥
1

n

∑ ∂2ΓCR
(
β, λ, u

)

∂λ∂β′

∥∥∥∥∥ ≤ max
i,t

∣∣∣
(
1 + γλ (u)′ zitεitKh (uit − u)

) 1
γ
−1
− 1
∣∣∣×

∥∥∥∥
1

n

∑(
λ
′
zitεitzitx

′
itKh (uit − u)

2
)∥∥∥∥+

∥∥∥∥
1

n

∑(
λ
′
zitεitzitx

′
itKh (uit − u)

2
)∥∥∥∥+

max
i,t

∣∣∣
(
1 + γλ (u)′ zitεitKh (uit − u)

) 1
γ − 1

∣∣∣×
∥∥∥∥
1

n

∑
(zitx

′
itKh (uit − u))

∥∥∥∥+
∥∥∥∥
1

n

∑
(zitx

′
itKh (uit − u))

∥∥∥∥ ,

and by the Cauchy-Schwarz inequality and the same arguments used to establish (19) and (21)

it follows that
∥∥λ
∥∥
n

∑∥∥zitεitzitx′itKh (uit − u)
2
∥∥ ≤

∥∥λ
∥∥
(
1

n

∑
‖zitεitKh (uit − u)‖

2

)1/2

(
1

n

∑
‖zitx

′
itKh (uit − u)‖

2

)1/2
= op (1)Op (1) ,

∥∥∥∥
1

n

∑
(zitx

′
itKh (uit − u))− f (u) Σ0 (u)

∥∥∥∥ = op (1) ,

hence ∥∥∥∥∥
1

n

∑ ∂2ΓECR
(
β, λ, u

)

∂λ∂β′
− f (u) Σ0 (u)

∥∥∥∥∥ = op (1) . (31)

Finally similar arguments can be used to show that

∥∥∥∥∥
∑ ∂2ΓCR

(
β, λ, u

)

∂β⊗2

∥∥∥∥∥ = op (1) . (32)

Combining (30)-(32) and the CMT imply

(nhp)1/2
[

λ̂ (u) /hp

β̂ (u)− β0 (u)

]
=

[
−f (u) Ω0 (u) ν0 Σ0 (u)

Σ0 (u)
′ 0

]−1
× (33)

(nhp)1/2
[

1
n

∑
(zitεitKh (uit − u)) + bn (u)

0

]
+ op (1) .
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By a standard kernel calculation

E (bn (u)) =

∫
xitz

′
it

[
∂β0 (u)

∂u′
(uit − u) +

1

2

p∑

j=1

∂2β0 (u)

∂u′∂uj
(uit − u) (uit − u)j

]
×

Kh (uit − u) f (zit, xit, uit) dzitdxitduit =

h2

2
E

{
xitz

′
it

[
tr

(
f (u)µ2

∂2β0 (u)

∂u′∂uj

)
+ 2

∂f (zit, xit, uit)

f (zit, xit|uit = u) ∂uj

∂β0 (u)

∂u′

]
|uit = u]

}

+O
(
h3
)
.

The asymptotic normality of (hp)1/2
∑
(zitεitKh (uit − u)) /n

1/2 can be established using Lya-

punov CLT, since A6 can be used to verify the Lyapunov condition - see also Cai and Li (2008,

Theorem 2), and the result follows by the CMT.

Proof of Theorem 2. The proof of the theorem is the same as that of Theorem 1 with the

exception of the CLT used. The first result (i.e. the small N large T ) is obtained following

closely Cai (2003). For a unit vector θ let (vit)
T
t=1 =

{
(hp)1/2 θ′zitεitKh (uit − u)

}T
t=1
, which for

each i is a stationary α-mixing sequence. Using Proposition 2(ii) of Cai and Li (2008) it is

possible to show that V ar
(∑T

t=1 vit/T
1/2
)
= θ′f (u) Ω0 (u) ν0θ, hence by the i.i.d. assumption

V ar

(
1

(NT )1/2

N∑

i=1

T∑

t=1

vit

)
= θ′f (u) Ω0 (u) ν0θ := σ

2 (u) . (34)

To show the asymptotic normality the indices 1, ..., T are partitioned using Doob’s small-block

large block technique into 2qT + 1 subsets with the large block of size r =: rT = b(nhp)1/2c

and the small one of size s =: sT = b(nh
p)1/2 / log T c, q =: qT = bT/ (r + s)c where b·c is the

integer part function and note that s/r → 0, r/T → 0 and (T/r)α (s) → 0. For 0 ≤ j ≤ q let

Vij,1 =
∑j(r+s)+r

t=j(r+s)+1 vit, Vij,2 =
∑(j+1)(r+s)

t=j(r+s)+r+1 vit, Viq =
∑T

t=q(r+s)+1 vit so that

1

n1/2

∑
vit =

1

n1/2

N∑

i=1

(
q−1∑

j=0

(Vij,1 + Vij,2) + Viq

)
=:
Un1 + Un2 + Un3

n1/2
.

The same arguments used by Cai (2003) show thatE (U2n2/n) =
∑N

i=1 V ar
(∑q−1

j=0 Vij,2/T
1/2
)
/N =

o (1) and E (U2n3/n) =
∑N

i=1 V ar
(
Viq/T

1/2
)
/N = o (1), hence Un2 = op

(
n1/2

)
and Un3 =

op
(
n1/2

)
. Furthermore for any 1 ≤ i ≤ N and ι = (−1)1/2

∣∣∣∣∣E exp
(
ιt

q−1∑

j=0

Vij,1

)
−

q−1∏

j=0

E exp (ιtVij,1)

∣∣∣∣∣ ≤ 16α (T/r)α (s)→ 0 (35)

by Lemma 1.1 of Volkonskii and Rozanov (1959). Note that by A1’

1

NT

N∑

i=1

q−1∑

j=0

E (Vij,1)
2 =

qr

T

1

r
V ar

(
r∑

t=1

vit

)
→ σ2 (u) , (36)
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where σ2 (u) is defined in (34). Finally as shown by Cai (2003) E
[
V 2i1,1I

(
|Vi1,1| ≥ εσ (u)T

1/2
)]
=

O
(
T−δ/2r2(2+δ)h−p(2+δ)δ/2(1+δ)

)
for every ε > 0, hence

1

NT

N∑

i=1

q−1∑

j=0

E
(
V 2ij,1I

(
|Vi1,1| ≥ εσ (u)T

1/2
))
= O

(
T δ/4h−p[1+2/(1+δ)]δ/4

)
→ 0 (37)

by A7. Thus (35)− (37) imply the Lindeberg-Feller CLT and the result follows by CMT.

For the large N and large T case consider the doubly indexed sequence

{vit}
n
i,t=1 =

{
(hp)1/2 θ′zitεitKh (uit − u)

}n
i,t=1

,

which is independent across i and stationary α−mixing across t, and note that both (35) and

(36) are still valid for N, T → ∞. The joint asymptotic normality as N, T → ∞ is estab-

lished applying Theorem 2 of Phillips and Moon (1999) and verifying the generalized Lindeberg

condition
1

σ2N (u)

N∑

i=1

E
(
V 2ij,1I (|Vi1,1| ≥ εσN (u))

)
→ 0, (38)

where σ2N (u) = V ar
(∑N

i=1

∑q−1
j=0 Vij,1/T

1/2
)
. By (36) σ2N (u) = O (N) and

sup
1≤i≤N

E

(
q−1∑

j=1

V 2ij,1/T
1/2

)
<∞,

hence Theorem 23.10 of Davidson (1994) implies that (38) holds. Thus by Theorem 2 of Phillips

and Moon (1999)
∑
vit/n

1/2 d
→ N (0, σ2 (u)) and the result follows by CMT.

Proof of Theorem 3. For the parametric case ẑit = g (wit, γ̂) note that

hp

n

∑
(ẑitεitKh (uit − u))

⊗2 =
hp

n

∑
(zitεitKh (uit − u))

⊗2 + (39)

2
hp

n

∑(
(ẑit − zit) z

′
it (εitKh (uit − u))

2)+ h
p

n

∑(
(ẑit − zit) (Kh (uit − u))

⊗2) .

As in Owen (1990), A8(i) and an application of the Borel-Cantelli lemma gives

max
i,t
sup
γ∈Γ

∥∥∥∥
∂g (wit, γ)

∂γ′

∥∥∥∥ = op
(
n1/2

)
,

hence a mean value expansion and A8(i) show that

max
i,t
‖ẑit − zit‖ ≤ max

it

∥∥∥∥
∂g (wit, γ)

∂γ′

∥∥∥∥ ‖γ̂ − γ0‖ = op (1) , (40)
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where γ is the mean value, hence using (40) in (39) yields

∥∥∥∥
hp

n

∑(
(ẑit − zit) z

′
it (εitKh (uit − u))

2)
∥∥∥∥ ≤ maxi,t ‖ẑit − zit‖ ×∥∥∥∥

hp

n

∑(
zit (εitKh (uit − u))

2)
∥∥∥∥ = op (1) ,

∥∥∥∥
hp

n

∑
((ẑit − zit) εitKh (uit − u))

⊗2

∥∥∥∥ ≤ maxi,t ‖ẑit − zit‖
2 ×

∥∥∥∥
hp

n

∑
(εitKh (uit − u))

2

∥∥∥∥ = op (1) ,

hence
hp

n

∑
(ẑitεitKh (uit − u))

⊗2 =
hp

n

∑
(zitεitKh (uit − u))

⊗2 + op (1) ;

therefore by triangle inequality
∥∥∥∥
hp

n

∑
(ẑitεitKh (uit − u))

⊗2 − f (u) Ω0 (u) ν0

∥∥∥∥ = op (1) . (41)

Let ε̃it = yit − x
′
itβ̃ (u) for any consistent estimator β̃ (u); by triangle inequality and similarly

to (24)

max
i,t
|θ′nẑitε̃itKh (uit − u)| ≤ max

i,t
‖ẑit − zit‖max

i,t
|θ′nε̃itKh (uit − u)|+ (42)

max
i,t
|θ′nzitε̃itKh (uit − u)| ≤ max

i,t
‖ẑit − zit‖ ‖θn‖max

i,t
|εitKh (uit − u)|+

∥∥∥β̃ (u)− β0 (u)
∥∥∥max

i,t
‖ẑit − zit‖ ‖λn‖max

i,t
‖xitKh (uit − u)‖ = op (1) .

Using the same Taylor expansion argument as that of Theorem 1 it can be shows that the 2NPIT

estimator β̂ (u) is consistent. To establish the asymptotic normality note that

1

n

∑
(ẑitε̂itKh (uit − u)) =

1

n

∑
(ẑit − zit) εitKh (uit − u) + (43)

1

n

∑
zitεitKh (uit − u) +

1

n

∑
(ẑit − zit) x

′
it

(
β̂ (uit)− β0 (u)

)
Kh (uit − u) + bn (u) ,

where bn (u) is defined in (28). Since

(nhp)1/2
∥∥∥∥
1

n

∑
(ẑit − zit) εitKh (uit − u)

∥∥∥∥ ≤ (44)

max
i,t
‖ẑit − zit‖ (nh

p)1/2
∥∥∥∥
1

n

∑
εitKh (uit − u)

∥∥∥∥ = op (1)Op (1) ,

and similarly for
∥∥∥∥
1

n

∑
(ẑit − zit) x

′
it (β (uit)− β0 (u))Kh (uit − u)

∥∥∥∥ = op
(
(nhp)−1/2

)
,
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the conclusion follows by the same arguments as those used in Theorems 1 or 2. For the

nonparametric case note first that by Masry (1996) supi,t ‖ẑit − zit‖ = op (1) hence as in (41)

and (42)

∥∥∥∥
hp

n

∑
(ẑitεitKh (uit − u))

⊗2 − f (u) Ω0 (u) ν0

∥∥∥∥ = op (1) , (45)

max
i,t
|λ′nẑitε̃itKh (uit − u)| = op (1) ,

and the consistency of the 2NPIT estimator follows as before. By a standard kernel calculation

(ẑit − zit) =
∑

j 6=i,t

Wnb (wjt − wit) vjt + op (1) , (46)

where Wnb (wjt − wit) = Wb (wjt − wit) / [(n− 1) f (wit)]; note that by A1 (or A1’) if i 6= i
′ and

j 6= j′ the terms involved in the following summation

nhpV ar

(
1

n

∑

i,t

∑

j 6=i

Wnb (wjt − wit) vjtεitKh (uit − u)

)
= (47)

hp

n
Cov

(
∑

i,t

∑

j 6=i

Wnb (wjt − wit) vjtεitKh (uit − u)

∑

i′,t′

∑

j′ 6=i′

Wnb (wj′t′ − wi′t′) vj′t′εi′t′Kh (ui′t′ − u)

)
,

are 0, hence it suffices to consider only the two cases i = i′ and j = j′. For T finite and t = t′

by conditioning first on wit and then on uit and a standard kernel calculation show that

∥∥∥∥∥
hp

n

∑

i,t

∑

j 6=i

∑

j′ 6=i

Cov (Wb (wjt − wit) vjtεitKh (uit − u) ,Wb (wj′t − wit) vj′tεitKh (uit − u))

∥∥∥∥∥ ≤

b2 ‖f (u)E (V ar (vitεit|wit) |uit = u) v0‖+

hpb2T ‖f (u)E [Cov (vitεit, visεis|wit, wis) |uit = u] v0‖ = O
(
b2
)

and similarly for t 6= t′; for the case j = j′ and t = t′ noting that for (uit − u) /b = v by A5’

(ui′t − u) /h = v + o (1) it follows that

∥∥∥∥∥
hp

n

∑

i,t′,t

∑

j 6=i

∑

j 6=i′

Cov (Wb (wjt − wit) vjtεitKh (uit − u) ,Wb (wjt − wi′t) vj′tεitKh (ui′t − u))

∥∥∥∥∥ ≤

b2
∥∥∥∥
∫
V ar (vitεit|w1it = w1, uit = u)w0dwitv0

∥∥∥∥+

hpb2T

∥∥∥∥
∫
[Cov (vitεit, visεis|wit, wis, uit = u) |w0] dwitdwisv0

∥∥∥∥ ,
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where w0 =
∫
W (v)2 dv.

For T →∞ and i = i′, t = t′ the Cauchy-Schwarz inequality applied to (47) shows that

∥∥∥∥∥
h

n

p∑

i,t

∑

j 6=i

∑

j′ 6=i

Cov (Wb (wjt − wit) vjtεitKh (uit − u) ,Wb (wj′t − wit) vj′tεitKh (uit − u))

∥∥∥∥∥

2

≤

∑

t

α (t) f (w) |v0E [V ar (εit|wit) |wit = w]|
1/2 ×

‖V ar (vjtE [Wb (wjt − wit)Wb (wj′t − wit) |wit])‖ ≤ Cb
2
∑

t

α (t) = O
(
b2
)

and similarly for t 6= t′. For the case j = j′ and t = t′

∥∥∥∥∥
hp

n

∑

i,t′,t

∑

j 6=i

∑

j 6=i′

Cov (Wb (wjt − wit) vjtεitKh (uit − u) ,Wb (wjt − wi′t) vj′tεitKh (ui′t − u))

∥∥∥∥∥

2

≤

b2

∥∥∥∥∥
1

n (n− 1)

∑

i,j,t

∑

j 6=i

α (t)

∫
v0V ar (vjtεit|wit)w0dwit

∥∥∥∥∥×
∥∥∥∥∥

1

n (n− 1)

∑

i,i′,t

∑

j 6=i

∑

j 6=i′

α (t)

∫
V ar (vjtεit|Wb (wjt − wit)Wb (wjt − wi′t))w0dwjt

∥∥∥∥∥

and similarly for t 6= t′. Hence it follows that

∥∥∥∥∥nh
pV ar

(
1

n

∑

i,t

∑

j 6=i

Wnb (wjt − wit) vjtεitKh (uit − u)

)∥∥∥∥∥ = o (1)

and ∥∥∥∥
1

n

∑
(ẑit − zit) εitKh (uit − u)

∥∥∥∥ = op
(
(nhp)−1/2

)
. (48)

Using similar arguments it is possible to show that

∥∥∥∥∥nh
pV ar

(
1

n

∑

i,t

∑

j 6=i

Wnb (wjt − wit) vjtx
′
it (β (uit)− β0 (u))Kh (uit − u)

)∥∥∥∥∥ = op (1) ,

hence (
hp

n

)1/2∑
(ẑitε̂itKh (uit − u)) =

1

n

∑
zitεitKh (uit − u) + b̂n (u) + op (1) ,

and the result follows again by the same arguments as those used in the proofs of Theorems 1

or 2.

Proof of Theorem 4. By a second order Taylor expansion about λ = 0 with Lagrange
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reminder λ =: λ (u) - that is λ is on the line joining 0 and λ̂- it follows that

ΓCR
(
β̂, λ̂, u

)
− ΓCR

(
β̂, 0, u

)
= −λ̂ (u)′

∑
zitε̂itKh (uit − u) +

1

2
λ̂ (u)′

1

n

∑ ∂2ΓCR
(
β̂, λ, u

)

∂λ⊗2
λ̂ (u)

=
hp

n

∑
(zitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1
∑

(zitε̂itKh (uit − u)) + op (1) ,

where the second equality follows using (21) (with ε̂it replacing ε̃it) and (22). Since

∑
(zitε̂itKh (uit − u)) =

∑
(zitεitKh (uit − u))−

∑
(zitx

′
itKh (uit − u))

(
Σ0 (u)

′Ω0 (u)
−1Σ0 (u)

)−1
Σ0 (u)

′Ω0 (u)
−1
∑

(zitεitKh (uit − u)) + op

((
hp

n

)1/2)
,

it follows that

DCR (u) =
hp

n

∑
(zitεitKh (uit − u))

′ (f (u) Ω (u) ν0)
−1/2M0 (u)× (49)

(f (u) Ω (u) ν0)
−1/2

∑
(zitεitKh (uit − u)) + op (1) ,

where

M0 (u) = I − (f (u) Ω (u) ν0)
−1/2Σ0 (u) (Ξ0 (u) f (u) /ν0)

−1

Σ0 (u)
′ (f (u) Ω (u) ν0)

−1/2 ,

and the conclusion follows by a standard result on the distribution of quadratic forms in normal

vectors with idempotent matrices, see e.g. Theorem 7.2 of Rao (1973). For the case of the

estimated instruments ẑit using (41), (42) or (45) it follows that

ΓCR
(
β̂, λ̂, u

)
− ΓCR

(
β̂, 0, u

)
= −λ̂ (u)′

∑
ẑitε̂itKh (uit − u) + (50)

1

2
λ̂ (u)′

∑
(ẑitεitKh (uit − u))

⊗2 λ̂ (u)

=
hp

n

∑
(zitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1
∑

(zitε̂itKh (uit − u)) +

Op (1)

(
hp

n

)1/2∑
(ẑit − zit) ε̂itKh (uit − u) +

1

2
λ̂ (u)′

hp

n

∑
((ẑit − zit) ε̂itKh (uit − u))

⊗2 λ̂ (u)

=
hp

n

∑
(zitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1
∑

(zitε̂itKh (uit − u)) + op (1)

by (44) or (48), hence the result follows as in (49).
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Proof of Theorem 5. By a mean value expansion about λ = 0

∂π̂CRit

(
β̂, λ̂, u

)

∂λ
=

1

n
−
1

n

(
1 + γλ (u)′ zitε̂itKh (uit − u)

) 1
γ
−1

λ̂ (u)′ (zitε̂itKh (uit − u))

where λ =: λ (u) is the mean value. By (25) and (29) it follows that

∂π̂CRit

(
β̂, λ̂, u

)

∂λ
=
1

n
−
1

n
λ̂ (u)′ (zitε̂itKh (uit − u)) + op

(
1

n

)
, (51)

hence nπ̂it

(
β̂, λ̂, u

)
− 1 = λ̂ (u)′ (zitε̂itKh (uit − u)) + op (1) and thus

∑(
nπ̂CRit

(
β̂, λ̂, u

)
− 1
)2
= λ̂ (u)′

∑
(zitε̂itKh (uit − u))

⊗2 λ̂ (u) + op (1) = (52)

hp

n

∑
(zitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1
∑

(zitε̂itKh (uit − u)) + op (1) ,

so that the result follows as in the proof of Theorem 4. The second result follows noting that

∑
(
nπ̂CRit

(
β̂, λ̂, u

)
− 1
)2

nπ̂CRit

(
β̂, λ̂, u

) =
∑(

nπ̂CRit

(
β̂, λ̂, u

)
− 1
)2
(1 + op (1)) (53)

as maxi,t

∣∣∣λ̂ (u)′ (zitε̂itKh (uit − u))
∣∣∣ = op (1). For the case of estimated instruments ẑit,

∂π̂CRit

(
β̂, λ̂, u

)

∂λ
=
1

n
−
1

n
λ̂ (u)′ (ẑitε̂itKh (uit − u)) + op

(
1

n

)
,

and by (50)

∑(
nπ̂CRit

(
β̂, λ̂, u

)
− 1
)2

=
hp

n

∑
(ẑitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1

∑
(ẑitε̂itKh (uit − u)) + op (1)

=
hp

n

∑
(zitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1

∑
(zitε̂itKh (uit − u)) + op (1)

and the conclusion follows by the same arguments as those used in the proof of Theorem 4. The

conclusion for
∑(

nπ̂CRit

(
β̂, λ̂, u

)
− 1
)2
/nπ̂CRit

(
β̂, λ̂, u

)
follows by (52) and (53).

Proof of Corollary 5.1. Under the local Pitman alternative and (nhp)1/2 γn (u)→ γ (u) > 0

a standard kernel calculation and the same arguments as those used in the proofs of Theorems
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1 and 2 imply that
∑
(zitεitKh (uit − u)) / (nh

p)1/2
d
→ N (γ (u) f (u) ,Ω0 (u) v0f (u)), hence

as in (49) the result for DCR (u) follows by standard results on the distribution of quadratic

forms in nonzero mean normal vectors with idempotent matrices, see e.g. Theorem 7.2 of Rao

(1973). The consistency under the condition (nhp)1/2 γn (u)→∞ is a direct consequence of the

previous conclusion. The result for PCRj (u) (j = 1, 2) follows by (52) and (53), which imply

that PCRj (u) = DCR (u) + op (1).

Proof of Theorem 6. It is first shown that for any two distinct uj and uk for 1 ≤ j, k ≤ m

hp

n
Cov

(∑
(zitεitKh (uit − uj)) ,

∑
(zisεisKh (uis − uk))

)
= o (1) . (54)

For T finite, iterated expectations and a standard kernel calculation show that

Cov (zitεitKh (uit − uj) , (zisεisKh (uis − uk))) = Ω1t (ui1, uis) f (uj, uk) ,

hence by A1
∥∥∥∥
hp

n
Cov

(∑
(zitεitKh (uit − uj)) ,

∑
(zisεisKh (uis − uk))

)∥∥∥∥ = hpTO (1) (55)

→ 0.

For T →∞ let dn be an integer such that dnh
p → 0; then by

hp
∑∥∥∥(zitεitKh (uit − uj)) ,

∑
(zisεisKh (uis − uk))

∥∥∥ = (56)

hp
dn∑

s=1

‖Cov (zitεitKh (uit − uj) , zisεisKh (uis − uk))‖+

hp
T∑

s=dn+1

‖Cov (zitεitKh (uit − uj) , zisεisKh (uis − uk))‖ ≤ dnh
p +

(
h−p

γ
2+γ

)∑
α (s)

γ
2+γ → 0

by (55), E ‖zitεitKh (uit − uj)‖
2+γ = O

(
h−p(1+γ)

)
, A7 and an application of Davidov’s inequality

(Hall and Heyde 1980, p. 278) that shows that

‖Cov ((zi1εi1Kh (ui1 − uj) , zisεisKh (uis − uk)))‖ ≤ Cα (s)
γ

2+γ

∥∥E
(
‖zi1εi1Kh (ui1 − uj)‖

2+γ)∥∥ 1

2+γ

∥∥E
(
‖zisεisKh (uis − uj)‖

2+γ)∥∥ 1

2+γ .

Thus by (54), the same CLTs used in the proofs of Theorems 1 and 2 can be used to show that

(
hp

n

)1/2



∑
(zitε̂itKh (uit − u1))

...∑
(zitε̂itKh (uit − um))


 d
→ (57)

N

(
0, diag [f (u1) Ω0 (u1) ν0 − P0 (u1) , ...,

f (um) Ω0 (um) ν0 − P (um)]

)
,
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where diag [·] indicates a diagonal matrix and

P0 (u) = Σ0 (u) (Ξ0 (u) f (u) /ν0)
−1Σ0 (u)

′ . (58)

The result for maxj D
CR (uj) follows by (49), (57) and the CMT, which imply that

max
j

(
hp

n

)∑
(zitε̂itKh (uit − uj))

′ (f (uj) Ω (uj) ν0)
−1
∑

(zitε̂itKh (uit − uj))
d
→

max
j
χ2j (l − k) .

The result for maxj P
CR
k (uj) (k = 1, 2) follows similarly using (52) and (53). For the estimated

instruments ẑit we have

Cov (ẑitεitKh (uit − uj) , ẑisεisKh (uis − uk)) =

Cov ((ẑit − zit) εitKh (uit − uj) , (ẑis − zis) εisKh (uis − uk)) +

2Cov ((ẑit − zit) εitKh (uit − uj) , ẑisεisKh (uis − uk)) +

Cov (zitεitKh (uit − uj) , zisεisKh (uis − uk)) ,

and for the parametric case

‖Cov (ẑitεisKh (uit − uj) , ẑisεisKh (uis − uk))‖ =∥∥∥β̂ − β0
∥∥∥
2 ∥∥∥Ω∂g1t (ui1, uis) f (uj, uk)

∥∥∥ = op (1) ,

and similarly for the second term, whereas for the nonparametric case, (46) and a standard

kernel calculation shows that

‖Cov (ẑitεitKh (uit − uj) , ẑisεisKh (uis − uk))‖ =

‖Ω1t (ui1, uis) f (uj, uk)‖+O
(
b2
)
,

and similarly for the second term; thus by either (55) or (56)
∥∥∥∥
hp

n
Cov

(∑
(ẑitεitKh (uit − uj)) ,

∑
(ẑisεisKh (uis − uk))

)∥∥∥∥→ 0,

and the result follows using (49), (52), (53), (57) and the CMT.

Proof of Corollary 6.1. The same arguments as those used in the proof of Corollary 5.1 and

Theorem 6 show that under the local Pitman alternative and (nhp)1/2 γn (uj) → γ (uj) > 0 for

j = 1, ...,m

∑
(zitεitKh (uit − uj)) / (nh

p)1/2
d
→ N (γ (uj) f (uj) ,Ω0 (uj) v0f (uj))

and for any two distinct uj and uk for 1 ≤ j, k ≤ m

hp

n
Cov

(∑
[(zitεit − γn (uj))Kh (uit − uj)] ,

∑
[(zisεis − γn (uk))Kh (uis − uk)]

)
= o (1) ,
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and

(
hp

n

)1/2



∑
(zitε̂itKh (uit − u1))

...∑
(zitε̂itKh (uit − um))


 d
→

N



(I − P0 (u1)) γ (u1) f (u1) , ..., (I − P0 (um)) γ (um) f (um) ,

diag [f (u1) Ω0 (u1) ν0 − P0 (u1) , ...,

f (um) Ω0 (um) ν0 − P (um)] ,


 ,

where the matrix P0 (·) is defined in (58). Then the same result on the distribution of quadratic

forms in nonzero mean normal vectors used in Corollary 5.1 and the CMT imply that

max
j

(
hp

n

)∑
(zitε̂itKh (uit − uj))

′ (f (uj) Ω (uj) ν0)
−1
∑

(zitε̂itKh (uit − uj))
d
→

max
j
χ2j (κj, l − k) ,

where κj = f (uj) γ (uj)
′
(
Ω0 (uj)

−1 (I − Σ0 (uj) Ξ0 (uj)−1Σ0 (uj)
)
Ω0 (uj)

−1) γ (uj) /v0; the re-
sult maxj D

CR (uj) follows by (49) and (57), whereas that for maxj P
CR
k (uj) (k = 1, 2) follows

by (52), (53) which imply that maxj P
CR
k (uj) = maxj D

CR (uj) + op (1). The consistency under

the condition (nhp)1/2 γn (uj)→∞ is a direct consequence of the previous conclusion.

Proof of Theorem 7. A second-order Taylor expansion about β̂ (u) with Lagrange reminder

β := β (u) shows that

DCR
(p) (u) =

(
β̂ (u)− β̃ (u)

)′ ∂2ΓCR
(
β, λ̃

(
β(p)
))

∂β⊗2

(
β̂ (u)− β̃ (u)

)
+ op (1)

as ∂ΓCR
(
β̂, λ̃

)
/ ∂β = op (1) by definition, where the notation λ̃

(
β(p)
)
emphasizes the depen-

dence of λ̃ on the constraint. Then by the chain rule

∂2ΓCR
(
β, λ̃

(
β(p)
))

∂β⊗2
= −

1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

(59)

[
xitz

′
itλ̃
(
β(p)
)⊗2

z′itxitKh (uit − u)
2 +

xitz
′
itλ̃
(
β(p)
)
zitε̃

′
it

∂λ̃
(
β(p)
)

∂β′
zitε̃itKh (uit − u)

2 − xitz
′
it

∂λ̃
(
β(p)
)

∂β′
Kh (uit − u)




30



and using the same arguments as those used in the proof of Theorem 1 or 2
∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

xitz
′
itλ̃
(
β(p)
)⊗2

z′itxitKh (uit − u)
2

∥∥∥∥∥ = op (1) ,
∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

xitz
′
itλ̃
(
β(p)
)
×

zitε̃
′
it

∂λ̃
(
β(p)
)

∂β′
zitε̃itKh (uit − u)

2

∥∥∥∥∥∥
= op (1) ,

whereas
∥∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

xitz
′
it

∂λ̃
(
β(p)
)

∂β′
Kh (uit − u) (60)

−Σ0 (u) f (u)
∂λ̃
(
β(p)
)

∂β′

∥∥∥∥∥∥
= op (1) .

Furthermore by differentiating with respect to β the first order condition

0 = −
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ

zitε̃itKh (uit − u)

we have

0 = −∂

(
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ

zitε̃itKh (uit − u)

)
/∂β =

−
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

(zitε̃itKh (uit − u))
⊗2
∂λ̃
(
β(p), u

)

∂β′
−

1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

(zitx
′
itKh (uit − u))−

1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

z⊗2it λ̃
(
β(p), u

)
x′itKh (uit − u) ,

which yields

∂λ̃
(
β(p), u

)

∂β′
= − (Ω0 (u) ν0)

−1Σ0 (u) + op (1) . (61)

Thus using (60), (61) and the triangle inequality yield

∥∥∥∥∥∥

∂2ΓCR
(
β, λ̃

(
β(p)
))

∂β⊗2
− f (u) Σ0 (u)

′ (Ω0 (u) ν0)
−1Σ0 (u)

∥∥∥∥∥∥
= op (1) ,
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so that

DCR
(p) (u) =

(
β̂ (u)− β̃ (u)

)′
f (u) Σ0 (u)

′ (Ω0 (u) ν0)
−1Σ0 (u) (62)

(
β̂ (u)− β̃ (u)

)
+ op (1) .

The proof of Theorem 1 or 2 shows that

(nhp)1/2
(
β̂ (u)− β0 (u)

)
= Ξ0 (u)

−1Σ0 (u)
′ ×

(f (u) Ω (u))−1
(
hp

n

)1/2∑
zitεitKh (uit − u) + op (1)

and by a Lagrange multiplier argument it is easy to see that

(nhp)1/2
(
β̃ (u)− β0 (u)

)
=
[
Ik − Ξ0 (u)

−1R′
(
RΞ0 (u)

−1R′
)−1

R
]
Ξ0 (u)

−1Σ0 (u)
′ ×

(f (u) Ω0 (u))
−1

(
hp

n

)1/2∑
zitεitKh (uit − u) + op (1) ,

where R =
[
Ip, Op×(k−p)

]
and Op×(k−p) is a p×(k − p) matrix of zeros. Then some algebra shows

that

DCR
(p) (u) =

hp

n

∑
(zitεitKh (uit − u))

′ Λ0 (u)
′ f (u) Σ0 (u)

′ (Ω0 (u) ν0)
−1 × (63)

Σ0 (u) Λ0 (u)
∑

zitεitKh (uit − u) + op (1) ,

where

Λ0 (u) = Ξ0 (u)
−1R′

(
RΞ0 (u)

−1R′
)−1

RΞ0 (u)
−1Σ0 (u)

′ f (u) Ω0 (u)
−1 .

By CMT and the same arguments used in the proofs of Theorems 1 and 2

Λ0 (u)

(
hp

n

)1/2∑
zitεitKh (uit − u)

d
→ N

(
0,

v0
f (u)

Ξ0 (u)
−1R′

(
RΞ0 (u)

−1R′
)−1

RΞ0 (u)
−1

)
,

(64)

and the result follows as in the proof of Theorem 4 by CMT, noting that

Ξ0 (u)
−1/2R′

(
RΞ0 (u)

−1R′
)−1

RΞ0 (u)
−1/2

is symmetric and idempotent with rank
(
Ξ0 (u)

−1/2R′
(
RΞ0 (u)

−1R′
)−1

RΞ0 (u)
−1/2

)
= k. For

the estimated instruments case ẑit, note that by triangle inequality and the same arguments as

those used in the proof of Theorem 3
∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

xitẑ
′
itλ̃
(
β(p)
)⊗2

ẑ′itxitKh (uit − u)
2

∥∥∥∥∥ ≤

‖ẑit − zit‖
2
∥∥∥λ̃
(
β(p)
)∥∥∥

2

∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

x⊗2it Kh (uit − u)
2

∥∥∥∥∥+
∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

xitz
′
itλ̃
(
β(p)
)⊗2

z′itxitKh (uit − u)
2

∥∥∥∥∥ = op (1) ,
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∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
ẑitε̃itKh (uit − u)

) 1

γ
−1

xitẑ
′
itλ̃
(
β(p)
)
×

ẑitε̃
′
it

∂λ̃
(
β(p)
)

∂β′
zitε̃itKh (uit − u)

2

∥∥∥∥∥∥
≤ ‖ẑit − zit‖

2 ×

∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
ẑitε̃itKh (uit − u)

) 1

γ
−1

xitλ̃
(
β(p)
)
×

ε̃′it

∂λ̃
(
β(p)
)

∂β′
zitε̃itKh (uit − u)

2

∥∥∥∥∥∥
+

∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
zitε̃itKh (uit − u)

) 1

γ
−1

×

xitz
′
itλ̃
(
β(p)
)
zitε̃

′
it

∂λ̃
(
β(p)
)

∂β′
zitε̃itKh (uit − u)

2

∥∥∥∥∥∥
= op (1) ,

and similarly for

∥∥∥∥∥∥
1

n

∑(
1− γλ̃

(
β(p), u

)′
ẑitε̃itKh (uit − u)

) 1

γ
−1

xitz
′
it

∂λ̃
(
β(p)
)

∂β′
Kh (uit − u)

−Σ0 (u) f (u)
∂λ̃
(
β(p)
)

∂β′

∥∥∥∥∥∥
= op (1) .

Similarly to (63) we have that

DCR
(p) (u) =

hp

n

∑
(ẑitεitKh (uit − u))

′ Λ0 (u)
′ f (u) Σ0 (u)

′ (Ω0 (u) ν0)
−1 × (65)

Σ0 (u) Λ0 (u)
∑

ẑitεitKh (uit − u) + op (1) ,

and the result follows as in the proof of Theorem 4.

Proof of Theorem 8. By the same arguments as those used in the proof of Theorem 5 it

follows that

nπ̃it

(
β̃, λ̃, u

)
− 1 = λ̃ (u)′ (zitε̃itKh (uit − u)) + op (1)

and thus

∑(
nπ̂CRit

(
β̂, λ̂, u

)
− nπ̃CRit

(
β̃, λ̃, u

))2
=

(
λ̂ (u)− λ̃ (u)

)′∑
(zitε̂itKh (uit − u))

⊗2 ×
(
λ̂ (u)− λ̃ (u)

)
+ op (1)

=
hp

n

∑
(zitε̂itKh (uit − u))

′ (f (u) Ω (u) ν0)
−1 ×

∑
(zitε̂itKh (uit − u)) ,

33



where the second equality follows by (21) with ε̂it replacing ε̃it. By (33)

λ̂ (u) = (Ω0 (u) f (u) ν0)
−1 − (Ω0 (u) f (u) ν0)

−1 P0 (u) (Ω0 (u) f (u) ν0)
−1 ×

1

n

∑
(zitεitKh (uit − u)) + op (1) ,

while some algebra shows that for λ̃ (u)

λ̃ (u) = (Ω0 (u) f (u) ν0)
−1 − (Ω0 (u) f (u) ν0)

−1Σ0 (u)K0 (u) Σ0 (u)
′Ω0 (u)

−1 ×
1

n

∑
(zitεitKh (uit − u)) + op (1) ,

where

K0 (u) =
ν0
f (u)

Ξ0 (u)
−1 (I − Λ0 (u)) ,

hence ∑(
nπ̂CRit

(
β̂, λ̂, u

)
− nπ̃CRit

(
β̃, λ̃, u

))2
= DCR

(p) (u) + op (1) , (66)

whereas as in (53)

PCR4 (u) =
N∑

i=1

N∑

t=1

(
NTπ̃CRit

(
β̃, λ̃, u

)
−NTπ̂CRit

(
β̂, λ̂, u

))2

NTπ̂CRit

(
β̂, λ̂, u

) or (67)

=
N∑

i=1

N∑

t=1

(
NTπ̃CRit

(
β̃, λ̃, u

)
−NTπ̂CRit

(
β̂, λ̂, u

))2

NTπ̃CRit

(
β̃, λ̃, u

) = DCR
(p) (u) + op (1) .

The result follows using the same arguments as those used in the proof of Theorem 5. For the

case of estimated instruments ẑit, the result follows using the same arguments as those used in

the proof of Theorem 7.

Proof of Theorem 9 . By the same arguments as those used in the proof of Theorems 6 and

7, (64) and (65) it follows that

nhpCov
(
β̂ (uj)− β̃ (uj) , β̂ (uk)− β̃ (uk)

)
= o (1)

and

(nhp)1/2



β̂ (u1)− β̃ (u1)

...

β̂ (um)− β̃ (um)


 d
→

N


 0, diag

[
v0

f(u1)
Ξ0 (u1)

−1R′
(
RΞ0 (u1)

−1R′
)−1

RΞ0 (u1)
−1 , ...

v0
f(um)

Ξ0 (um)
−1R′

(
RΞ0 (um)

−1R′
)−1

RΞ0 (um)
−1
]


 ,
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hence by (54), (62) and CMT we have that

max
j
DCR
(p) (uj)

d
→ max

j
χ2j (p) .

The result for maxj P
CR
k (uj) (k = 3, 4) follows similarly using (66) and (67).

Proof of Corollary 9.1. Under the local Pitman alternative and (nhp)1/2 γ
(p)
n (u)→ γ(p) (u) >

0, the same Lagrange multiplier argument used in the proof of Theorem 7 shows that

(nhp)1/2
(
β̂ (u)− β̃ (u)

)
d
→ N

(
γpΞ (u) ,

v0
f (u)

Ξ0 (u)
−1R′

(
RΞ0 (u)

−1R′
)−1

RΞ0 (u)
−1

)
, (68)

where

γ
(p)
Ξ (u) = Ξ (u)−1R′

[
Ip,Ξ

(pp)
0 (u) Ξ

(pk−p)
0 (u)

]′ (
Ξ
(pp)
0 (u)

)−1
γ(p) (u) f (u) ,

and Ξ
(pp)
0 (u) and Ξ

(pk−p)
0 (u) are, respectively, the upper p× p and lower p× (k − p) left blocks

of Ξ0 (u)
−1. Then by (63) the result follows by CMT noting that

γ
(p)
Ξ (u)′ Ξ (u) γ

(p)
Ξ (u) f (u) /v0 = γ

(p)
Ξ (u)′

(
Ξ
(pp)
0 (u)

)−1
γ
(p)
Ξ (u) f (u) /v0.

The consistency under the condition (nhp)1/2 γ
(p)
n (u) → ∞ follows immediately as that for

PCRk (u) (k = 3, 4) using (66) and (67). The result for the case {uj}
m
j=1 follows using (68) and

the same arguments used in the proof of Theorem 6. The consistency under the condition

(nhp)1/2 γn (uj)→∞ follows similarly.
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6 Tables and figures

Table 1. MSE× 10−3 of β̂j (·) with observed instruments

σ2ε = 0.5, σ
2
η = 0.5 σ2ε = 0.2, σ

2
η = 0.8

N = 100

T = 5
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

1.204 2.131

1.205 2.145

1.312 2.290

0.635 0.776

0.645 0.782

0.765 0.866

N = 100

T = 50
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

0.924 1.843

0.926 1.852

1.152 1.892

0.512 0.623

0.514 0.632

0.648 0.757

N = 400

T = 5
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

0.324 0.504

0.376 0.512

0.521 0.623

0.124 0.154

0.131 0.169

0.167 0.202

N = 400

T = 50
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

0.274 0.399

0.294 0.405

0.434 0.543

0.104 0.120

0.121 0.127

0.127 0.142
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Table 2. MSE× 10−3 of β̂j (·) with estimated instruments

σ2ε = 0.5, σ
2
η = 0.5 σ2ε = 0.2, σ

2
η = 0.8

N = 100

T = 5
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

1.099 1.877

1.105 1.763

1.221 1.998

0.543 0.687

0.588 0.703

0.623 0.832

N = 100

T = 50
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

0.910 1.675

0.915 1.594

1.054 1.766

0.490 0.547

0.502 0.563

0.572 0.641

N = 400

T = 5
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

0.243 0.376

0.287 0.399

0.432 0.576

0.106 0.254

0.132 0.221

0.209 0.297

N = 400

T = 50
β̂1 β̂2 β̂1 β̂2

EL

ET

GMM

0.193 0.324

0.185 0.342

0.365 0.502

0.097 0.190

0.105 0.197

0.164 0.212
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Table 3. Finite sample sizes for DEL
(p) (u) , D

ET
(p) (u) ,

DGMM
(p) (u) , PEL3 (u) , PET3 (u)

u = 2.5 u = 3.5

N = 100, T = 5

DEL
(p) (u) 0.015a 0.054b 0.014a 0.057b

DET
(p) (u) 0.016a 0.056b 0.015a 0.055b

DGMM
(p) (u) 0.026a† 0.064b† 0.023a† 0.061b†

PEL3 (u) 0.013a 0.053b 0.012a 0.054b

PET3 (u) 0.012a 0.054b 0.024a 0.055b

N = 100, T = 50

DEL
(p) (u) 0.013a 0.057b† 0.015a 0.055b

DET
(p) (u) 0.015a 0.055b 0.014a 0.057b†

DGMM
(p) (u) 0.028a† 0.059b 0.030a 0.058b†

PEL3 (u) 0.023a 0.055b 0.023a 0.053b

PET3 (u) 0.021a 0.053b 0.026a 0.054b

a 0.01 nominal level, b 0.05 nominal level, † statistically different from nominal level

Table 4. Finite sample sizes for max
j
DEL
(p) (uj) , max

j
DET
(p) (uj) ,

max
j
DGMM
(p) (uj) , max

j
PEL3 (uj) , max

j
PET3 (uj)

N = 100, T = 5 N = 100, T = 50

maxj D
EL
(p) (uj) 0.017a† 0.056b† 0.015a 0.054b

maxj D
ET
(p) (uj) 0.018a† 0.059b† 0.016a† 0.057b†

maxj D
GMM
(p) (uj) 0.026a† 0.063b† 0.025a† 0.060b†

maxj P
EL
3 (uj) 0.015a 0.048b 0.014a 0.047b

maxj P
ET
3 (uj) 0.015a 0.053b 0.015a 0.052b

a 0.01 nominal level, b 0.05 nominal level, † statistically different from nominal level
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Figure 1. Finte sample power for DEL
(p) (u), D

ET
(p) (u) and D

GMM
(p) (u) for N = 100,

T = 5.
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Figure 2. Finite sample power for PEL3 (u), PET3 (u) and DGMM
(p) (u) for

N = 100, T = 5.
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Figure 3. Finte sample power for DEL
(p) (u), D

ET
(p) (u) and D

GMM
(p) (u) for N = 100,

T = 50.
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Figure 4. Finte sample power for PEL3 (u), PET3 (u) and DGMM
(p) (u) for N = 100,

T = 50.

42



0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

δ

P
o

w
e

r
uJ

maxj D
GMM

uj

maxj D
EL

uj

maxj D
ET

uj

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

δ

P
o

w
e

r

uJ

maxj D
GMM

uj

maxj P
EL

uj

maxj P
ET

uj
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