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Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently
been proposed as a possible intermediate step towards the realization of quantum repeaters. Despite its relaxing
some of the requirements on quantum memories, the choice of memory in relation to the layout of the setup
and the protocol has a stark effect on our ability to beat existing no-memory systems. Here, we investigate the
suitability of nitrogen vacancy (NV) centers, as quantum memories, in MA-MDI-QKD. We particularly show
that moderate cavity enhancement is required for NV centers if we want to outperform no-memory QKD systems.
Using system parameters mostly achievable by today’s state of the art, we then anticipate some total key rate
advantage in the distance range between 300 and 500 km for cavity-enhanced NV centers. Our analysis accounts
for major sources of error including the dark current, the channel loss, and the decoherence of the quantum
memories.
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I. INTRODUCTION

Long-distance quantum key distribution (QKD) should
ideally enable the exchange of secret data without the need
to trust intermediate nodes [1]. Quantum repeaters [2–5]
are often considered to be the main means to achieve this
goal, but they are facing numerous technological challenges,
e.g., the development of reliable quantum memory (QM)
units, which delay their implementation. A potentially feasible
approach to increase the quantum communication range has
been proposed in [6,7], where the authors introduce memory-
assisted measurement-device-independent QKD (MA-MDI-
QKD) schemes. Their protocols resemble a single-node
quantum repeater link with QMs only in the middle node,
and optical encoders only at the users end. Alternatively, one
can look at them as MDI-QKD links [8–10], with additional
QMs in the middle. The performance of these memory-
assisted schemes much relies on their employed QMs. Initially,
ensemble-based memories were considered as suitable candi-
dates for such systems because of their short subnanosecond
writing times [11]. It turned out, however, that, within the
proposed schemes in [7], the multiple-excitation effect in such
QMs would prevent the MA-MDI-QKD protocol to beat the
no-memory QKD schemes [12]. To avoid such problems, in
this paper, we investigate the suitability of nitrogen vacancy
(NV) centers in diamonds as quantum memories and show that
it is possible to beat the existing no-memory schemes, in terms
of rate versus distance, in certain regimes of interest.

There are several possible solutions by which we can avoid
the multiple-excitation effect in ensemble-based memories. In
one approach, as proposed in [12], one can attempt to locally
generate a pair of entangled photons, and then try to load the
QM with one of them. If each photon in the entangled pair is
truly a single photon, we would, in principle, excite only one
atom in the ensemble. Another solution is to use single-atom
or ion or quasi-single-atom QMs, such as quantum dots and
NV centers in diamond. Each of these solutions would offer
certain advantages and disadvantages, and while none could

necessarily offer a practical advantage at this very time, it
would be interesting to see how far each technology is from
beating a no-QM system.

Among various candidates for the QM, in this paper, we
focus on the potential of NV centers in diamond. There is some
evidence that such systems might offer better performance
than their rivals, while a rigorous analysis in each case is
needed to find out what would be the best each system can
offer. For instance, in the case of quantum dots, one possible
drawback could be their often very short spin coherence time
T2, ranging from 2 ns to over 200 ns [13,14], which could
prove too short to be effective in the MA-MDI-QKD setup, as
we will show in Sec. IV. The electronic spins in NV centers,
instead, have coherence times on the order of milliseconds,
which can be extended to seconds when their electron spin state
is transferred to nuclear spins [15–17]. As compared to single
atoms and ions, NV centers offer faster interaction times with
photons, on the order of tens of nanoseconds, while the former
are generally slower systems. Since the short access time is
one of the requirements in [7], the NV centers could then have
an advantage in this regard as we numerically compare these
systems in Sec. IV. NV centers, nevertheless, similar to any
other single-atom-like QM, must be embedded into cavities if
efficient coupling with photons is required.

One of the key requirements in some of the protocols
proposed in [7] is the ability to entangle QMs with photonic
states. In order to achieve a high key generation rate that can
beat conventional no-QM systems, this entangling procedure
(1) must have a reasonably high rate of success on the
order of 0.1; (2) must be repeatable with a rate roughly
exceeding 10 MHz; and (3) must offer a high-fidelity (low
error) operation. There have been various attempts in the
field to entangle NV centers with single photons. In early
experiments, both fidelity and the success rate are often low.
For instance, in [18], the probability of creating spin-photon
entanglement is on the order of 10−6, which is extremely low
for the application we have in mind. The achieved fidelity is
also rather low at around 70% [18]. More recent experiments
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improve the fidelity, but the success rate still remains at a
similar level [19]. One key reason for the latter is the low
collection efficiency of the photons coming out of the NV
center. The efficiency would increase if instead of generating
a photon entangled with the NV center, we first generate
entangled photons and then store one of the photons in the
NV center. An overall efficiency of 20% has been reported in
[20] for transferring the state of a single photon to the nuclear
spin of an NV center. But, then, such a system needs to be
driven by a high-rate source in order to compete with no-QM
systems that can be driven at GHz rates. It follows then, both for
boosting the coupling efficiency and/or generating spectrally
matched single photons at a high rate, we need to embed the
NV centers in compact optical cavities.

NV centers, embedded into cavities, can in principle satisfy
all the requirements in MA-MDI-QKD. In [21], the authors
propose an innovative scheme for cavity-enhanced NV centers
that can potentially create memory-photon entangled states
with an extremely high fidelity (F > 0.99) and high entangling
rates. There, the authors use two NV centers in diamond, each
inside a cavity, to create a spin entangled pair. The essence
of this method is based on how the NV center state affects
the reflectivity of the cavity system [22]. In our work, we will
modify the scheme in [21] to create spin-photon entanglement
between the electron spin of an NV center, embedded into a
cavity, and a single photon.

Our main contribution is a rigorous and quantitative as-
sessment of the applicability of NV centers in MA-MDI-QKD
setups. We start with reviewing the experimental setups that
couple single photons and NV centers and overestimate their
performance in the context of MA-MDI-QKD. It turns out
that none of these setups is capable of beating conventional
QKD systems. Our key proposed solution is then based
on cavity-enhanced NV centers. We show that even with
some moderate cavity enhancement the rate-versus-distance
behavior can substantially improve. While the fabrication and
testing of such devices is underway, we use the meticulous
analysis in [21] to estimate the potential of such QMs in
our setup. We calculate the secret key generation rate, as
the main figure of merit, for a number of NV-center-based

MA-MDI-QKD schemes, and compare it with that of the
no-memory system, as well as other main single-excitation
candidates for QMs. Our analysis accounts for major sources
of imperfection such as dark current in detectors and path loss
as well as the decoherence of the QMs.

The paper is structured as follows. In Sec. II, we review
the MA-MDI-QKD schemes proposed in [7,12], highlighting
their key features and updating their measurement procedures.
In Sec. III, we investigate the applicability of the noncavity
schemes proposed in [18–20] for MA-MDI-QKD and pro-
pose memory-assisted schemes that use cavity-enhanced NV
centers as memories. In Sec. IV, we describe our methodology
for calculating the secret key generation rate for the proposed
protocols. We continue by providing some numerical results
before we draw our conclusions in Sec. V.

II. MEMORY-ASSISTED MDI-QKD: THE BASICS

MA-MDI-QKD can be implemented in different ways using
different quantum memory modules. The original schemes
proposed in [7] were divided into two categories of directly
versus indirectly heralding schemes; see Figs. 1(a) and 1(b).
Later, in [12], the authors proposed a third setup using EPR
sources; see Fig. 1(c). In all these setups, one needs to store
the state of an incoming BB84-encoded photon, in a heralded
way, into the QM. Once both memories are loaded, we need
to perform a Bell-state measurement (BSM) on the QMs’
states to generate, using the time-reversed entanglement idea
[23], correlated data between Alice and Bob [8]. The fact that
this BSM is only done once we know of the storage of the
transmitted photons is the key to improving the rate-versus-
distance behavior, as now the rate would, in principle, scale
with the loss over half of the channel.

Depending on the MA-MDI-QKD scheme used, there are
different requirements that need to be met. In Fig. 1(a), where,
for each transmitted photon, we attempt to store it into the
QM, we need to be able to verify whether or not the photon’s
state has successfully been captured by the QM. In such a
protocol, the time period at which the whole loading scheme
can be repeated cannot be shorter than the sum of three key

FIG. 1. Different setups for memory-assisted MDI-QKD, as proposed in [7,12], for (a) directly heralding and (b) and (c) indirectly heralding
quantum memories. In (c), the EPR source generates an entangled pair of photons, but the photon will be written into the memory only if the
side BSM is successful (delayed writing).
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time parameters: the interaction time between a photon and a
QM needed to transfer the state between them, the verification
time needed to establish if the loading has been successful, and
the preparation and initialization time required to prepare the
system back into a state that can interact with the next arriving
photon. The repetition rate is an important factor for MA-MDI-
QKD because in order to have a chance at beating no-QM
systems, typically driven at GHz rates, we cannot afford to
have slow memories. Another issue with low repetition rates is
the requirement for longer coherence times. In [7], the authors
show that for MA-MDI-QKD in Fig. 1(a) to have a chance at
beating no-QM systems, one needs repetition rates exceeding
10 MHz and coherence times roughly 10 000 times longer
than the repetition period. For that reason, typical candidates
with directly heralding features, such as trapped atoms/ions,
may not perform their best within the setup of Fig. 1(a). For
instance, in [24], the authors use 87Rb atoms to realize the her-
alded transfer of a polarization qubit from a photon onto a sin-
gle atom. However, the initialization time of the atom is around
140 μs, which restricts the repetition rate to below 10 kHz.

In order to have the option of using other types of memories,
in the schemes of Figs. 1(b) and 1(c), the photon storage is
heralded in an indirect way by teleporting the user’s photon
into the QM. In order to do so, we first need to entangle a
photon with the QM, and then do an additional side BSM on
this photon and the one sent by the user. A successful side BSM
heralds the storage of the photon. In Fig. 1(b), the entangled
photon is generated by manipulating the QM. In that sense,
the repetition period is determined by similar time parameters
as before, except that now the interaction time refers to the
time that it takes to entangle a photon with a QM after
the initialization phase. The verification time in this case is
effectively the time for doing the side BSM, which can be very
short. The same requirements are then held as in the scheme of
Fig. 1(a) regarding the short repetition times and large storage-
bandwidth products. In many QM setups, the former can be
hard to achieve especially if cooling is required for the QM. For
slower QMs, but the ones with long coherence times, one can
then use the scheme in Fig. 1(c), in which we only manipulate
the QM if we have a successful side BSM. In this scheme, we
can run the system at the rate at which entangled photons can be
generated by the EPR source. Once we have a successful side
BSM, we trigger the writing procedure for storing the unused
photon of the EPR source into the QM. In short distances, the
rate will be cropped by the slow rate of the QM’s preparation
time, but, at long distances, we can effectively prepare the QM
before the next photon survives the path loss. Using this trick,
we can achieve a higher rate from slow QMs.

Finally, to generate a raw key bit, one needs to do the middle
BSM in Fig. 1. In [7], the authors assume that the states of the
QMs can be transferred back to photons (the QMs carry no
information from that point on), and then we can use the type of
linear optical modules shown in Figs. 2(a) and 2(b) to perform
a partial BSM. In this paper, we refer to this scheme by the
reading protocol. As we will discuss in the next section, for NV
centers, this final BSM is not without its own challenges. In
particular, in order to use the reading protocol, we need to find
a double-� structure in NV centers with identical energy gaps.
This turns out to be nontrivial for NV centers. An alternative
approach is to again entangle a photon with each QM and
do the partial BSM on these photons. This is known as the
double-encoding scheme [25]. If the BSM is successful, a
further X-basis measurement needs to be done on the QMs to
enable an indirect BSM on the memories’ states. The double-
encoding technique also turns out to be not feasible or quite
inefficient for many existing spin-photon entangling schemes
that rely on NV centers. One way to make this scheme more
efficient is to use cavity-enhanced NV centers, as we consider
in this paper. Finally, one can potentially use a direct BSM on
QMs without any interaction with photons. In the case of NV
centers, this can be done if we use both the nuclear and electron
spins in a single NV center [26]. We will investigate such an
option in a separate work. Note that, in Figs. 1(b) and 1(c),
side BSMs are performed on two optical modes, for which
we use the linear optical module in Fig. 2(a), for polarization
encoding, or the one in Fig. 2(b) for phase encoding systems.

III. MEMORY-ASSISTED MDI-QKD WITH NV CENTERS

In this section we consider several avenues for employing
NV centers, as QMs, in any of the setups in Fig. 1. This can be
divided into two categories: (1) experiments in which an NV
center has been entangled with a photon, or a single photon
has been written into the memory. The common feature in
these experiments is that in none of which the NV center is
embedded into a microcavity; and (2) the proposed setups
for cavity-enhanced NV centers, which, while not yet being
experimentally demonstrated, we have sufficiently rigorous
analytical results to estimate their performance. One of our
key findings in this paper is that none of the main candidates
in the first group is capable of beating no-QM systems
for two fundamental reasons. First, the entangling/collection
efficiency is often very low in such experiments when there is
no confining cavity around the NV center. Secondly, in most
experiments, there is no straightforward way to perform the
middle BSM by either reading or double-encoding protocol.

FIG. 2. Bell-state measurement modules for (a) polarization and (b) phase-encoded states. (c) The common building block in (a) and (b),
and its simplified version (on the right), when the setup’s inefficiencies are considered. In (c), ηr , ηD , and ηch, respectively, represent the
reading, detector, and channel efficiencies, and ηa = ηDηch and ηb = ηDηr .

022338-3



LO PIPARO, RAZAVI, AND MUNRO PHYSICAL REVIEW A 95, 022338 (2017)

FIG. 3. The relevant energy level structure for the NV center used
in (a) [18], (b) [19], and (c) [21].

Both issues can be rectified if we use cavity-enhanced setups
as we show in this section.

A. MDI-QKD with noncavity NV centers

There is a range of experiments on spin-photon interac-
tions in NV centers. Here, we consider three representative
examples and explore whether they can offer any advantages
in the context of MA-MDI-QKD. The first of such is the
early experiment reported in [18], followed by more recent
experiments by Hanson’s group [19,27]. The last example
is about efficient transfer of single photons into NV centers
reported in [20]. For none of these setups, however, we were
able to find or come up with an efficient readout scheme as
required for the final BSM operation. In the lack of a proper
working scheme, we introduce a toy model to estimate what
at best noncavity systems can offer.

The first candidate we consider for spin-photon entangle-
ment in Fig. 1(b) is the setup proposed in [18]. In this setup [see
Fig. 3(a)], the NV center is prepared in a specific excited state
|A2〉 that ideally decays with equal probability into two differ-
ent long-lived spin states, namely, |s±1〉, representing the ±1
electron spin states. Such a transition would correspondingly
result in emitting orthogonal circularly polarized photons, |σ+〉
and |σ−〉, in the following entangled state with the QM [18],

|�1〉 = 1√
2

(|σ−〉|0〉NV + |σ+〉|1〉NV ), (1)

where |0〉NV = |s+1〉 and |1〉NV = |s−1〉.
There are several practical issues with the above entangling

procedure. First, there is the issue of efficiency. In this setup,
a combination of weak NV-center-photon coupling and poor
collection efficiency results in a very low success rate on
the order of 10−6 [18]. Furthermore, only a small fraction of
photons are emitted into the zero-phonon line, while most are
emitted into the phonon sidebands, where the latter would not
result in the required spin-photon entanglement [28]. The latter
is mainly responsible for the rather low fidelity of this scheme
at around 70%. Finally, once both QMs in Fig. 1(b) are loaded,
we need to somehow perform the central BSM operation on
these QMs. This is, however, a challenging task within this
setup, as neither the reading nor the double-encoding scheme
can easily be implemented in this setup.

Some of the problems with the scheme in [18] can be
rectified by the scheme proposed in [19]. In particular, here,
the authors use resonant versus nonresonant transitions to have
a conditional single photon generation. In Fig. 3(b), if the NV
center is in |s0〉, a resonant transition to state |Ey〉 would
result in a spontaneous photon transmission, whereas, for an
NV center in |s−1〉, we do not expect any photons emerging.

This process would ideally result in an entanglement between
the number of photons, zero or one, in the collected photonic
mode and the subspace spanned by |s0〉 and |s−1〉. This kind
of entanglement is, in principle, useful for phase encoding
schemes of MA-MDI-QKD [12]. In [19], the reported success
probability or this entangling procedure is on the order of 10−4,
which is higher than that of [18]. The challenge here is that, in
the phase encoding scheme, we need two QMs per users. If we
entangle these two QMs using the setup in [19], it is possible
to have double excitations, that is, to end up with two NV
centers in their |s0〉 states. In [19], the authors propose to flip
the states of the NV centers and do the entangling procedure
again. The desired entangled state would again emit a single
photon, whereas the double-excited term, after flipping, would
generate none. This way, we can basically purify our state to
achieve high-fidelity entanglement. The price to pay is that
by using the entangling procedure twice, the efficiency of the
whole process would scale as the square of the single-stage
entangling efficiency, which will be on the same order of
magnitude as the scheme in [18]. As for reading, while it is
possible to apply the entangling procedure to double encode a
photon with memories, it is challenging to perform an X-basis
measurement on two separate NV centers. So, again, we end up
with a scheme, which is neither efficient, nor a proper readout
mechanism can be devised for it.

While the previous two schemes struggle with achieving
high entangling efficiencies, partly because of their imperfect
collection of the released photon, in [20], the authors report on
a rather efficient, at around 20%, heralded transfer of a single
photon to the nuclear spin of an NV center. This scheme can,
in principle, be employed in the setups of Figs. 1(a) and 1(c).
The challenge with the setup in Fig. 1(a) is the rather long
preparation time, on the order of 100 μs, in this scheme, which
restricts the repetition rate of the protocol to below 10 kHz. If
we switch to the setup of Fig. 1(c), which allows for delayed
writing, the challenge would be in finding a high-rate EPR
source by which the NV centers can be driven. The latter is
nontrivial because cavity enhancement is often required for
narrow-band high-rate sources. Finally, similar to the other
two schemes, it is not at all obvious, how one can either read
or double encode the QMs with photons for the middle BSM
operation.

1. Toy models for MA-MDI-QKD with noncavity NV centers

While, in the lack of a proper readout scheme, we are
not in a position to devise a full MA-MDI-QKD scheme
for any of the above setups, we can still overestimate their
performance by introducing a toy model that captures their key
features. This model will not necessarily include all possible
imperfections in such hypothetical setups, but, by that token,
the key rates obtained from this model will provide us with an
upper bound on the rate one can possibly achieve from such
noncavity setups. If this upper bound is still below the rate
that no-QM systems offer, we can conclude that, in the context
of MA-MDI-QKD, without cavity enhancement, our existing
technology for NV centers is not capable of beating the no-QM
systems. We discuss this further in Sec. IV.

In our toy model for the schemes in [18,19], we assume that
the entangled state in Eq. (1) is always generated but because
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of the imperfect collection efficiency, the generated photon
is directed to the side BSM with probability pc. This way
we ignore some of the other nonidealities that may bring the
fidelity down. The resulting density matrix for the NV center
(NV) and the collected photon (P) is then given by

ρNV−P = pc|�1〉〈�1| + (1 − pc)|0〉PP〈0| ⊗ INV, (2)

where INV = (|0〉NV〈0| + |1〉NV〈1|)/2 and |0〉P represents the
vacuum state for the collected photonic mode. Note that for
the scheme of [19], we need two NV centers on each side,
namely, NV1 and NV2, for which |0〉NV = |s0〉NV1|s−1〉NV2

and |1〉NV = |s−1〉NV1|s0〉NV2. We use the term NC1 to refer
to MA-MDI-QKD schemes that rely on the above entangling
procedure.

For the scheme proposed in [20], for which the setup in
Fig. 1(c) is the most appropriate, we assume that an ideal EPR
source with a matching bandwidth to the NV center is used.
In Sec. IV, we use the specifications of single-photon sources
that rely on NV centers to overestimate the rate parameters of
such an EPR source. We use the term NC2 to refer to such an
MA-MDI-QKD scheme.

Despite the fact that we are not aware of any readout
mechanism by which the middle BSM can be done, for all
three setups, we assume that one may come up with a reading
protocol, with an efficiency ηr , by which the states of the QMs
can be transferred to the photons. In that case, ηr cannot be
higher than the collection efficiency from a noncavity memory.

Next, we consider MA-MDI-QKD with cavity-enhanced
NV centers.

B. MDI-QKD with cavity-enhanced NV centers

In this section, we propose an MA-MDI-QKD scheme
that relies on cavity-enhanced NV centers as QMs. The key
building block is an NV center whose internal state affects the
effective reflectivity of the embedding cavity [21]. This idea of
conditional reflection was first proposed in [22] for a trapped
atom system. Figure 3(c) shows the relevant energy level
structure for the NV center. Here, the resonant frequencies
for |s0〉 → |Ex〉 and |s+1〉 → |M5〉 transitions are different
and are, respectively, denoted by ω0 and ω1 = ω0 + δ. In [21],
authors assume that the NV center is embedded in a double-
sided cavity with resonance frequency ωC and reflectivities r1

and r2 for, respectively, input and output mirrors, and that the
cavity is on resonance with |s0〉 → |Ex〉 transition. They use
this feature to perform conditional operations depending on
the state of the NV center. We use the same idea but in the
special case of a one-sided cavity.

In general, the interaction of a single photon with the
composite NV center-cavity system can be modeled by
calculating the reflection amplitude Ar off the cavity, and
transmission amplitude At through the cavity. For an incoming
photon with frequency ωP , a cavity with resonance frequency
ωC , and a two-level system embedded into the cavity with
resonance frequency ωi , these amplitudes are given by [21]

Ar = 1 − 1 − A

(1 − i	C) + 2C/(1 − i	E)
,

(3)

At =
√

1 − A2

(1 − i	C) + 2C/(1 − i	E)
,

where 	C = (ωP − ωC)/κ, with κ being the cavity decay rate,
	E = (ωP − ωi)/γ, with γ being the spontaneous decay rate,
and C = g2

κγ
is the cooperativity with g being the coupling rate

between the two-level system and the cavity mode. In Eq. (3),
A = r1−r2

1−r1r2
is the amplitude of the reflected light for an empty

cavity on resonance. In the following, by considering special
cases for the above parameters, we come up with a entangling
technique for NV-center-based MA-MDI-QKD.

1. Our proposed polarization encoding scheme

In this section, we describe our proposed MA-MDI-QKD
scheme that relies on NV centers embedded into small-volume
cavities. The key enabling idea is to treat the cavity-NV center
as a conditional reflection module. To that end, suppose NV
centers are embedded into one-sided cavities, i.e., r2 = 1, and
the cavity mode is on or near resonance with the incoming
photon, both on or near resonant with the |s0〉 → |Ex〉
transition, i.e., ωC ∼ ωP = ω0. Under this condition, Eq. (3)
reduces to

Ar = 1 − 2

(1 − i	C) + 2C/(1 − i	E)
, At = 0. (4)

In Eq. (4), if the NV center is in state |s0〉, we have 	E = 0,
which, for C � 1, would result in Ar ∼ 1, i.e., the photon
will be reflected off the cavity as if it has hit a mirror. This
is because, in this case, the incoming pulse is detuned from
the frequency of the dressed cavity mode [22]. When the NV
center is in state |s+1〉, however, 	E = −δ/γ . But, assuming
that δ � γC, we end up with Ar ∼ −1. This implies that in
both cases the photon will get reflected but it will acquire
different phase shifts depending on the state of the NV center.
Obviously, for finite values of C and δ, we may deviate from
this ideal scenario. We will study the implications of such
realistic cases later. For now, let us carry on with the ideal
picture to describe our key entangling scheme.

Double encoding. The key building block in our scheme,
which will be used in all three stages of initialization, loading,
and reading the memory, is the double-encoding module in
Fig. 4. This module uses the above-mentioned conditional
phase gate to entangle the polarization of a single photon
with the electron spin of an NV center. It ideally works as
follows. Suppose the NV center has been initialized to the
state |�in〉 = (|s0〉 + |s+1〉)/

√
2; the initialization procedure

will be explained later in this section. We then generate

FIG. 4. The double-encoding module in our proposed scheme.
It entangles a polarized photon with an NV center in a cavity. This
module will be used for initialization, encoding, and the final readout
operations.
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an H -polarized single photon with frequency ω0 and send
it through a +45◦ polarizing beam splitter (PBS). We can
generate such a single photon by driving the |s0〉 → |Ex〉
transition in another cavity-NV-center pair. In Fig. 4, the +45◦-
polarized component of this single photon interacts with the
NV center, resulting in the joint state |D〉s(|s0〉 − |s+1〉)/

√
2,

where |D〉 = 1√
2
(|H 〉 + |V 〉). The photonic modes r and s are

then recombined at a second +45◦ PBS, which will ideally
result in the following output state:

|�2〉 = 1√
2

(|H 〉 |s0〉 + |V 〉 |s+1〉 ). (5)

Here, the interaction time τint, corresponding to the above
double-encoding procedure is expected to be about 10 ns.

In deriving Eq. (5), we have made the assumption that the
reflection coefficient in Eq. (3), in the two cases of |s0〉 and
|s+1〉 states, has the same magnitude of 1. For finite values of C,
however, the two coefficients may not take their ideal values,
and this would result in a deviation from the ideal entangled
state in Eq. (5). For instance, at C = 50,	C = −1, and
	E = −100, we have Ar (|s0〉) ∼ Ar (|s+1〉) ∼ 0.98. This will
cause an imbalance between the two legs of the interferometer
in Fig. 4. We can fix this by adding a beam splitter with
transmissivity η in the r branch. The value of η will be chosen
accordingly to account for different sources of loss in the s

branch. In this case, the generated state by our double-encoder
will become

ρNV−P = η|�2〉〈�2| + (1 − η)|0〉PP〈0| ⊗ I
′
NV, (6)

where I
′
NV = (|s0〉〈s0| + |s+1〉〈s+1|)/2. This is similar to

Eq. (2), with the difference that now η can be several orders
of magnitude larger than pc. With the above state, we expect
that the user’s state will be properly teleported to the QM in
the majority of cases where the side BSM has been successful,
i.e., two detectors have clicked. The vacuum state in Eq. (6)
ideally should not result in a successful side BSM. But, with a
rate proportional to the detector’s dark count rate, we may still
get erroneous side-BSM results that may induce errors in the
end. Although small, we consider this effect in our key rate
calculations in Sec. IV.

There are other practical points to consider with regard to
the entangling scheme of Fig. 4. In Eq. (6), we assume that
the reflection coefficients for |s0〉 and |s+1〉 have the same
magnitude, although not necessarily one. Depending on the
actual parameter values that the implementation of our cavity
system offers, this may not always be possible. For instance,
at C = 50,	C = −0.33, and 	E = −300, Ar (|s0〉) = 0.98,
whereas Ar (|s+1〉) ∼ 1. The imbalance would be higher at
lower values of C, which represent a more practical regime of
operation. In Sec. IV, we study how the key rate drops as a
result of this imbalance and find out the minimum value of C

at which our system still offers some advantage. Another issue
with less then unity reflection coefficients is the possibility of
the photon entering the cavity, being absorbed by the NV center
and then being nonradiatively emitted. For the NV center in
|s0〉, the chance of this happening is about 1% of the cases that
the photon is not directly reflected off the cavity. The latter will
happen with probability 1 − ηr0, where ηr0 = |Ar (|s0〉)|2. For
instance, for the numerical example above, 1 − ηr0 = 0.04,

and therefore the chance of nonradiative emission is only
0.04%. While the rate at which this may occur is rather low,
once it happens, the NV center may stay in certain undesired
metastable states for 250–500 ns, during which we cannot
initialize the memory in the desired state. This will result in a
certain deadtime τdead for our scheme during which we cannot
teleport the user’s photon to its respective QM. In our key rate
analysis, we account for this effect by a correction factor that
modifies the probability of loading in our setup.

Initialization. Before performing the double-encoding op-
eration above, at the beginning of each round, we need to first
initialize the NV center in state |�in〉. This can be done by the
double-encoding module of Fig. 4. In every round, we drive
the NV-center-cavity module by an H -polarized single photon,
and measure the polarization of the output photon in the |H 〉
and |V 〉 basis. If we get a click, that would correspondingly
project the NV center to |s0〉 or |s+1〉 states. We can then apply
the relevant rotation to initialize the NV center in |�in〉. Each
round of the above procedure includes the double-encoding
operation and then a rotation. This altogether roughly takes 15
ns [21] and corresponds to the initialization time τinit in our
protocol.

In the above procedure, if we get no click, then our
initialization has failed. If this happens for several consecutive
rounds, that would indicate that the memory is in a deadtime
period. During the deadtime, the NV center is in certain
metastable states, which can decay to any of |s0〉 and |s±1〉
states. Given that |s−1〉 is not in the desired manifold of states
that we need, during the deadtime, we swap states |s0〉 and
|s−1〉 in every initialization round to avoid the possibility of
staying in |s−1〉 forever.

Readout. We use the double-encoding technique to read
out the memories and perform the middle BSM. This can
be done by the module of Fig. 4. This would map the QM
state |s0〉 to |s0〉|H 〉, |s+1〉 to |s+1〉|V 〉, and |s0〉 ± |s+1〉 to
|s0〉|H 〉 ± |s+1〉|V 〉. Charlie will also need to do an X-basis
measurement in the |s0〉 ± |s+1〉 basis, on the NV centers and
will send its results to the end users. The time needed for
the readout operation is estimated to be around 25 ns, which
includes the double-encoding time and the time needed for
the X-measurement basis. The latter involves a ±π/2 rotation
followed by a Z-basis measurement on the electron spin state
of the NV center.

There are several requirements for the above setup to work
properly. First, we assume that strong coupling between the
NV center and a microcavity can be established. This has
not yet been demonstrated in the laboratory, but experimental
efforts are underway. In our work, we estimate how strong
this coupling should be. We show that, even with moderate
coupling, our system can offer some advantages. Second,
this setup requires nearly on-demand single-photon sources
(SPSs) at the middle station. This is not, however, an
additional requirement as once cavity embedded NV centers
are fabricated, one can use them to generate single photons
with matching bandwidths to our transitions of interest. In
our rate analysis, we assume that the employed SPSs are
probabilistic, but they generate true single photons. The latter
assumption is crucial as, otherwise, the multiphoton errors at
the middle station can be detrimental to the key objective
behind MA-MDI-QKD [12]. Finally, we need to maintain
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polarization across the channel, which can be challenging over
long distances. This condition can be alleviated by using an
equivalent phase-encoding scheme [29].

In the next section we analytically calculate the secret key
rate of our proposed scheme and we compare it with that of
existing no-memory QKD schemes, the noncavity NV centers,
and several other memory candidates.

IV. KEY RATE ANALYSIS

In this section the secret key generation rate of the proposed
setups in Sec. III is obtained under the normal operation
condition when no eavesdropper is present. We assume that
single-photon sources are used at the users’ ends. This is
not an essential assumption; it just provides a convenient
approach to compare memory-assisted schemes with their
no-QM counterparts. In practice, one can use decoy-state
techniques, for which similar margins of improvement over
decoy-state no-QM systems are expected. In [7], the total
secret key generation rate, using the efficient QKD protocol
when ideal single photon sources are used by the users and the
Z basis is more often used than the X basis, is lower bounded
by the following expression:

RQM = RS

NL(PA,PB) + Nr

Y
QM
11

(
1 − h

(
e

QM
11;X

) − f h
(
e

QM
11;Z

))
,

(7)

where PA and PB represent the probability of a successful
side BSM on, respectively, Alice and Bob’s side; Y

QM
11 is the

probability that the middle BSM is successful assuming that
both memories are loaded (in the Z basis); e

QM
11;X and e

QM
11;Z

are, respectively, the quantum bit error rate (QBER) between
Alice and Bob in the X and Z basis when single photons are
sent by the users; f is the inefficiency of error correction;
h(q) = −q log2 q − (1 − q) log2(1 − q) is the binary entropy
function; RS = 1/T is the repetition rate; NL is the average
number of trials to load both memories, which is approximated
by 3/(2PA) when PA = PB � 1; and Nr = [ τw+τr

T
] − 1 is

the number of rounds that we lose from the time that both
memories are loaded until we learn the result of the final
BSM operation. In [7], τw and τr , respectively, refer to writing
and reading times. In our work, we provide a more detailed
description of these parameters, specific to protocols used, as
follows:

(1) In all schemes that use the setup of Fig. 1(b), the
entire protocol can be run at a period given by τw = τinit +
τint + τM = T , where τM is the verification time at the side
BSMs, which is expected to be around 1 ns, hence negligible
as compared to the other two terms. In this scheme, τr =
τint + τM + τPM, where τPM is the time required for any post-
measurement operation, such as the X-basis measurement in
the double-encoding technique.

(2) In all schemes that use the setup of Fig. 1(c), τw = T ,
where the latter is determined by the rate at which the slower
of EPR source and the user’s source can be driven. For the
delayed writing scheme, τr = 2τM + τint + τinit. The reason
for this is as follows. In the scheme of Fig. 1(b), we write onto
the memories in every round. That is why we have to initialize
the memory before the next photon arrives. In Fig. 1(c), we

only write into the memory when we have a successful side
BSM. In this case, the initialization can be done once the
memory is read for the middle BSM. That is why τinit is part
of τr in this scenario.

We have used the machinery developed in [7,12] to find
the key parameters in Eq. (7) the details of which appear in
Appendix. The derivations are cumbersome and have mostly
been done by the symbolic software MAPLE. In short, for
each scheme, we first obtain the state of the QMs once
the user’s state is loaded to them. Our calculation includes
all loss elements, dark count, and all the nonidealities we
modeled in the entangling procedures in Sec. III. At this
stage, we also find PA and PB . In order to do so, we
first find these parameters assuming that the deadtime is
zero. Denote the loading probabilities in this latter case by
PA0 and PB0. Accounting for the deadtime issue, we then
get PA = PA0(1 − Ndeadpdead) and PB = PB0(1 − Ndeadpdead),
where Ndead = τdead/T is the number of rounds lost to the
deadtime, and pdead = 0.01(1 − ηr0). In the last expression,
0.01 is the probability of transition to metastable states from
|s0〉; the chance of being in |s0〉 is assumed to be 1/2; and
we have accounted for the possibility of entering deadtime
either at the initialization stage or the double-encoding stage.
We have neglected the deadtime cases arising from the final
BSM procedure, as the number of times that this happens is
considerably lower than the former two processes, which are
used in every round. We then model memory decoherence
using a depolarizing channel [see Eq. (A1)], with a time
constant T2. This is perhaps a conservative assumption for
NV centers, but it agrees with the analysis reported in [16].
We assume that the amplitude decay time T1 is sufficiently
large in all schemes considered in this paper. We then model
the final BSM on the decohered states of the QMs, taking into
account the statistics of loading. As a result, we can calculate
the remaining terms in Eq. (7), i.e., Y

QM
11 , e

QM
11;X, and e

QM
11;Z .

A. Numerical results

In this section, we compare the rate of our proposed
cavity-based MA-MDI-QKD scheme with that of noncavity
models, NC1 and NC2, as well as a range of other single-
excitation QMs, namely, quantum dots, trapped atoms, and
trapped ions. In all cases, we compare the rate with that
of a no-QM MDI-QKD system driven at a 1-GHz rate. We
also compare our system with the no-QM setup proposed in
[33], which relies on linear optics and quantum nondemolition
(QND) measurement. The nominal values used in each case
is summarized in Table I. In the case of quantum dots, we use
the results reported in [32] for spin-photon entanglement, to
estimate the time parameters in a corresponding MA-MDI-
QKD scheme as in Fig. 1(b). The entangling efficiency has,
however, been boosted to what we assume in our cavity-based
scheme with NV centers for fair comparison. For trapped
atoms, we use the results reported in [24] to calculate the key
rate of a corresponding MA-MDI-QKD scheme as in Fig. 1(c).
Considering the rather long initialization time for trapped
atoms, the rate for the EPR-based scheme with delayed writing
will be higher than the double-encoding scheme of Fig. 1(b).
The same holds for trapped-ion-based MA-MDI-QKD, for
which relevant parameters are taken from [31]. In the case of
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TABLE I. Nominal values used in our numerical results for different platforms and setups. In all setups, we assume a single-photon detector
efficiency of 0.93 and a dark count rate of 1 cps [30]. The single-photon sources have an efficiency of 0.72 per trigger, and the attenuation
length of the channel Latt is 25 km. In the case of trapped ions, trapped atoms, and quantum dots we have used the nominal values reported in
[31], [24], and [32], respectively. If a parameter value has not been available, an appropriate estimate has been used. NA means not applicable.
NC1 and NC2 refer to the noncavity cases modeled in Sec. III A 1.

Our NV Quantum Trapped Trapped NC1 NC2
scheme dots atoms ions

Entangling efficiency η, pc 0.9 0.9 NA NA 10−3 NA
Writing efficiency ηw NA NA 0.39 1 NA 0.2
Reading efficiency ηr NA NA 0.69 1 0.2 0.2
Up-conversion efficiency 0.68 1 1 0.68 1 1
Coherence time T2 10–100 ms 1 μs 1 s 50 s 10 ms 10 s
Repetition rate RS 40 MHz 100 MHz 10 MHz 10 MHz 7 MHz 200 kHz
Interaction time τinit 10 ns 5 ns 10 μs 10 μs 10 ns 10 ns
Initialization time τint 14 ns 5 ns 144.7 μs 120 ms 7 μs 100 μs
Verification time τM 1 ns 1 ns 1 ns 1 ns 1 ns 1 ns
Post-measurement time τPM 14 ns 0 NA 0 NA NA

trapped atoms or ions, we have assumed that we can drive
the system with a narrow-width EPR source at a 10-MHz
rate. That would correspond to the spontaneous decay rate
of a typical alkali-metal atom used in such systems. Note
that, in the case of trapped ions, the middle BSM can be
performed deterministically. Once we have proper sources
that can interact with our QMs, one should also consider
the use of frequency converters to enable the interaction
between a QM-driven photon and the telecom photon sent
by the user. This could reduce the total efficiency of our BSM
operations and is modeled as an additional source of loss.
While, for each system, a proper up-converter needs to be
designed and implemented, we estimate the efficiency of such
up-converters by looking at similar examples in the literature
[34,35]. We have used the ideal unity conversion efficiency
for memory systems that have poorer performance than the
no-QM setup, as it does not change the conclusion of our
analysis.

Figure 5 compares the secret key generation rate for all
NV-center-based schemes proposed in Sec. III. In the case
of NC1, which corresponds to what we can potentially get
from the entangling schemes in [18,19], we have assumed an
entangling efficiency of pc = 10−3 and a reading efficiency
of 0.2, which are both optimistic assumptions for a noncavity
system. Despite these generous parameter values, the key rate
for the NC1 model is the worst of all systems considered
in Fig. 5 and will not cross the no-QM curve. This is
partly because of the low entangling efficiency and partly
the low repetition rate resulting from the microsecond-long
initialization. In the case of NC2, which relies on an ideal EPR
source, we assume a 200-kHz repetition rate. This corresponds
to the best rates reported for single-photon sources that rely on
NV centers in nanowires [36]. Because of using nuclear spins,
the coherence time is much longer at 10 s. The other parameters
are taken from [20]. It can be seen that the NC2 curve cannot
surpass the no-QM curve either. Note that the toy models NC1
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FIG. 5. Secret key generation rates versus distance for MA-MDI-QKD using noncavity (NC1 and NC2) and cavity-based NV centers, and
its comparison with no-QM MDI-QKD driven at 1 GHz. Nominal values used are summarized in Table I.
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and NC2 have already neglected many possible sources of error
in the system, despite which neither can outperform the no-QM
system. We can then conclude that without using small-volume
cavities, it may not be possible to outperform existing no-QM
systems by using NV centers in the MA-MDI-QKD setups.

The situation above would change if we do have cavity-
enhanced NV centers as we described in Sec. III B 1. In
Fig. 5, we have plotted the key rate for our proposed scheme
at two different values of coherence time. At T2 = 100 ms,
which is the typical coherence time of electron spins [37],
we outperform the no-QM system by nearly one order of
magnitude at distances around 400 km. We can extend the
window over which our NV-center-based scheme outperforms
MDI-QKD if we increase the coherence time by one order
of magnitude. This is in principle possible, if one uses
spin-echo-like techniques [16,17], or transfers the electron
spin to nuclear ones [20]. This implies that the cavity-based
NV centers have the potential of beating no-QM systems
over a distance range of interest. Note that for our scheme,
we have used an entangling efficiency of η = 0.9 for our
double-encoding module in Fig. 4. The assumption here is
that the two legs of the double encoder in Fig. 4 are balanced.
With a cooperativity on the order of 50, we expect a reflectivity
coefficient around 98%, corresponding to η = 0.96. The 90%
efficiency will then account for other possible sources of loss
in the double encoder as well. We have also accounted for the
possible deadtime caused by overstaying in metastable states
of the NV center in our loading parameters. We have assumed
that τdead = 500 ns, corresponding to Ndead = 20 rounds of
our protocol. The same effects have been accounted for
during the initialization of the QMs. The corresponding time
parameters in our scheme are taken from the results reported
in [21,38].

While it is promising that we can beat no-QM setups using
cavity-based NV centers in their strong coupling regime, it
is important for experimentalists to know how strong this
coupling should be. For that matter it is necessary that we
calculate the key rate for more realistic parameter values.
Figure 6 provides an answer to this. In this figure, we use
	E = −300, corresponding to a typical NV center, and, for
each value of C, we tune 	C to give us real values for
Ar (|s1〉). This setting results in an imbalanced setup in which
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FIG. 6. The total secret key generation rate of MA-MDI-QKD
for cavity-based NV centers for different values of cooperativity. In
all curves, η = 1, 	E = −300, and 	C = 2C	E/(1 + 	2

E). For the
range of values considered for C, the choice of value for 	C would
result in mainly real values for Ar (|s0〉) and a nearly unity value for
Ar (|s1〉).
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FIG. 7. Comparison of the total secret key generation rate versus
distance for the MA-MDI-QKD schemes relying on cavity-based
NV centers and quantum dots versus trapped atoms and ions. We
also compare our performance with that of the linear optical elements
scheme proposed in [33]. The relevant system parameters are given
in the text and in Table I.

Ar1 = Ar (|s1〉) ≈ 1, and Ar0 = Ar (|s0〉) < 1. In all curves in
Fig. 6, we then consider a simplified setup in which η = 1.
In principle, one can optimize η to get even higher rates. The
result is quite promising: With even low values of C on the
order of 1 we can still beat a typical no-QM QKD system.
By writing the full state of the system, we can show that when
Ar0 = Ar1, the QBER roughly scales with (1 − Ar0)2, whereas
in the imbalanced case of Ar0 < Ar1 = 1, there are terms that
scale with (1 − Ar0). Once Ar0 goes down, these terms bring
the total key rate down to the point that we can no longer
outperform a conventional QKD system.

Figure 7 compares the total secret key generation rate for
various candidates for QMs. These cases include trapped atoms
in optical cavities, trapped ions, and quantum dots and NV
centers embedded into small volume cavities. These examples
would represent the major memory candidates with single-
excitation features. For each memory we use the setup that
offers the highest key rate, although improvements may still
be possible if one further investigates the specific features of
each QM. In terms of initialization times, quantum dots are the
fastest of all, but their coherence time is often too low, which
results in their fast decoherence before they get to outperform
the no-QM system. The problem with low coherence times
can potentially be alleviated if one uses the multiplexing idea
in multiple-memory scenarios [39,40]. That would, however,
add to the complexity of the implementation. For the slower
trapped-atom and ion QMs, we need to have a proper EPR
source to have a chance at beating no-QM systems. For an
EPR source driven at 10-MHz, trapped-atom QMs would also
fall short of taking over the no-QM system if their coherence
time is limited to 1 s. Trapped ions, with typically much longer
coherence times, have the potential to beat no-QM systems, but
that only happens at rather long distances and very low rates on
the order of 1 b/s. The latter is because of their 100-ms-long
time parameters, which, in the absence of any inefficiencies,
would limit their key rate to 10 b/s. Note that we have assumed
ideal reading and writing efficiencies for trapped-ion QMs.
Among all the QM options we have considered, the NV centers
seem to be the only ones that can offer some advantage over
no-QM systems in a practical regime of interest.
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Finally, in Fig. 7, we also compare the performance of
our proposed NV-center-based systems with the no-QM setup
proposed in [33]. In [33], authors propose to replace the
QM modules in Fig. 1(a) with QND modules, and then run
a large number of such systems in parallel. Using QND
measurements, they can tell which photons have survived the
path loss, on which, using a fast optical switch, they perform
a BSM. They then show that the normalized rate by the
total number of systems used N scales the same as that of
MA-MDI-QKD. In order to compare this system with the NV
center one, we have to make some assumptions on how the
former will be implemented. In our comparison, we assume
that the QND operation is implemented using the teleportation
idea in Fig. 1(c) that relies on an EPR source. The nonmeasured
EPR photon will then be sent to a large switch, instead of the
QM, to be used for the central BSM if the QND is successful.
Another assumption we make is the inclusion of insertion loss
in such fast, but single-photon level, optical switches. The
typical problem with such switches is that they are often too
lossy, with up to 3-dB loss for a 2 × 2 switch with nanosecond
switching time. Here, we assume a switching time of 10 ns,
hence a repetition rate of 100 MHz, with an equivalent insertion
loss of 0.5 dB for a 2 × 2 switch. For an N -port switch, the
total insertion loss would be given by 0.5 log2(N ) dB. We
consider this loss factor in our calculation of the key rate.
Finally, the ideal rate-versus-distance behavior occurs when
N is large. In our simulation, we have assumed N = 1/PA.
All put together, the curve labeled linear optical elements
scheme shows the performance of the system proposed in
[33]. Within the employed assumptions, the NV-center-based
system performs better than that of the linear optical scheme.
We should also bear in mind that for MA-MDI-QKD, we
only need to implement and run one setup, whereas for
the proposal in [33], we need a large number of parallel
systems. For instance, at L = 400 km, where the linear optical
scheme starts outperforming the conventional no-QM systems,
we need around 10 000 parallel systems, which makes the
implementation of such systems challenging. This may suggest
that, in the short term, the MA-MDI-QKD has a better chance
at improving the rate-versus-distance behavior than its rivals.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the suitability of NV centers
in diamond as memories in MA-MDI-QKD systems. We
considered several experimental setups, in all of which the NV
center interacts with a free-space photon, versus theoretical
proposals that rely on NV centers embedded into small-volume
optical cavities. The key objective was to find a regime of
operation that the MA-MDI-QKD system could outperform
no-QM counterparts. It turned out that, even by making
optimistic assumptions, the no-cavity systems were not able to
beat the no-QM systems. With cavity enhancement, however,
our proposed scheme could outperform the original MDI-QKD
over roughly 300–500 km. Most importantly, the required
cooperativity for such cavity coupling was shown to be on the
order of one. In comparison with other single-excitation QMs,
such as quantum dots, trapped atoms and trapped ions, cavity-
based NV centers had the potential to be the most practical
candidate for beating conventional QKD demonstrations.

Our analysis is based on certain assumptions on the
capabilities that may only be available in the near future. This
is not per say unacceptable, noting that we do not have, at the
moment, a working family of QMs suitable for MA-MDI-
QKD. But, like NV centers, each requires one to become
maturer in order to offer a practical advantage over no-QM
systems. In the case of NV centers, our results show that
embedding NV centers into microcavities is a must, given that
the no-cavity setups we considered were not able to offer any
advantages. While progress is being made by several groups
worldwide, such a device is yet to be fabricated. Nevertheless,
the required cooperativity values seem to be within reach of
early demonstrations. Our proposed scheme also requires a
near deterministic high-rate single-photon source matched to
our NV center. Here, we are fortunate as the NV centers
embedded in the microcavity can also act as a single photon
source, offering an extremely small multiphoton rate as needed
for MA-MDI-QKD. Note that with such single-photon sources
one can devise alternative setups for ensemble-based QMs,
which do not suffer from the multiple-excitation issue [41].
Finally, for the state-dependent optical coupling required in
our scheme, a low temperature operation at around 4–8 K is
required.

While MA-MDI-QKD is potentially capable of beating
existing no-QM systems over a range of distances, for a
no-limit trust-free long-distance QKD, one eventually needs
to use quantum repeater structures [1,2]. MA-MDI-QKD,
nevertheless, provides an intermediary solution compatible
with the state of the art, which can pave the way for future
generations of quantum networks. Note that in special cases
where the total loss per unit of length is higher than that
of the fiber loss, e.g., in passive optical networks with high
splitting losses, MA-MDI-QKD offers rate advantages at
shorter distances [42]. This could perhaps be the first realistic
scenario in which quantum memories, with all their known
practical limitations, can be used to offer a tangible benefit.
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APPENDIX: MDI-QKD WITH IMPERFECT MEMORIES

In this appendix we explain the general procedure to derive
the terms in Eq. (7) for the proposed setups in Sec. III. We
consider path loss, given by e−L/Latt for a distance L and a
channel attenuation length Latt, quantum efficiency ηD , and
dark count per pulse dc, assuming that no eavesdropper is
present. We also account for memory decoherence, modeled
by a depolarizing channel, which maps an initial state
ρQM(0) to

ρQM(t) = pρQM(0) + (1 − p)I/dim(ρQM(0)), (A1)

after a t-long period of decoherence, where I is the identity
operator, p = e−t/T2 , and T2 is the coherence time of the NV
center. This model properly captures the decoherence effect in
an NV center [16].
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We first calculate PA and PB by finding the probability of
a successful side BSM when Alice and Bob use the Z basis
for encoding their bits. This can be done by modeling all the
lossy elements in each leg of Fig. 1(b) by beam splitters and
then simplifying the model by techniques shown in Fig. 2(c).
The resulting butterfly module has been analyzed for relevant
input states in Appendixes A and B of [12]. Here, we avoid
duplicating the same results and simply use them to find the
success probabilities PA and PB as well as the resulting state
for Alice and Bob’s QMs after a successful side BSM.

The second step in our key rate analysis is to derive the
error and yield terms corresponding to the middle BSM.
For this, we need to account for the decoherence in one
memory while it waits for the other memory to be loaded.

The decoherence effect can be modeled by using Eq. (A1) at
p = exp (−|NA − NB |T/T2), where NA and NB represent the
round at which Alice and Bob’s QMs are, respectively, loaded.
NA and NB follow a geometric distribution with success
probabilities PA and PB , respectively. The derivation of yield
and QBER terms have been fully detailed for a dephasing
channel in [7]. Here, we modify the analysis in Appendix D
of [7] to replace the dephasing channel with the depolarizing
channel used here, and carry out the same calculations as
required by Eqs. (3.3) and (3.7) in [7]. The derivations are
cumbersome, but with a combination of results in [7,12], one
can find all relevant terms in Eq. (7) as a function of the system
parameters. For brevity, the full derivation is left to the
reader.
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R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto,
Nature (London) 491, 421 (2012).

[33] K. Azuma, K. Tamaki, and W. J. Munro, Nat. Commun. 6, 10171
(2015).

022338-11

https://doi.org/10.1109/JSTQE.2014.2364129
https://doi.org/10.1109/JSTQE.2014.2364129
https://doi.org/10.1109/JSTQE.2014.2364129
https://doi.org/10.1109/JSTQE.2014.2364129
https://doi.org/10.1109/JSTQE.2014.2364129
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevA.59.169
https://doi.org/10.1103/PhysRevA.59.169
https://doi.org/10.1103/PhysRevA.59.169
https://doi.org/10.1103/PhysRevA.59.169
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1103/PhysRevA.89.012301
https://doi.org/10.1103/PhysRevA.89.012301
https://doi.org/10.1103/PhysRevA.89.012301
https://doi.org/10.1103/PhysRevA.89.012301
https://doi.org/10.1088/1367-2630/16/4/043005
https://doi.org/10.1088/1367-2630/16/4/043005
https://doi.org/10.1088/1367-2630/16/4/043005
https://doi.org/10.1088/1367-2630/16/4/043005
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevLett.115.160502
https://doi.org/10.1103/PhysRevLett.115.160502
https://doi.org/10.1103/PhysRevLett.115.160502
https://doi.org/10.1103/PhysRevLett.115.160502
https://doi.org/10.1103/PhysRevLett.107.053603
https://doi.org/10.1103/PhysRevLett.107.053603
https://doi.org/10.1103/PhysRevLett.107.053603
https://doi.org/10.1103/PhysRevLett.107.053603
https://doi.org/10.1109/JSTQE.2014.2377651
https://doi.org/10.1109/JSTQE.2014.2377651
https://doi.org/10.1109/JSTQE.2014.2377651
https://doi.org/10.1109/JSTQE.2014.2377651
https://doi.org/10.1109/JSTQE.2014.2377651
https://doi.org/10.1126/science.1173684
https://doi.org/10.1126/science.1173684
https://doi.org/10.1126/science.1173684
https://doi.org/10.1126/science.1173684
https://doi.org/10.1038/nphys2078
https://doi.org/10.1038/nphys2078
https://doi.org/10.1038/nphys2078
https://doi.org/10.1038/nphys2078
https://doi.org/10.1126/science.1220513
https://doi.org/10.1126/science.1220513
https://doi.org/10.1126/science.1220513
https://doi.org/10.1126/science.1220513
https://doi.org/10.1021/nl300350r
https://doi.org/10.1021/nl300350r
https://doi.org/10.1021/nl300350r
https://doi.org/10.1021/nl300350r
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature09256
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nature12016
https://doi.org/10.1038/nphoton.2016.103
https://doi.org/10.1038/nphoton.2016.103
https://doi.org/10.1038/nphoton.2016.103
https://doi.org/10.1038/nphoton.2016.103
https://doi.org/10.1103/PhysRevX.4.031022
https://doi.org/10.1103/PhysRevX.4.031022
https://doi.org/10.1103/PhysRevX.4.031022
https://doi.org/10.1103/PhysRevX.4.031022
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/PhysRevA.54.2651
https://doi.org/10.1103/PhysRevA.54.2651
https://doi.org/10.1103/PhysRevA.54.2651
https://doi.org/10.1103/PhysRevA.54.2651
https://doi.org/10.1103/PhysRevLett.114.220501
https://doi.org/10.1103/PhysRevLett.114.220501
https://doi.org/10.1103/PhysRevLett.114.220501
https://doi.org/10.1103/PhysRevLett.114.220501
https://doi.org/10.1103/PhysRevA.90.032306
https://doi.org/10.1103/PhysRevA.90.032306
https://doi.org/10.1103/PhysRevA.90.032306
https://doi.org/10.1103/PhysRevA.90.032306
https://doi.org/10.1126/science.1253512
https://doi.org/10.1126/science.1253512
https://doi.org/10.1126/science.1253512
https://doi.org/10.1126/science.1253512
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1103/PhysRevA.86.062319
https://doi.org/10.1103/PhysRevA.86.062319
https://doi.org/10.1103/PhysRevA.86.062319
https://doi.org/10.1103/PhysRevA.86.062319
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1038/nature11577
https://doi.org/10.1038/nature11577
https://doi.org/10.1038/nature11577
https://doi.org/10.1038/nature11577
https://doi.org/10.1038/ncomms10171
https://doi.org/10.1038/ncomms10171
https://doi.org/10.1038/ncomms10171
https://doi.org/10.1038/ncomms10171


LO PIPARO, RAZAVI, AND MUNRO PHYSICAL REVIEW A 95, 022338 (2017)

[34] R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, and E. Wu, Opt. Express
23, 9796 (2015).

[35] J. S. Pelc, L. Ma, C. Phillips, Q. Zhang, C. Langcrock, O.
Slattery, X. Tang, and M. M. Fejer, Opt. Express 19, 21445
(2011).

[36] T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R.
Maze, P. R. Hemmer, and M. Lončar, Nat. Nanotechnol. 5, 195
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