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RINGS OF FROBENIUS OPERATORS

MORDECHAI KATZMAN, KARL SCHWEDE, ANURAG K. SINGH, AND WENLIANG ZHANG

ABSTRACT. LetRbe alocal ring of prime characteristic. We study the ring ftfenius
operators% (E), whereE is the injective hull of the residue field & In particular, we
examine the finite generation oF (E) over its degree zero componeft®(E), and show
that.# (E) need not be finitely generated whBris a determinantal ring; nonetheless, we
obtain concrete descriptions &f(E) in good generality that we use, for example, to prove
the discreteness &f-jumping numbers for arbitrary ideals in determinantagsin

1. INTRODUCTION

Lyubeznik and SmitH [LIS] initiated the systematic studyinfis of Frobenius operators
and their applications to tight closure theory. Our focusehig on the Frobenius operators
on the injective hull oR/m, when(R,m) is a complete local ring of prime characteristic.

Definition 1.1. Let Rbe a ring of prime characteristig; with Frobenius endomorphisin
Following [LS, Section 3], we sé&®{F€} to be the ring extension &fobtained by adjoining
a noncommutative variabe subject to the relationgr = rP°x forall r € R,

Let M be anR-module. Extending th&module structure oM to anR{F¢}-module
structure is equivalent to specifying an additive nggpM — M that satisfies

d(rm) = rPp(m) for eachr e Randme M.

Define . #¢(M) to be the set oR{F¢}-module structures oM; this is an Abelian group
with a leftR-module structure, wherec Racts ong € #¢(M) to give the compositiono
¢. Given elementg € .Z%(M) and¢’ € .Z¢ (M), the compositiong o ¢’ and¢’ o ¢ are
elements of the modul&e€ (M). Thus,

FM) = Z°M) e ZY M) e F2M) @ -
has a ring structure; this is thimg of Frobenius operatoren M.

Note that# (M) is anN-graded ring; it is typically not commutative. The degre®fhe
ponent#°(M) = Enck(M) is a subring, with a natur&-algebra structure. Lyubeznik and
Smith [LS, Section 3] ask whetheF (M) is a finitely generated ring extension.&°(M).
From the point of view of tight closure theory, the main casiisterest are wheréR m)
is a complete local ring, and the modWilkis the local cohomology moduldﬂme(R) or
the injective hull of the residue fiel€g(R/m), abbreviated in the following discussion.

In the former case, the algebga (M) is finitely generated under mild hypotheses, see
Exampld_I..P; an investigation of the latter case is ounrf@ius here.

It follows from Example1.PJ2 that for a Gorenstein complieteal ring (R, m), the

ring .Z (E) is a finitely generated extension ¢i°(E) = R. This need not be true whe®
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is not Gorenstein: Katzmah [Ka] constructed the first sucinges. In Sectiohl3 we
study the finite generation o¥ (E), and provide descriptions of (E) even when it is not
finitely generated: this is in terms of graded subgroup otifiticanonical cover dr, with

a Frobenius-twisted multiplication structure, see Theuge3.

Sectior 4 studies the case @fGorenstein rings. We show th& (E) is finitely gen-
erated (though not necessarily principally generateB)if Q-Gorenstein with index rel-
atively prime to the characteristic, Propositlon|4.1; theldstatement for the Cartier al-
gebra was previously obtained by Schwedé€ ir [Sc, Remark ¥\g]also construct &-
Gorenstein ring for which the ring? (E) is notfinitely generated ove#°(E); in fact, we
conjecture that this is always the case f@-@&orenstein ring whose index is a multiple of
the characteristic, see Conjectlire 4.2.

In Sectiorl b we show tha¥ (E) need not be finitely generated for determinantal rings,
specifically for the ringf[X]/I, whereX is a 2x 3 matrix of variables, andl is the ideal
generated by its size 2 minors; this proves a conjecture tfrifan, [Ka, Conjecture 3.1].
The relevant calculations also extend a result of Fedder,RFoposition 4.7].

One of the applications of our study & (E) is the discreteness &fFjumping numbers;
in Sectior 6 we use the description.&f(E), combined with the notion of gauge bound-
edness, due to Blickle [BI2], to obtain positive results ba tiscreteness &¢f-jumping
numbers for new classes of rings including determinantgls;i see Theorem 6.4. In the
last section, we obtain results on the linear growth of Gastero-Mumford regularity
for rings with finite Frobenius representation type; thisiso with an eye towards the
discreteness df-jumping numbers.

To set the stage, we summarize some previous results omge#i(M).

Example 1.2. Let R be a ring of prime characteristic.

(1) Foreacte> 0, the leftR-moduleZ€(R) is free of rank one, spanned BY,; this is [LS,
Example 3.6]. HenceZ (R) = R{F}.

(2) Let(R,m) be a local ring of dimensiod. The Frobenius endomorphismof R in-
duces, by functoriality, an additive map

F:HL(R) — HL(R),

which is the naturaFrobenius actioron H4 (R). If the ring R is complete and,
then.Z¢(HJ (R)) is a free leftR-module of rank one, spanned By; for a proof of
this, seel[LS, Example 3.7]. It follows that

7 (Ha(R) = R{F}.

In particular,Z (HS (R)) is a finitely generated ring extension.°(HY (R)).

(3) Consider the local rin® = F[[x,y,2]]/ (xy,yz) whereF is a field, and seE to be the
injective hull of the residue field & Katzman|[[K&] proved tha# (E) is not a finitely
generated ring extension 6f°(E).

(4) Let(R,m) be the completion of a Stanley-Reisner ring at its homogesetaximal
ideal, and le be the injective hull oR/m. In [ABZ] Alvarez, Boix, and Zarzuela
obtain necessary and sufficient conditions for the finiteegation of % (E). Their
work yields, in particular, Cohen-Macaulay examples wh&i) is not finitely gen-
erated overZ°(E). By [ABZ| Theorem 3.5],% (E) is either 1-generated or infinitely
generated as a ring extension®f (E) in the Stanley-Reisner case.
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Remark 1.3. Let R©® denote theR-bimodule that agrees witR as a leftR-module, and
where the right module structure is given by

x-r = rx  forallr e Randxe R®.
For eachR-moduleM, one then has a natural isomorphism
F%(M) = Homg (R® @rM, M)

whereg € .7¢(M) corresponds ta® m—s x¢ (m) andy € Homg(R® ®@rM, M) corre-
sponds tan— Y(1® m); see[LS, Remark 3.2].

Remark 1.4. Let R be a Noetherian ring of prime characteristic. Mfis a Noetherian
R-module, or ifR is complete local and/ is an ArtinianR-module, then each graded
component ¢(M) of % (M) is afinitely generated lefR-module, and hence also a finitely
generated left7°(M)-module; this is[[LS, Proposition 3.3].

Remark 1.5. Let R be a complete local ring of prime characterigticsetE to be the
injective hull of the residue field d®. Let Abe a complete regular local ring with= A/I.
By [BI1] Proposition 3.36], one then has an isomorphisrRofodules

(P9

e ~ ZA|
7B = [P -

2. TWISTED MULTIPLICATION

Let Rbe a complete local ring of prime characteristic;Helenote the injective hull of
the residue field oR. In Theoreni 3B we prove tha# (E) is isomorphic to a subgroup
of the anticanonical cover d®, with a twisted multiplication structure; in this sectiome
describe this twisted construction in broad generality:

Definition 2.1. Given anN-graded commutative ringZ of prime characteristip, we
define a new ringZ (%) as follows: Consider the Abelian group

y(‘%) = @%pefla
e>0
and define a multiplicatiosx on .7 (%) by
axb = ab® forac 7 (#),andbe T (%), .

Itis a straightforward verification that is an associative binary operation; the prime
characteristic assumption is used in verifying thadndx are distributive. Moreover, for
elementae 7 (%), andb € .7 (#)y one has

a.bp (S e@pe71+pe(pe’71> :%pente’,]_v
and hence
T(R)ex T (R)e C T (R)ere -

Thus,.7 (%) is anN-graded ring; we abbreviate its degemmponent” (%), asJ. The
ring 7 (Z) is typically not commutative, and need not be a finitely gatest extension
ring of 9 even whernZ is Noetherian:

Example 2.2. We examineZ (#) whenZ is a standard graded polynomial ring over a
field F. We show that7 (%) is a finitely generated ring extension&p = F if dim % < 2,
and that7 (#) is not finitely generated if din# > 3.
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(1) If 2 is a polynomial ring of dimension 1, theff (#) is commutative and finitely
generated oveF: takeZ = F[x], in which caseZ, = F-x*" ! and

¢ 1

ete e_
NG e JORV e

WP L1
Thus,.7 (%) is a polynomial ring in one variable.
(2) WhenZ is a polynomial ring of dimension 2, we verify th&t(£) is a noncommuta-
tive finitely generated ring extension Bf Let#Z = F[x,y]. Then
XLy yP-1 — xP-1yP-p whereas  yPlxxP-l = xP*-Pyp-1
S0.7 (%) is not commutative. For finite generation, it suffices to sltioat
Tor1 = A% % foreache> 1.
Setq = p® and consider the elements
XyP ez, 0<i<p-1 and Xyl leZ, 0<j<qg-1.
Then.7; x J contains the elements
(lepilil) * (Xquflfl) — XH’prpq*pJ*'*l’
forO<i<p-—1land0< j<qg-—1, andthese are readily seen to spéani. Hence,

the degreep — 1 monomials inx andy generateZ (#) as a ring extension df.

(3) For a polynomial ringZ of dimension 3 or higher, the ring” (#) is noncommutative
and not finitely generated ové&:. The noncommutativity is immediate from (2); we
give an argument tha? (%) is not finitely generated fa#% = IF[x,y, ], and this carries
over to polynomial ringsZ of higher dimension.

Setq = p® wheree > 2. We claim that the element

xy¥/ P-1A-a/p-1 ¢ 7
does not belong td%, x %, for integersg < ewith e; + &, = e. Indeed, 7%, % T, is
spanned by the monomials
(Xiyj qu—ifjfl) % (Xkyl Zq27k7|71) — Xky il ikl -1
whereq; = p® and
O < k < QZ - 17 0
so it suffices to verify that the equations
i+quk=1 and j+ml=q/p—1

have no solution for integeisj, k,| in the intervals displayed above. The first of the
equations gives= 1, which then implies that & j < g; — 2. Sinceq; dividesq/p, the
second equation givgs= —1 modq;. But this has no solution with & j < q; — 2.

3. THE RING STRUCTURE OF% (E)

We describe the ring of Frobenius operatgf$E) in terms of the symbolic Rees al-
gebraZ and the twisted multiplication structut& (%) of the previous section. First, a
notational pointw!P) below denotes the iterated Frobenius power of an ideaindc™
its symbolic power, which coincides with reflexive power ttivisorial idealsw. We re-
alize that the notatiomw!" is sometimes used for the reflexive power, hence this note of
caution. We start with the following observation:
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Lemma 3.1. Let (R,m) be a normal local ring of characteristic p 0. Let w be a diviso-
rial ideal of R, i.e., an ideal of pure height one. Then forle@teger €= 1, the map

HglimR(w[pe]) N HglimR(w(pe))
induced by the inclusiowP C (P, is an isomorphism.
Proof. Setd = dimR. SinceRis normal andw has pure height oneyR,, is principal for
each prime idea} of height one; hencéw™) /wlPT)R, = 0. It follows that

dim (™) /wlP) < d-2,
which gives the vanishing of the outer terms of the exactsrgel
HI () /wlPT) — HI (wlP) — HI () — HI (P /!PTy,

and thus the desired isomorphism. O

Definition 3.2. LetRbe a normalring that is either complete localNegraded and finitely
generated oveRy. Let w denote the canonical moduleRf The symbolic Rees algebra

Z = Po"
n>0

is theanticanonical coveof R; it has a naturalN-grading where%z, = w(~".

Theorem 3.3. Let (R,m) be a normal complete local ring of characteristic-p0. Set d
to be the dimension of R. Let denote the canonical module of R, and identify E, the
injective hull of the Rm, with HZ ().

(1) ThenZ (E), the ring of Frobenius operators on E, may be identified with
@ w(17 pe) Fe7
ex0

where F® denotes the map H w) — HY (wP) induced byw — w!P?.
(2) LetZ be the anticanonical cover of R. Then one has an isomorphigraded rings

F(E) = T(%),
where.7 (%) is as in Definitio 211
Proof. By RemarK1.B, we have
Fe(H (w)) = Homg (R® @gHY (w), HY(w)).
Moreover,
R® @rHR (@) 2 HE (@) = HE (™),

where the first isomorphism of by [I1, Exercise 9.7], and the second by Lenima 3.1. By
similar arguments

Homg (H3 (™)), HY (w))

m

1%

Homg (HS (w®rwPY), HY (w))
Homg (0P Y @rH3 (), HY (w))
Homg (P~ Y, Homg(HY (w), HY (w))),

with the last isomorphism using the adjointness of Hom andde SinceR is complete,
the module above is isomorphic to

Homg (P9, R) = 1P,

1%

1%
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Supposep € .Z¢(M) and¢’ € .Z¢ (M) correspond respectively @F® anda’F¢, for

elements € w7 anda € ") Theng o ¢’ corresponds taFeobFe — abPFere
which agrees with the ring structure 6f(%) sinceax b = ab®. g

Remark 3.4. Let R be a normal complete local ring of prime characterigtitet A be a
complete regular local ring witR = A/l. Using Remark1]5 and Theorém13.3, its is now
a straightforward verification tha (E) is isomorphic, as a graded ring, to

@ 1P a1
€ k)
=0 | [p9]
where the multiplication on this latter ring is the twistedltiplication . An example of
the isomorphism is worked out in Propositlonl5.1.

4. Q-GORENSTEIN RINGS

We analyze the finite generation.&f(E) whenRis Q-Gorenstein. The following result
follows from the corresponding statement for Cartier atgsb[Sc, Remark 4.5], but we
include it here for the sake of completeness:

Proposition 4.1. Let (R,m) be a normalQ-Gorenstein local ring of prime characteris-
tic. Let w denote the canonical module of R. If the orderwfs relatively prime to the
characteristic of R, ther# (E) is a finitely generated ring extension.&(E).

Proof. Since.Z°(E) is isomorphic to then-adic completion oR, the proposition reduces
to the case where the rilgjis assumed to be complete.

Let mbe the order otv, andp the characteristic dR. Thenp modmis an element of
the group(Z/mZz)*, and hence there exists an integewith p® = 1 modm. We claim
that.7 (E) is generated ove#°(E) by [# (E)] -

We use the identification? (E) = .7 (%) from Theoreni31. Since)™ is a cyclic
module, one has

n+km) km)

o' = wMe! for all integersk,n.
Thus, for eacle > gy, one has

To ey % Ty = WP ) 5 o1PP)

— 1P, (w(lfpeo))[p&eo]
— PT0)  y(pT0(1-p%0))
— 1-pF0+pt0—pf)
= 1-p°

= Ze,

which proves the claim. O

We conjecture that Proposition #.1 has a converse in thewolly sense:

Conjecture 4.2. Let (R m) be a normalQ-Gorenstein ring of prime characteristic, such
that the order of the canonical module in the divisor classigiis a multiple of the char-
acteristic ofR. Then.Z (E) is not a finitely generated ring extensiongf (E).
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Veronese subrings.Let I be a field of characteristip > 0, andA = F|x1, ..., Xq] @ poly-
nomial ring. Given a positive integer we denote the-th Veronese subring &t by
An = DA
k=0
this differs from the standard notation, e.d., [GW], since rgserve superscripts )"

for symbolic powers. The cyclic modulg - - - xgA is the graded canonical module for the
polynomial ringA. By [GW, Corollary 3.1.3], the Veronese submodule

(0 ) ) = € - e
k>0

is the graded canonical module for subrifyg). Letm denote the homogeneous maximal
ideal ofA,). The injective hull ofA, /m in the category of gradei ,)-modules is

Hgl((xl"'XdA)(n)) = [Hgl((xl'“di)Ln)

_ |: Axl...xd :|
YiXe e XdAxggxg (n>7
see[GW, Theorem 3.1.1]. By [GW, Theorem 1.2.5], this is d@lsoinjective hull in the
category of allA;, -modules.

Let R be them-adic completion of\,). As it is m-torsion, the module displayed above
is also arR-module; it is the injective hull oR/mRin the category oR-modules.

Proposition 4.3. Let F be a field of characteristic p- 0, and let A= F[x,...,Xq] be a
polynomial ring of dimension d. Let n be a positive integad & be the completion of the
n-th Veronese subring of A at its homogeneous maximal iG&sdlE= M /N where

M = Rxg...xg
and N is the R-submodule spanned by elemé'liflts-xicjj € M with i, > 1 for some k; the

module E is the injective hull of the residue field of R.

Then.Z¢(E) is the left R-module generated by the elements
1 e
Xfl e ng

)

where F is the p-th power mapy < p®— 1 for each k, and ax = 0 modn.
Remark 4.4. We useF for the Frobenius endomorphism of the rifg The condition
5 ax = 0 modn, or equivalentlyS® ---x3¢ € M, implies that

1
——F% ¢ Z%(M).
Xfl...xgd ( )

Whenay < p®— 1 for eachk, the map displayed above stabilizdsand thus induces an
element of#€(M/N); we reuse~ for the p-th power map oM /N.

Proof of Propositiom 4]3.In view of the above rematrk, it remains to establish that ihery
elements are indeed generators.#?(E). The canonical module &k is

R = (Xl"'XdA)(n)R
and, indeedHd (wr) = E. Thus, Theoreini3l3 implies that
jE(E) _ (A)éliq)l:e
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whereq = p°. But wélfm is the completion of thé, -module

1 1
—— A =|-—45"—% | ak<q—1foreachk, ak:Omodn> An),
[XT 1...)(3 1 ](n) (Xfl---xgd Z

which completes the proof. O

Example 4.5. Considerd = 2 andn = 3 in Proposition 4.3, i.e.,
R = F[pC, 4y, xy2, .

Thenw = (x?y,xy?)R has order 3 in the divisor class groupRifindeed,

= (42, 3y, xyHR and w® = (Cy?)R

(1) If p=1mod 3, therw~9 = (xy)1-9Ris cyclic for eachy = p®, and

1
e 1+ e
FUE) = gt
Since
1 1 e __ 1 e+l
GyP T Gyl Gypel

it follows that

Z(E) = R{WlplF} .

(2) If p=2mod 3 andj = p®, thenw>~9 = (xy)19Rfor eeven, and
1 1 1
(1-a) —
w - <Xq3yq1’ Xq—qu—Z’ quyq3> R

for e odd. The proof of Propositidn 4.1 shows th&{E) is generated by its elements
of degree< 2, and hence

1 1 1 1 2
ﬂ«‘(E) = R{XpSyp1F7 przypszv prlyp73 F, sz,lypz,lF }

In the case = 2, the above reads

Z(E) = R{?F, F, yF %F }

(3) Whenp = 3, one has

w19 = 1(xy,xyz)R—( 1 1 )R

quq Xq—zyq—l’ Xq—lyq—z

for eachqg = p®. In this case,

11 1 1 1 1
ZF(E) = R¢ —F, —F F2 F2 F3 _— _F3 ..
(E) {xyz TX2y 0 XTyB U xByT 7 x@By26' 0 2625 '
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and.Z (E) is not a finitely generated extension ring %P (E) = R; indeed,
w9 % -9 = &(xzy, xy?) R Xq/iyq/(xzy, xy’)R
= qu(%yqoprq(xzy, xy?) - (x4, xW?NR
— qu,];,qq, (Xq+2y, Xq+1y27 X2yq+1, qu+2)R
~ S 0% ) (PR
(x9, yA) o1-ad)

for q= p® andq = p¢, wheree andée are positive integers.

5. ADETERMINANTAL RING

Let R be the determinantal ring[X] /I, whereX is a 2x 3 matrix of variables over a
field of characteristip > 0, andl is the ideal generated by the size 2 minorXoSetm to
be the homogeneous maximal ideaRofWe show that the algebra of Frobenius operators
Z(E) is not finitely generated ove?#°(E) = R, this proves Conjecture 3.1 df [Ka]. We
also extend Fedder’s calculation of the idd&: | to the ideald ! : | for all q = p©.

The ringRis isomorphic to the affine semigroup ring

F {sx S

x ty. tz] C Flst,x,y,7.

Using this identificationRis the Segre produé#B of the polynomial ring#\ = F[s,t] and
B =FI[x,y,7. By [GW, Theorem 4.3.1], the canonical moduleRois the Segre product of
the graded canonical modulssAandxyzBof the respective polynomial rings, i.e.,

R = StA#xyzB = (s°txyz st’xy2R.
Let e be a nonnegative integer, age= p®. Then

g _ L Ay 1 g
T e g
is theR module spanned by the elements

1
(st)a—1xkylzm
with K+14+m= 29— 2 andk,|,m< q—1.
View E asM/N whereM = Ry, ,, andN is theR-submodule spanned by the elements

Stix¥y' Z"in M that have at least one positive exponent. THEHE) is the leftR-module
generated by

1
(st)a—1xkylzm
whereF is thep-th power mapk+ I+ m=2q— 2, andk,|, m < q— 1. Using this descrip-
tion, it is an elementary—though somewhat tedious—vetificahat.% (E) is not finitely
generated ove#°(E); alternatively, note that the symbolic powers of the hewte prime

Fe
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ideals(sx sy s2R and (sx tx)R agree with the ordinary powers by [BV, Corollary 7.10].
Thus, the anticanonical cover Bfis the ringZ with

Rn = mwgsy,sz)“ﬁ,
and so
To = (Slez)qfl(sxsysz)qleA%.
Thus,
Toy % Toy = (Slez)qll(sxsy,sz)mla:e (Slez)qu(sxsy,sz)Wl

1 - —
- W(SXSMSZ)‘“ 1 (sxsysy® )@

L -1
= Foyzae1(oxsysat ((s0%, (sy), (2% )~

whereq; = p®. We claim that

e-1
Tt S ToxToe.
e=1

For this, it suffices to show that

1 1y q-a/p
(sthyZ)qflS"(Sy)q/p syt

does not belong t@, % Je, for integerse < e with e; + e; = e. By the description of
Je, % e, above, this is tantamount to proving that
a/p-1(gx4-a/p-1 a1 W (qy (sp) 2
sX(sy)¥P*(s2 ¢ (sxsys2™ " (9™, (sy™,(s2 ,
but this is essentially Examdle Z.2.3.

Fedder's computation. Let A be the power series ring[[u,v,w,x,y,2]] for F a field of
characteristip > 0, and letl be the ideal generated by the size 2 minors of the matrix

u v w
Xy z)’
In [F€, Proposition 4.7], Fedder shows that
[P = 2p=2 el
We extend this next by calculating the idedf: | for each prime poweq = pe.

Proposition 5.1. Let A be the power series rirflg[[u, v, w, X, Y, Z]] where K a field of char-
acteristic p> 0. Let | be the ideal of A generated iy = vz— wy, A, = wx— uz, and
Az = uy—vx.

(1) For g= p® and nonnegative integerstavith s+t < q— 1, one has

Y2 (Dohg) € 119 4 x3HA,
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(2) Forg,s;t as above, lets; be an element of A with
Y2 (Doh3)T = xS sy mod19
Then £, is well-defined moduldd. Moreover, §; € 119 :5 1, and
a1 =194 (fs; | s+t < g—1)A.

Forqg= p, the above recovers Fedder's computation tfat | = 12P-2 [P though
for q > p, the ideal [P : | is strictly bigger than2P—2 | [Fl,

Proof. (1) Note that the element
Y*E (Boha)t = yo2 (wx—uz)% L(uy— vx)d L
belongs to the ideals
(x,u)22 c (x3 1 ul) C (St u9),
and also to
YZ(x,29 eyt C v 2 (AT, © T ALY,
Hence,

Vo2 (DoDg) 4t

m

(L u)A N (ST A YA
(x>, w9, Uy A
(', Af, A, ADA.

N

(2) The ideald and![@ have the same associated primes, fiL.Corollary 21.11]. Ad
is prime, it is the only prime associated!ffl. Hencexs! is a nonzerodivisor modulld®,
and it follows thatfs; modI(9 is well-defined.

We next claim that

12a-1 cyldl,

By the earlier observation on associated primes, it suffacesrify this in the local rindR, .
But R, is a regular local ring of dimension 2, $8, is generated by two elements, and the
claim follows from the pigeonhole principle. The claim irgd that

xH gl e 119,

and using, again, that*! is a nonzerodivisor moduld?, we see thafs;| C 19, in other
words, thatfs; € 119 :4 | as desired.
By Theoreni 3.8 and Remdrk 3.4, one hasRamodule isomorphisms

IR

oy = FE)

Choosingwé{l) = (x,Y,2)R, we claim that the map

1SN
| [g]
XATstysg

(xy.2° 'R —
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is an isomorphism. Since the modules in question are refiékmodules of rank one, it
suffices to verify that the map is an isomorphism in codimemg4i. Upon inverting, the
above map induces
HAA A 1A

[ [dl A
qul — (AzAg)qA‘

R« —

which is readily seen to be an isomorphism sibkg= (A, A3)Ax. O

6. CARTIER ALGEBRAS AND GAUGE BOUNDEDNESS

For a ringR of prime characteristip > 0, one can interpre#€(E) in a dual way as a
collection of p—®-linear operators oR. This point of view was studied by Blickle [BI2]
and Schwede [Sc].

Definition 6.1. Let Rbe a ring of prime characteristjit> 0. For eacte > 0, seté R to be
set of additive mapg : R — R satisfying
d(rP°x) = re(x) forr,xeR.
Thetotal Cartier algebrais the direct sum
R = PR
e0

For¢ € ¢& and¢’ € €F, the compositiong o ¢’ and¢’ o ¢ are elements ot R .
This gives¢® the structure of aiN-graded ring; it is typically not a commutative ring. As
pointed out in[[ABZ, 2.2.1], if(R,m) is anF-finite complete local ring, then the ring of
Frobenius operator (E) is isomorphic tag™®.

Each@ ! has a left and a riglR-module structure: fop € ¥R andr € R, we define - ¢
to be the mapx+— r¢(x), and¢ - r to be the map— ¢ (rx).

Definition 6.2. Blickle [BI2] introduced a notion of boundedness for Carti#gebras:

Let R= A/l for a polynomial ringA = F[xy, ..., Xg] over anF-finite field F. SetR, to be

the finite dimensiondF-vector subspace @& spanned by the images of the monomials
x’l\l---><}d for 0<Aj<n.

Following [An] and [BIZ], we define amap: R— Z by 8(r) =nif r € Ry~ Ry_1; the
mapd is agauge If | =0, thend(r) < dedr) for eachr € R. We recall some properties
from [An, Proposition 1] and [BI2, Lemma 4.2]:

S(r+r")y < max{d(r), o(r')},
o(r-r')y < d(r)+o(r').
The ring%R is gauge boundeif there exists a constait, and elementge; in X for
eache > 1 generatingsR as a leftR-module, such that
0(¢ei(X)) < %-ﬁ-K for eache andi.
Remark 6.3. We record two key facts that will be used in our proof of Theoi&4:

(1) If there exists a constaf such that (P :5 | is generated by elements of degree at
mostC p? for eache > 1, thenéR is gauge bounded,; this is [KZ, Lemma 2.2].
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(2) If #Ris gauge bounded, then for each ideaf R, theF -jumping numbers of (R, a')
are a subset of the real numbers with no limit points; in paldr, they form a discrete
set. Thisis[[BI2, Theorem 4.18].

We now prove the main result of the section:

Theorem 6.4. Let R be a normaN-graded that is finitely generated over an F-finite
field Ry. (The ring R need not be standard graded.)
Suppose that the anticanonical cover of R is finitely gereeras an R-algebra. ThefiR
is gauge bounded. Hence, for each idealf R, the set of F-jumping numbersR, a')
is a subset of the real numbers with no limit points.

Proof. Let A be a polynomial ring, with a possibly non-stand&febrading, such that
R=A/I. It suffices to obtain a consta@tsuch that the idealsP” :5 | are generated by
elements of degree at m&3p® for eache > 1.

There exists a ring isomorphis@ e W P = @e.o(1P7 14 1) /1P by Remark 314
that respects the-th graded components. After replaciagby an isomorphidR-module
with a possible graded shift, we may assume that the isonspabove induces degree
preservingR-module isomorphisme) (1P = (11P% ;5 1) /1Pl for eache > 0. While @
is no longer canonically graded, we still have the finite gatien of the anticanonical
cover@,-ow! . It suffices to check that there exists a cons@usuch thatw ") is
generated, as @Rmodule, by elements of degree at mogE.

Choose finitely many homogenedRslgebra generatogs, . . ., z for @, w(", say

with z € w(~1), SetC to be the maximum of deg, ..., degz. Then the monomials
2 =424 with Y Aiji=p*-1
generate th& modulew> P, and it is readily seen that

deg?' = Y Aidegz < CH A < C(p°—1).

By [KZ] Lemma 2.2], it follows that’R is gauge bounded; the assertion now follows from
[BI2] Theorem 4.18]. O

Corollary 6.5. Let R be the determinantal rifi§[X]/I, where X is a matrix of indetermi-
nates over an F-finite field# of prime characteristic, and | is the ideal generated by the
minors of X of an arbitrary but fixed size. Then, for each ideaf R, the set of F-jumping
numbers off (R a') is a subset of the real numbers with no limit points.

Proof. SinceRis a determinantal ring, the symbolic powers of the ideal? agree with
the ordinary powers by [BV, Corollary 7.10]. Hence the aawicnical cover oRis finitely
generated, and the result follows from Theofenh 6.4. O

Remark 6.6. It would be natural to remove the hypothesis tRé graded in Theorem 8.4.
However, we do not know how to do this: whé&nis not graded, it is unclear if one can
choose gauges that are compatible with the ring isomorphism

@w(lfpe) =~ @(Hpe] Al /1P

e0 ex0



14 MORDECHAI KATZMAN, KARL SCHWEDE, ANURAG K. SINGH, AND WENLIANG ZHANG

7. LINEAR GROWTH OFCASTELNUOVO-MUMFORD REGULARITY FOR RINGS OF
FINITE FROBENIUS REPRESENTATION TYPE

Let A be a standard graded polynomial ring over a fi@)dvith homogeneous maxi-
mal idealm. We recall the definition of the Castelnuovo-Mumford regityeof a graded
module following [El, Chapter 4]:

Definition 7.1. LetM = @y Mg be a graded-module. IfM is Artinian, we set
regM = max{d | Mg # 0};
for an arbitrary graded module we define
regM = T>%x{regH§1(M)+k}.
Definition 7.2. Let | andJ be homogeneous ideals 8f We say that the regularity
of A/(1 + J[pe}) haslinear growthwith respect tqp®, if there is a constar@@, such that
regA/(1+JP1) < Cp®  foreache> 0.

It follows from [KZ] Corollary 2.4] that if reg\/(l +J[pe]) has linear growth for each
homogeneous ided| then”/" is gauge-bounded.

Remark 7.3. Let R= A/l for a homogeneous idebl We define a grading on the bimod-
ule R® introduced in Remark1.3: when an elemenf Ris viewed as an element B¢,
we denote it by (). For a homogeneous element R, we set

dedr(® = édeg.
For each ideal of R, one has an isomorphism
R® @rR/J — R/JIP
under whichr(® ©5+— rsP®. To make this isomorphism degree-preserving for a homoge-

]

neous ideall, we define a grading oR/J[P"| as follows:

dedr = é degr for a homogeneous elemantf R.
The notion of finite Frobenius representation type was thioed by Smith and Van den
Bergh [SV]; we recall the definition in the graded context:

Definition 7.4. Let R be anN-graded Noetherian ring of prime characterigiicThenR
hasfinite graded Frobenius-representation typefinitely generated@-gradedr-modules
M, ..., Ms, if for everye e N, theQ-gradedR-moduleR® is isomorphic to a finite direct

sum of the module®|; with possible graded shifts, i.e., if there exist rationai’rbersaf?,
such that there exists@-graded isomorphism

* = D (al?)
i

Remark 7.5. Suppos& has finite graded Frobenius-representation type. Withalteztion
as above, there exists a constarguch that

ai(je) <C  forallei,j;
see the proof of [TIT, Theorem 2.9].

We now prove the main result of this section; compare with, [Tfieorem 4.8].
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Theorem 7.6. Let A be a standard graded polynomial ring over an F-finitedfief char-
acteristic p> 0. Let | be a homogeneous ideal of A.

Suppose R= A/l has finite graded F-representation type. ThegA/ (1 +JIP7) has
linear growth for each homogeneous ideal J. In particuléR is gauge bounded, and for
each ideak of R, the set of F-jumping numbersmR, a') is a subset of the real numbers
with no limit points.

Proof. We usel for the ideal ofA, and also for its image iR. Leta'(HX (R/JIP)) denote
the largest degree of a nonzero eIemerﬁIhKR/J[pe]) under the delggrading, i.e.,

€ 1 €]
al (H (R/IPT)) = EregHEI(R/J[pU.
Since we have degree-preserving isomorphiBffisog R/J = R/JIPY, and

RO = PMi(af),
i

it follows that

1%

HX (R/IPT) = HE (R® @rR/J)

DHE (M (o) ©rR/J)
i,

1%

= DHS(Mi/IM) (o).
i

The numbemi(je) are bounded by RemakY.5; thus,

&l (Hi (R/IP)) < max{al (HE (Mi/IM)) +C} .

Since there are only finitely many modulds and finitely many homological indicds it
follows thata/(HX (R/JIP7)) < C', whereC' is a constant independenteéndk. Hence

regH¥ (R/IPT) < C'p®  forallek,

and so
regh/ (1 +JP7T) = mkax{regHr'fl(R/J[pe}) +k} <C'p®+dimA.

This proves that reg/J[pe} has linear growth[[KZ, Corollary 2.4] implies th@t? is gauge
bounded, and the discreetness assertion follows from [Bi2prem 4.18]. O
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