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ABSTRACT 

The loss of cartilage tissue due to trauma, tumor surgery or congenital defects like 

microtia and anotia is one of the major concerns in head and neck surgery. Recently 

tissue engineering approaches including gene delivery have been proposed for 

regeneration of cartilage tissue. In this study, primary chondrocytes were genetically 

modified with plasmid encoding Bone Morphogenetic Protein-7 (BMP-7) via 

commercially available non-viral Turbofect vector with the aim of bringing  ex-vivo 

transfected chondrocytes to re-synthesize BMP-7 n-vitro as they would in-vivo. 

Genetically modified cells were implanted into gelatin/oxide dextran scaffolds and 

cartilage tissue formation was investigated in 15x15mm auricular cartilage defects in-

vivo in 48 New Zealand (NZ) White Rabbits for 4 months. Results were evaluated via 

histology and early gene expression. Early gene expression results indicated  a strong 

effect of exogenous BMP7 on matrix synthesis and chondrocyte growth. In addition, 

histological analysis  results exhibited significantly better cartilage healing with BMP-7 

modified (transfected) cells in comparison to the non-modified (non-transfected) group 

and as well as the control. 

 

Key Words: Auricular cartilage, primary chondrocytes, plasmid DNA, non-viral, ex-

vivo transfection, bone morphogenetic proteins. 

 

 

 

 



1. Introduction 

In head and neck surgery, cartilage tissue reconstruction still needs state-of-the art 

approaches to replace the loss of cartilage tissue after trauma, tumor resection, and 

congenital defects like microtia and anotia. Using autologous costal cartilage is the 

traditional method of surgery, however, there may not be enough cartilage tissue 

available and the type of cartilage may not be suitable for this kind of application. In 

addition, costal cartilage is difficult to form to a proper shape which may lead to 

symmetrical and aesthetic problems (Quatela et al., 1995; Pan et al., 2007).  Some other 

complications such as autologous scarcity, pain, donor site-directed morbidity, iatrogenic 

pneumothorax atelectasis and graft incompatibility are also noted (Koch et al., 2002).  

Polymeric biomaterials such as  silicone or porous polyethylene (PE) prostheses are also 

a widely used for re-shaping and the support of the defect area (Romo et al., 2006; 

Breugem et al., 2011). However, there are still some important limitations also to these 

approaches including requirements for intensive care, infection risk, wear and tear in time 

and frequent replacement. There is still the possibility that these materials are seen as 

foreign materials by the body (Koch et al. 2002 , Bauer et al., 2009). Also all these 

surgical operations are technically very demanding and multi-step procedures that require 

well-trained surgeons. In the hand of inexperienced surgeons, results may be poor. 

Several promising tissue engineering approaches for cartilage defect healing and 

regeneration have been proposed (Osch et al 2004; Chung et al 2006).   Rotter et al. have 

summarized the initial tissue engineering efforts of in-vivo and in-vitro cartilage 

development for microtia treatment (Rotter et al., 2008). Yamaoka and his colleagues 

compared various types of hydrogel matrices for auricular cartilage tissue development 



(Yamaoka et al., 2006). Yoo and co-workers have evaluated cell behavior and cartilage 

formation on hyaluronic acid modified macroporous poly(D,L-lactic acid-co-glycolic 

acid) scaffolds (Yoo et al., 2005). 

Recent approaches also include, using growth factors or stimulants for engineered 

therapy. Bone Morphogenetic Proteins (BMP’s) are considered as good candidates for 

these treatments. (Reddi et al., 1998; Boyne et al., 2001). BMPs are growth factors that 

act as enhancers for extracellular matrix synthesis and are inducers of mitotic activity 

(Bessa et al., 2008). There have been several studies reported about using BMPs or other 

cytokines for articular cartilage repair. Gelse and co-workers demonstrated articular 

cartilage repair by gene therapy, using BMP-2 and growth factor producing mesenchymal 

stem cells (Gelse et. al., 2003). Cook and colleagues reported an articular cartilage defect 

repair by using BMP-7 in a canine model (Cook et. al., 2003). Madry and Cucchiarini 

summarized the clinical potential and the challenges of using genetically modified cells 

for articular cartilage repair. All these studies reflect persevering attempts for the repair 

of articular cartilage. However, there are still no significant studies on using genetically 

modified cells/gene therapy for auricular cartilage repair. 

In the study reported here, we have aimed to use this promising approach in an auricular 

cartilage defect. The defects were critical sized which means they cannot heal 

spontaneously. We used primary chondrocytes; genetically modified with BMP-7 

encoding plasmids, and furthermore applied them together with cryogel scaffolds for 

healing of cartilage defect in rabbit’s auricula. We have also followed early phase gene 

expressions. We try to describe the effects of BMP-7 expressed from genetically 

modified chondrocytes and whether it could support healing. We here hypothesized that 



using a tissue engineering approach with genetically modified BMP-7 expressing cells 

could be utilized in auricular cartilage defects that may exhibit improved cartilage tissue 

formation in a defined time. 

2. Materials and Methods 

2.1 Preparation of cryogel scaffolds  

All materials were obtained from Sigma-Aldrich (Germany) unless otherwise stated. 

Gelatin/ox-dextran scaffolds were prepared according to a previously reported procedure 

(Inci et al., 2011): Briefly; the cross-linker, oxidized dextran (oxDex), was synthesized by 

oxidation of dextran with sodium periodate in an aqueous media in the dark at room 

temperature for 1h (Maia et al., 2005). The oxidized dextran was separated by dialysis 

and freeze dried. For scaffold preparation, 2g gelatin was mixed with an appropriate 

amount of oxDex, and the mixture was transferred into 10 mm diameter tubes which were 

then frozen at -12°C in an ethanol-cooled cryostat for 1h. The disks were then stored in a 

freezer at -18°C for 24hrs. The frozen samples were taken from the tube, thawed at room 

temperature and washed with distilled water.  

Pore morphologies of the cryogels were examined using a scanning electron microscope 

(JSM-5600LV, Jeol, Japan) at 8 kV.  Compression tests were performed on wet scaffolds 

using a universal test machine (LR-5K, Lloyd Instruments, UK). Freeze-dried cryogels 

(Mo: dry weight) were allowed to swell until equilibrium (24 hrs) and were then 

weighted (Me: swollen weight). The swelling ratio (Sr) was calculated using the 

following equation. 

 Sr = [(Me - Mo)/ Mo] x 100                                                                              (1) 



2.2 Auricular Chondrocytes Isolation 

All procedures were approved by Gazi University Animal Ethic Committee (No: 

G.Ü.ET-10.059). Auricular cartilage was obtained from a 2 month old male New Zealand 

white rabbit under sterile conditions. Cartilage was cut into small pieces and digested in 

collagenase (3mg/ml in PBS) solution for 24 hours. The solution was then washed twice 

with DMEM/F12 culture medium. Isolated cells were then seeded into 25cm2 flasks and a 

condition medium (DMEM/F12, %10 FBS, %1 L-Glutamine, %0,25 Penicillin-

Streptomycin, %0,25 Gentamycin, % 0,1 Insulin). Chondrocytes were cultured until 

passage 4 at 5% CO2, 37oC. 

2.3 BMP-7 transfection and release studies  

The hBMP-7 cDNA containing constitutive expression plasmid pVAX1-hBMP7s 

(Feichtinger et al. 2011 in submission) was provided by the Ludwig Boltzman Institute, 

Vienna, Austria. Plasmid transfection was performed using a Turbofect in-vitro 

transfection kit (Fermentas, USA) according to manufacturer’s instructions. Briefly, 2 µl 

transfection agents were incubated with 5µg plasmids for about 15 minutes at room 

temperature. The solution was then added to the culture media/24 well plates. A day later, 

cells were trypsinized and seeded onto gelatin/ox-dextran scaffolds (1x105 cells/scaffold). 

BMP7 release into the culture media was analyzed for up to 14 days using BMP-7 Elisa 

Kits (RayBiotech , USA). Non-transfected cells were used as a control. In addition, 

transfection efficiencies of primary chondrocytes were performed using Green 

Florescence Protein encoding plasmid and transfection efficiencies were calculated. A 

student t-test was used to determine the effect of hBMP-7 to overall BMP-7 release in 

normal and transfected group. 



2.4 Cartilage tissue regeneration in vivo 

48 New Zealand (NZ)  white rabbits (adult male, 12 weeks olds, 2300 ± 300 gr with open 

epiphysis, healthy skeletal and physiological condition) which are equivalent to 96 

auricle samples were used in the following four main groups:  (i) The “defect-only” 

group which was the “control” group called as “Group C”;  (ii) the “scaffold only” group 

(“Group S”); (iii) scaffold seeded with primary chondrocytes (“Group N”); and (iv) 

scaffold seeded with genetically modified (transfected) primary chondrocytes group 

(“Group T”). In each group, 6 auricles were operated per month. 

In a typical surgical procedure, the rabbit was generally anesthetized intramuscularly 

using Ketamine (3ml) and Alfasime (1ml). In order to create a critical size defect 

15mmx15mm auricular cartilage tissue was removed 15 mm distal to the radix of each 

auricle. Critical size dimensions were selected by considering similar models applied in 

the literature (Cheqielski et al., 2007; Haberal et al., 2008). As seen in Figure 1, a special 

cutting device was designed and used to remove the standard dimensional cartilage tissue 

sample. Perichondrium and vascular territory was protected in each case. Note that the 

disk shaped scaffolds (diameter:  15 mm and height: 2 mm) were sterilized with 70% 

Ethanol and dried) before implantation. After implantation, the defect was closed with 3.0 

Caprosyn sutures (Syneture, Ireland). 

In Group C, the defect was closed without any further operation. In Group S, the cryogel 

scaffolds were implanted in the defect area. In Group N, the scaffold were first placed in 

the defect area and primary chondrocytes isolated from rabbit auricular cartilage tissues 

were then injected into the scaffold (1x106 cells per scaffold). In the last group (Group T), 

genetically modified primary cells (carrying the BMP-7 expressing plasmid) (1x106 cells 



per scaffold) were used. Cartilage reconstruction was monitored for up to 4 months. At 

the end of each month, operated cartilage tissue was removed from the defect area 

including the surrounding tissue. 

2.4.1 Early phase gene expression in vivo 

In order to investigate the effects of genetic modification, early gene expression of 

selected genes was performed in another set of animal studies. Here, 12 NZ White rabbits 

(adult male, 12 weeks olds) were used. 3 animals/auricles were used in each time-point 

for each treatment group. Others were kept as a control. Gene expression analysis was 

performed on normal and genetically modified cells groups. Non-operated tissue was 

used as a control. All animals were operated as described previously. Samples were 

collected from the implant sites on days 3, 7, 14 and 30 and all samples were immediately 

put into liquid nitrogen and kept at -80 until processed. 

Total RNA was isolated from the samples (approximately 50-100 mg) using the 

TriReagent system (peqGOLD TriFastTM, Peqlab, Erlangen, Germany), according to 

manufacturer’s instructions. The RNA-containing pellets were treated with approximately 

1–5U RNase-free D Nase (DNaseI, Roche Diagnostics, Germany) per µg RNA and 

incubated at 37°C for 30minutes before being washed with 70% ethanol to prevent DNA 

contamination. Ethanol was removed by air-drying and RNA pellets were dissolved in 

10-30µl of RNase and DNase free water after which it was air-dried. Isolated RNA was 

then stored at -80°C. The yield and quantity of the RNA of each sample was quantified 

by measuring absorbances at 260nm and 280nm using a Nanodrop spectrophotometer 

(NanoDrop ND-1000, USA). Equal amounts of RNA were used for reverse 

transcriptions. First strand complementary DNA (cDNA) was reverse transcribed from 



1µg of total RNA with the Transcriptor First Strand cDNA synthesis kit (Roche 

Diagnostics, Germany) according to the manufacturer’s instructions. cDNA products 

were stored at -20°C. 

For the expressions, Aggrecan, BMP-7, Collagen Type I (Col I) and Collagen Type II 

(Col II) mRNA levels were measured using qRT-PCR method with the LightCycler 480 

instrument (Roche Diagnostics, GmbH, Mannheim, Germany). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as a housekeeping gene in order to 

normalize Aggrecan, BMP-7, Col Type I and Col Type II mRNA expression levels. 

Probes and exon-exon spanning primers for each gene assay were designed using the 

Universal Probe Library (UPL) Assay Design Center (Roche Applied Science, GmbH, 

Mannheim, Germany). The gene-specific primer sequences (exon-exon junction to allow 

discrimination between cDNA and genomic DNA) and UPL numbers are provided in 

Table 1.  

The reaction mixture was prepared in a 96 well plate using LightCycler Taq-Man Master 

Mix solution (Roche Diagnostics GmbH, Mannheim, Germany). Negative control 

experiments of each reaction were performed without the addition of template cDNA. 

Samples were analyzed in triplicate. In order to determine amplification efficiencies of 

the target genes, standard curves were constructed from samples used in a series of 

dilutions for both the gene of interest (GOI) and the housekeeping gene (GAPDH). GOI 

(Aggrecan, BMP-7, Col Type I and Col Type II) and GAPDH amplification efficiencies 

were approximately equal. The data were analyzed using LightCycler Software version 

3.5 (Roche Diagnostics GmbH, Mannheim, Germany). Gene expression analysis of 



Aggrecan, BMP-7, Col Type I and Col Type II was performed using the Relative 

Expression Software Tool 2005 (REST©) (Pfaffl et al., 2002).  

2.4.2 Histological evaluations 

Histological evaluation was performed at Hacettepe University, Faculty of Medicine, 

Department of Histology and Embryology. The observers were two experienced 

histologists (among the authors) and the samples were evaluated blindly.  The auricular 

specimens were removed and immersed in 10% neutral formalin solution (pH 7.0) at 

room temperature. Specimens were decalcified in De Castro solution (chloral hydrate, 

nitric acid, distilled water, Merck, Germany) and all samples were then  embedded in 

paraffin by using an automated tissue processor (Leica Westlar, Germany) with vacuum. 

Five to six micrometer thick serial sections (along the entire defect) were stained with 

hematoxylin & eosin (HE), Masson’s trichrome (MT) and Weigerts elastic stain to assess 

the general morphology, collagen and elastic fibril amount respectively. 

“Photomicrographs of each sample were generated by a light microscope (Leica, DMR, 

Germany) attached to a computerized digital camera (Model DFC 480, Leica Westlar 

Germany).  Both the Pinedas (the system has been modified by assessing the presence of 

the elastic cartilage but not the hyaline cartilage) and the Lohans cartilage histopathology 

scoring systems were used to evaluate the auricular cartilage critical sized defect healing. 

(Lohan et al., 2011; Pineda et al., 1992). 

Statistical analysis 

A prospective randomized-controlled double-blinded in vivo study was designed. 

Independent variables were groups (n=8 ) and time (n=2)  Dependent variables were 



histology scores. For statistical analysis, the independent variable was groups and the 

dependent variables were the histology. The normality of distribution and the 

homogeneity of variances of the sample were established using the Shapiro-Wilk test. All 

parameters were analyzed by the non-parametric Kruskal-Wallis test that was used for 

multiple comparisons and the Dunn test for post-hoc analysis. Descriptive statistics were 

expressed as the median, the minimum and the maximum. Statistical significance was 

determined using the SPSS software (version 15.0). The differences were considered 

significant when p < 0.05. 

For the gene expression results, statistical significance of differences in mRNA 

expression were analyzed by a pairwise fixed reallocation randomization test as a 

statistical model included in the relative expression software tool (REST©, Qiagen, USA) 

developed for group-wise comparison and statistical analysis of relative expression 

results. The differences were considered significant when p < 0.05. 

3. RESULTS and DISCUSSION 

3.1 Cryogel scaffolds 

Figure 2 shows a representative SEM micrograph of the cryogel scaffolds prepared in this 

study. As seen here, cryogels are highly porous, with large pores (the average is over 100 

µm) and inter-connective pore morphology, which are very suitable structural properties 

for porous materials in tissue engineering (Nickerson et al., 2006; Jain et al., 2008). 

One of the important properties of these cryogel scaffolds is their swelling ability and 

behavior. They do swell in aqueous media very rapidly, within a few minutes, and reach 

their final size in 20-25 mins. The average swelling ratio and standard deviation (n:5) is 



986.2% ± 134.0 which is in the range of the data reported in the related literature for 

similar dextran based cryogels (Nickerson et al., 2006; Jain et al., 2008)  

The average elastic moduli and toughness and with the corresponding standard deviations 

(n:5) obtained from the compression tests are 8.4 kPa ± 1.8 and 261.0 ± 67.5 kJ/m3, 

respectively, which are comparable to the mechanical properties of similar 

cryogels/hydrogels reported in the literature (Inci et al., 2012; Nickerson et al., 2006;  Al-

Munajjed et al., 2009). 

3.2 BMP release studies 

 

Figure 3 depicts the BMP-7 release from cryogels loaded with genetically modified 

chondrocytes (transfected - carrying BMP-7 expressing plasmids) and scaffolds seeded 

with non-transfected chondrocytes obtained in the in-vitro cell culture media as described 

in the previous sections. It has been reported that cells on monolayer cultures do lose 

their ability to encode the specific genes for ECM proteins and change their morphology 

from chondrocytic to fibroblastic (Hiraki et al. 1985; Stokes et al. 2001) As seen in 

Figure 3, the non-transfected cells also synthesize BMP-7, however to a much lower 

extent and decreasing with time. As, was our aim in this study, transfected cells 

expressed/released BMP-7 in much higher amounts and for longer periods. There is a 

significant difference between normal and transfected cells in all timepoints. (p < 0.01 to 

p < 0.0001) Schüller and his colleagues demonstrated similar relevant findings with 

BMP-7 release from primary chondrocytes, transfected with pCMV-BMP7/lipofectamine 

system in monolayer culture (Schüller et al., 2008).  



Here we analyze the total BMP7 (both endogenous and in transfected cells also 

exogenous) release to the culture media. BMP release in this study is also related to 

transfection efficiency. In our study, we checked our transfection efficiencies in primary 

chondrocytes, which were between 15-20%, with a model plasmid (EGFP). Logically, 

higher transfection efficiency causes higher amounts of produced BMP.  There are 

several issues that strongly affect the transfection efficiency. In brief; primary cells are 

very sensitive to the transfection and isolation procedures from the tissue can also affect 

the efficiency (Dinser et al., 2001)  Also although the transfections with non-viral vectors 

are much safer in primary cell culture, transfection efficiencies with non-viral vectors are 

lower than with viral vectors (Al-Dosari et al., 2009)  

3.3 Cartilage tissue regeneration in vivo 

A detailed histological evaluation was performed in all groups. Figure 4 and Figure 5 

show the average Pineda and Lohan scores of each group within 4 months. 

These scoring systems are widely used and well established scoring systems for cartilage 

repair assessment used in the recent literature and studies. Although they are described as 

semi-quantitative systems, they cover and combine all of the morphologic criteria for 

qualitative and quantitative cartilage repair. In Lohan’s scoring system the cartilage cell 

morphology, extracellular matrix production and the inflammation criteria were 

separately scored. In Pineda’s scoring system the filling percentage of the defect, the 

reconstruction of osteochondral junction, extracellular matrix staining by Weigert elastic 

stain (which reveal the presence of elastic fibers), the amount of chondrocyte and non-

chondrocyte cells and the amount of the fibrous and elastic cartilage were separately 

scored. The final total scores that included all this data were statistically analyzed. 



In addition to these semi-quantitative scoring of newly formed elastic cartilage; all groups 

were also analyzed by histological staining.  Figure 6 shows histological staining for all 

groups. 

According to histological assessment, all of the defects were closed by the formation of 

fibrous connective tissue and cartilage (fibrous and elastic) at the end of 4 months. Repair 

in the control group was mainly by way of connective tissue formation. The biomaterial 

degraded in time but did not degrade entirely at the end of 4 months in any of the groups. 

All of the groups exhibited the formation of various amounts of cartilage islands and 

several of them revealed a varying quantity of calcified foci within the defect. Both cell 

seeded scaffold groups had more Weigert positive elastic cartilage islands compared to 

the other groups. Cartilage formation was of a more fibrous type in the control and 

scaffold only groups (Group C and Group S). Although the scaffold was biocompatible, 

allowing good guidance for cartilage regeneration, it was not enough to support elastic 

cartilage formation over a period of 4 months in the entire defect in-vivo. The new 

cartilage-like tissue was not completely homogeneous and it was sometimes continuous 

with the fibrous connective tissue throughout the defect in all of the groups (Figure 6).  

The normal and the genetically modified (transfected) cells with scaffold groups (Group 

N and Group T)  received significantly better Pineda and Lohan defect healing scores 

than those of the control (Group C) and the scaffold only group (Group S)  at one month 

(Group N p=0.023 and p=0.001 ; Groups T p=0.001 and p=0.001) . The transfected and 

normal cells with scaffold groups (Group N and Group T) were significantly better than 

the scaffold only group (Group S) after one month (Figure 4 and 5) (Group N p=0.03 

Lohan ; Group T p=0.001 and p=0.001). 



The transfected cells with scaffold group (Group T) received significantly better Pineda 

and Lohan defect healing scores than those of the control at 2 months (Group T; p=0.001 

and p=0.001). The transfected cells with scaffold group was better than the scaffold only 

group (Group S) according to Lohan scoring at 2 months (p=0.001) (Figure 4). At 3 

months; the transfected cells with scaffold group (Group T)   was better than the control 

according to Lohan (p=0.003) and; the normal cells with scaffold group (Group N) was 

better than the control according to Pineda (p=0.007) (Figure 4 and 5). At 4 months; the 

transfected cells with scaffold group (Group T) was better than the control according to 

Pineda and Lohan (p=0.001 and p=0.002). The transfected cells with scaffold group 

(Group T) was significantly better than the scaffold only group (Group S) (p=0.012) 

according to Lohan after month 4 (Figure 4 and 5). 

The scaffold only group (Group S)  did not significantly improve the cartilage defect 

healing process in the months 1, 2, 3 and 4 compared to control (Group C)  (Figure 4 and 

5). 

3.4 Early phase gene expressions 

 

In order to observe  the effects of BMP-7 on early phase healing process, a separate group 

of experiments was designed, in which scaffolds carrying primary chondrocytes (normal 

cells) or their genetically modified forms (transfected) were implanted to the animal ear 

models (3 animals for each) as discussed in the previous section. The samples were taken 

at 3rd, 7th, 14th and 30th days and expression of four target genes, i.e., COL Type I and II, 

BMP-7 and Aggrecan was analyzed by quantitative Real-Time PCR.  



The selected factors/genes are related to cartilage tissue formation and ECM synthesis. 

Briefly as follows: BMP-7 which stimulates the chondrogenesis and matrix synthesis; 

COL Type II, which is the dominant ECM protein in auricular cartilage; Aggrecan, which 

is a cartilage specific proteoglycan core protein; and finally COL Type I, which naturally 

exist in bone and fibrous cartilage. 

Figure 7 shows the fold differences in expression with respect to the control in designated 

timepoints. As is seen in figure 7, there was an increase in synthesis of all selected factors 

over time. BMP-7 plays a role in enhancing matrix synthesis in cartilage tissue formation. 

Therefore, if there is an activity of BMP-7, matrix protein synthesis should consequently 

increase (Bessa et al., 2008). In this study the expression of endogenous BMP7 was on 

mRNA level, however, several reports show that exogenous BMPs (that come from the 

plasmid) can elevate the levels of endogenous BMPs and have an induced effect on the 

synthesis of mRNAs as well as matrix synthesis and tissue development (Erickson et al., 

1997 ; Chen et al.,  1997 ; Kawai  et al., 2006).   In addition; Aggrecan, which is a 

specific matrix protein for cartilage, and Collagen type II, which is the dominant matrix 

protein for cartilage, were also increased, both in transfected and normal cells with 

scaffold groups (Group N and Group T). However, in transfected cells with scaffold 

group (Group T) these differences were significant and higher in all timepoints. The 

effect of the extra BMP-7 can be observed easily after 14 days post-operative as the 

matrix proteins synthesis increases. Even in the late phase (14 and 30 days), there is still a 

higher expression of Collagen Type II and Aggrecan in Group T. Lietman and colleagues 

reported similar findings on the stimulation of proteoglycan synthesis by Bone 

Morphogenetic Protein – 7 (Lietman  et al., 1997).  On the other hand, Collagen Type I 

differences in normal cells with scaffold group (Group N) is not significant at later phases 



(after 14 days) in normalized overall results. However, in Group T, a higher expression 

on Collagen Type I was observed at later phases (14 days). This observation can be 

explained by the role of BMP-7 in bone and cartilage regeneration (Bessa et al., 2008). 

BMP-7 activates cartilage matrix synthesis and has a role in chondrogenesis, however, it 

also activates bone formation and dominates the synthesis of bone related matrix proteins. 

Therefore, existence of extra BMP-7 in the microenvironment in transfected cells with 

scaffold group (Group T) could have also increased the level of Collagen Type I 

significantly. Briefly; the fold differences of the selected factors in group T were higher 

than normal cells (untransfected) cells with scaffold group (Group N) for every timepoint.  

Cartilage tissue has a limited regenerative capacity due to its avascular structure. In order 

to regenerate the tissue, essential growth factors should be present in the 

microenvironment. The use of genetically engineered cells to enhance cartilage healing 

and tissue forming is the main target of the present study. In our study, we used a 

syngenic animal model belonging to an inbred strain. The animals were sufficiently 

identical and immunologically compatible. In addition, inflammation is a critical point 

during tissue regeneration. In our study both treatments groups and the control group 

presented similar inflammation scores revealing no obvious immunologic response 

(supplementary Table 1). Despite these facts, using a syngenic model may still refer as a 

limitation of our study when considering to translate into clinic.  

As our histology and gene expression results indicated a significantly better cartilage 

healing and matrix formation in genetically modified cells individually with exogenous 

BMP-7. However, we could not correlate the results of histology and early gene 

expression together due to the different variable numbers and incompatible time points 

which might be stated as an other limitation. Moreover, the expression and the release of 



the plasmid encoded factors mainly depend on the transfection and expression efficiency, 

which is relatively low in primary cells with non-viral systems. We believe, higher 

expression efficiency could have an additional effect on healing. Although the 

histological staining and the results of the semi-quantitative scoring system exhibit a 

well-organized almost elastic tissue formation on transfected cells applied group (Group 

T), we believe that further studies are needed to elucidate the exact mechanism of the 

elastic formation and long term regeneration. 

CONCLUSION 

There is still a need for novel therapies for the reconstruction of auricular cartilage. 

Although there are some surgical approaches including autologous cartilage grafts or 

prostheses, they all have some disadvantages and risks. Therefore, auricular 

reconstruction still remains one the most difficult field of  reconstruction surgery for head 

and neck surgery.   

In this study, we aimed to perform a cartilage defect healing model on auricular side, 

which would allow the regeneration of cartilage tissue as well as forming a cartilage 

tissue, very similar to native auricular cartilage. We envisage the possible treatment of 

cartilage defects via tissue engineering approaches. 

Our results demonstrate that proper cartilage tissue was formed at the end of 4 months 

using genetically modified primary chondrocytes that over expressed human BMP7. 

Significantly improved healing and regeneration was observed which was attributed to 

the effect of over-expressed BMP7.  
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Table 1. The gene-specific primer and probe sequences. 

Gene Forward Primer Reverse Primer UPL 

prob

e no. 

UPL Probe 

 5`-FAM-

sequence 

-TAMRA- 3` 

GAPDH 5′-CACAGTTTCCATCCCAGACC-3′ 5′-TGGTTTCATGACAAGGTAGGG-3′ 25 TGGAGGAG 

Aggrecan 5′-CAGGAGGCAGCCAGTGAG-3′ 5′-GGTAGAGCTGGCCTGTGGT-3′ 28 GCGGCTGG 

BMP-7 5’-CCTGTTAACCAGCCAAGTCG-3’ 5’-CGCTCGGTTACCTCTGGA-3’ 71 CTGGCTGC 

Col Type I 5′-AGAACCCAGCTCGCACCT-3′ 5′-CATCCTTGGTTGGGATCG-3′, 83 CAGCCACC 

Col Type II 5′-GACCTGCGTCTACCCCAAC-3′ 5′-GCTGCTTCTGGCTCTTGC-3′ 22 TGGTGGAG 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Rabbit ear critical size defect model. (A) Removal of auricular cartilage with a 

special cutting device; (B) intact auricular cartilage removed from the defect area; (C) 

cryogel scaffolds implanted in the defect area;  (D) Replacing the perichondrium in the 

original site/position; (E) imaging of the transplanted site by light illumination; (F) 

injection of cells into the implanted scaffold. 

 

Figure 2. SEM micrograph of the cryogel scaffold used in this study. 



 

Figure 3.  BMP-7 release (both endogenous and exogenous) from cryogels scaffold 

carrying either genetically modified (transfected) primary chondrocytes or non-

transfected chondrocytes. Production per day. (N=3)  

*; p<0.05 when comparison with normal and transfected cells. 

 

 



Figure 4.   Lohan Histologic Scoring of each groups (N:6) (C: Control; S:Scaffolds; N: 

Scaffolds with chondrocytes; and T:Scaffolds with transfected cells)  *; p<0.05 

 

 

Figure 5.   Pineda Histologic Scoring of each groups (N:6) (C: Control; S:Scaffolds; N: 

Scaffolds with chondrocytes; and T:Scaffolds with transfected cells) *; p<0.05 



 

Figure 6.  These are the panoramic views of the cartilage defects at lowest (25x) 

magnification. Elastic fibers stain in black with this dye. Bone, fibrous cartilage and the 

connective tissue  stain in purple to yellow. The pink to purple color of the extracellular 

matrix exhibit an intermediate stage of the repairing or remodeling cartilage before the 

accumulation of the elastic fibers (in J, M, P).The asterisks show the edge between the 

defect and the adjacent  elastic cartilage which is normal or under the remodeling process. 

In J and O new elastıc cartılage; ın H, L and P bone formation is observed inside the 

defect. EC: Elastic cartilage, FC: Fibrous cartilage, FCT: Fibrous connective tissue, B: 

Bone. Note that the elastic cartilage development is at the highest level in cells with 

scaffold applied groups at the bottom lines. Weigert elastic stain. Scales in each figure 

represent 1mm.    

 



 

Figure 7.  The fold differences in mRNA level of BMP-7, Col Type I, Col Type II, 

Aggrecan in cell applied groups with respect to the control up to 30 days. Non-operated 

tissue was used as a control. Results were normalized to GAPDH as housekeeping gene. 

*; p<0.05 when comparison with control and cell applied groups 

**; p<0.05 when comparison between Normal and Transfected Cells applied groups. 

 

 
 


