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Abstract

Design and optimization of gear transmissions have been intensively studied, but sur-
prisingly the robustness of the resulting optimal design to uncertain loads has never been
considered. Active Robust (AR) optimization is a methodology to design products that at-
tain robustness to uncertain or changing environmental conditions through adaptation. In
this study the AR methodology is utilized to optimize the number of transmissions, as well as
their gearing ratios, for an uncertain load demand. The problem is formulated as a bi-objective
optimization problem where the objectives are to satisfy the load demand in the most energy
efficient manner and to minimize production cost. The results show that this approach can
find a set of robust designs, revealing a trade-off between energy efficiency and production
cost. This can serve as a useful decision-making tool for the gearbox design process, as well
as for other applications.

keywords: Gearbox design; adaptive design; multi-objective optimization; robust
optimization; active robustness.

1 Introduction

One of today’s engineers greatest challenge is the development of energy efficient
products to cope with limited resources. In systems that include a gearbox, careful
design of this component can enhance the efficiency of the system. A gearbox is an
assembly of gears with different ratios that provides speed and torque conversions
from a motor to another device. With the use of a gearbox, a single motor can meet
a span of load demands, which are combinations of required speed and torque. There
is a unique gearing ratio for every given motor that will result in the least energy
consumption for a specific load demand. Usually a geared system operates under a
range of possible loads. If optimality with respect to energy consumption is targeted,
the gearbox should include an infinite number of gears in order to accommodate
all loads within this range. Naturally it is not possible to produce such a gearbox,
and anyway, a gearbox with too many gears has more drawbacks than advantages
(e.g. dimensions, weight, costs). Therefore gearboxes used in real applications are
made of a finite number of gears (typically up to six in the auto industry), where
each gear covers a different range of the load demands (e.g. high reduction for high
torque and low speed, and vice versa). The gearbox’s gearing ratios should allow
for the satisfaction of each possible load by one of the gears in a reasonably efficient
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manner. Therefore, the choice of the gears determine the overall performance of the
gearbox. This choice can be supported by an optimization procedure for minimum
energy consumption.

Some previous studies on gearbox optimization can be found in the literature.
Guzzella and Amstutz (1999) presented a computer aided engineering tool for mod-
elling and optimization of a hybrid vehicle. They showed an example of optimizing the
transmission ratios for minimum fuel consumption. The model is deterministic, and
the ratios are optimized for a single, arbitrarily chosen, load cycle. Roos, Johansson,
and Wikander (2006) suggested an optimization procedure for selecting a motor and
gearhead for mechatronic applications to maximize one of the following objectives:
peak power, output torque or energy efficiency. This approach is suitable for a single
gear system and not for a gearbox with several gears. The choice of the gearhead
was conducted according to the worst case of the expected load scenarios. Swantner
and Campbell (2012) developed a framework for gearbox optimization that searches
among different types of gears (helical, conic, worm, etc.), topologies, materials and
sizing parameters. The gearbox was optimized for minimum dimensions, considering
a set of functional constraints. Other problem setting for single objective gearbox
optimization include minimum variation from a given set of transmission ratios (Mo-
galapalli, Magrab, and Tsai, 1992), minimum volume or weight (Yokota, Taguchi, and
Gen, 1998; Savsani, Rao, and Vakharia, 2010), minimum vibration (Inoue, Townsend,
and Coy, 1992) or minimum center distance between input and output shafts (Li,
Symmons, and Cockerham, 1996).

Some multi-objective gearbox optimization studies can also be found in the litera-
ture. Osyczka (1978) formulated a problem to minimize simultaneously four objective
functions: volume of elements, peripheral velocity between gears, width of gearbox,
and center distance. Wang (1994) considered center distance, weight, tooth deflection,
and gear life as objective functions. Thompson, Gupta, and Shukla (2000) optimized
for minimum volume and surface fatigue life. Kurapati and Azarm (2000) optimized a
gearbox for minimum volume and minimum stress in the output shaft. Deb, Pratap,
and Moitra (2000) designed a compound gear train to achieve a specific gear ratio.
The objectives of the gear train design were minimum error between the obtained
gear ratio and the required gear ratio and maximum size of any of the gears. Deb
and Jain (2003) have optimized an 18-speed, 5-shafts gearbox for two, three and four
objectives. Among the objectives were power, volume, center distance and variation
from desired output speed. The same optimization problem was used by Deb (2003)
to demonstrate how design principles can be extracted by investigating the relations
between design variables of the Pareto optimal solutions in the design space. Li et al.
(2008) optimized a two-stage gear reducer for minimum dimensions, minimum contact
stress and minimum transmission precision errors.

The optimization involved within all studies above was conducted for given reduc-
tion ratios, or at least for a given speed-torque scenario or cycle. However, most
applications that include a gearbox (such as vehicles) are subjected to a large span
of uncertain load requirements, as a result of a variety of possible environmental con-
ditions. The stochastic nature of the required torque and speed must be considered
during the design phase. In order to optimize a gearbox for uncertain load require-
ments, a robust optimization (RO) procedure should be considered. A robust solution
is a solution that can maintain good performance over the various scenarios associated
with the involved uncertainties. Robustness is usually attained at the price of not
achieving peak performance in any specific scenario, and the success of a solution to
a robust optimization problem is measured according to a certain criterion such as its
mean or worst performance (Paenke, Branke, and Jin, 2006). In this study, a gearbox
is optimized for minimum energy consumption where the load demand is uncertain.
A robust set of transmission ratios is searched for to maximize the system’s efficiency
considering the uncertain load domain.

In many RO problems, in order to ensure robustness, a solution may include
some properties that reduce the possible negative influences caused by uncontrolled
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parameters’ variations (e.g. thick insulation may reduce fluctuations of an oven in-
ternal temperature, caused by changes in the ambient temperature). When this is
the case, robustness is passively attained without any action required from the user.
A gearbox, however, cannot be optimized for robustness with this approach, since its
performance does not solely depend on its preliminary design. The performance is
also influenced by the manner in which the gearbox is being operated. A gearbox with
a good selection of gearing ratios for a span of load scenarios can be very inefficient
if it is not being used properly. For best performance, the proper gear in the set
has to be selected for each realization of the uncertain load demand. When cruising
on the highway, the best efficiency is achieved with the highest gear (say sixth). A
driver that uses the fifth gear for this scenario does not operate the gearbox in an
optimal manner. Hence, robustness to the uncertain load demand is actively attained
by selecting the proper gear for each load scenario. The selection of the optimal gear
for each scenario can be made either manually by a skilled user, or with the use of a
controller in the case of an automatic transmission.

The active robustness methodology (AR), recently introduced by Salomon et al.
(2014), provides the required tools to conduct a robust optimization for a gearbox.
AR aims at products that attain robustness to a changing or uncertain environment
through adaptation. Such products are termed as adaptive products. The AR method-
ology assumes that an adaptive product possess some properties that can be modified
by its user. These properties allow the product to adapt to environmental changes in
order to enhance optimality. The adaptability of a geared system is provided by the
user’s ability to change the gear ratios by altering the engaging wheels. This adapt-
ability is taken into account at the evaluation of a candidate solution; it is evaluated
according to its best possible performance for each scenario of the uncertain param-
eters. For the example above, it is assumed that the driver uses the sixth gear while
cruising on the highway and second gear when carrying a heavy load up the hill. Since
enhanced adaptability usually comes with a price (e.g., a gearbox with more gears
would be more expensive), the objectives of an Active Robust Optimization Problem
(AROP) are the solution’s best possible performance, evaluated at different scenarios
of the uncertainties involved, and its cost.

The problem formulated in this paper is the optimization of a gearbox for a ran-
dom variate of torque and speed requirements. Both the number of gears and their
characteristics are optimized in order to minimize the overall energy consumption and
gearbox cost. The solution to the problem is a set of gearboxes with a trade-off be-
tween energy efficiency and low cost. The AR optimization approach is demonstrated
with a power system of a DC motor and a simple two stage reduction gearbox. The
approach can be adopted to other geared systems such as vehicles, motorcycles, wind
turbines, industrial and agricultural machinery.

The reminder of the paper is organised as follows: In Section 2 the required back-
ground on Robust Optimization and Active Robust Optimization is provided. In
Section 3 an example system of a DC motor and a two-stage reduction gearbox is
presented, and its model is described. The AROP for optimizing this gearbox is for-
mulated in Section 4, and its solution is presented and analysed in Section 5. Finally, a
discussion is given in Section 6 covering the advantages of the presented approach, and
how the methods could be further extended to provide efficient support for adaptive
complex engineering solutions.

2 Background

2.1 Multi-Objective Optimization

Multi-objective optimization problems (MOPs) arise in many real-world applications,
where multiple conflicting objectives should be simultaneously optimized. In the
absence of prior subjective preference, the solution to such problems is a set of optimal
“trade off” solutions rather than a single solution. This set is also called “Pareto

3



optimal set” or “non-dominated set”. A non-dominated solution is a solution where
none of the other solutions is better than it with respect to all of the objective
functions.

Mathematically, a MOP can be defined as:

min
x∈X

ζ(x,p) = [f1(x,p), . . . , fm(x,p)] , (1)

where x is an nx-dimensional vector of decision variables in some feasible region X ⊂
R

nx , p is an np-dimensional vector of environmental parameters that are independent
of the design variables x and ζ is an m-dimensional performance vector.

The following define the Pareto optimal set, which is the solution to a MOP:

• A vector a = [a1, . . . , an] is said to dominate another vector b = [b1, . . . , bn] (denoted
as a ≺ b) if and only if ∀i ∈ 1, . . . , n : ai ≤ bi and ∃i ∈ 1, . . . , n : ai < bi.

• A solution x ∈ X is said to be Pareto optimal in X if and only if ¬∃x̂ ∈ X : ζ(x̂,p) ≺
ζ(x,p).

• The Pareto optimal set (PS) is the set of all Pareto optimal solutions, i.e.,
PS = {x ∈ X | ¬∃x̂ ∈ X : ζ(x̂,p) ≺ ζ(x,p)}.

• The Pareto optimal front (PF) is the set of objective vectors corresponding to
the solutions in the PS, i.e., PF = {ζ(x,p) | x ∈ PS}.

2.2 Robust Optimization

Robust performance design tries to ensure that performance requirements are met
and constraints are not violated due to system uncertainties and variations. The
uncertainties may be epistemic, resulting from missing information about the system,
or aleatory, where the system’s variables inherently change within a range of possible
values. Fundamentally, robust optimization is concerned with minimizing the effect of
such variations without eliminating the source of the uncertainty or variation (Phadke,
1989).

The performance vector ζ in Equation (1) might possess uncertain values due to
several sources of uncertainties, which can be categorised according to Beyer and
Sendhoff (2007) as follows:

1. Changing environmental and operating conditions. In this case, the values of
some uncontrollable parameters p are uncertain. The reasons for uncertainty
might be incomplete knowledge concerning these parameters, or expected changes
in parameter values during system operation.

2. Production tolerances and deterioration. These uncertainties occur when the
actual values of design variables differ from their nominal values. The deviation
might occur during production (manufacturing tolerances) or during operation
(deterioration). Here, the x variables in Equation (1) are the source of uncer-
tainty.

3. Uncertainties in the system output. The actual value of the performance vector
ζ might differ from its measured or simulated value, due to measurement noise
or model inaccuracies, respectively.

When uncertainties are involved within an optimization task, the objective and
constraint functions, which define optimality and feasibility, become uncertain too.
To assess the uncertain functions, robustness and reliability are considered (Schuëller
and Jensen, 2008). Robustness can be seen as having good performance (i.e. objective
function values) regardless of the realisation of the uncertain conditions. Reliability
is concerned with remaining feasible despite the uncertainties involved.
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This study aims at a robust design for changing operating conditions. The related
robust optimization problem can be formulated as:

min
x∈X

F (x,P), (2)

where x is an nx-dimensional vector of decision variables in some feasible region
X ⊂ R

nx , P is an np-dimensional vector random variate, of uncertain environmental
parameters that are independent of the design variables x, and F (x,P) is a distri-
bution of objective function values that correspond to the variate of the uncertain
parameters P.

In a robust optimization scheme, the random objective function is evaluated ac-
cording to a robustness criterion, denoted by an indicator φ [F ]. Three classes of
criteria are presented in the following.

Worst-case optimization, also known as robust optimization in the operational
research literature (Bertsimas, Brown, and Caramanis, 2011) or minmax optimization
(Alicino and Vasile, 2014), considers the worst performance of a candidate solution
over the entire range of uncertainties. The worst-case indicator for a minimzation
problem can be written as:

φw [F (x,P)] := max
p∈P

F (x,P). (3)

The robust optimisation problem in Equation (2) then reads:

min
x∈X

max
p∈P

F (x,P). (4)

To address the tendency of this approach to produce over-conservative solutions,
Jiang, Wang, and Guan (2012) suggested a method for controlling the conservatism of
the search by reducing the size of the uncertainty interval with a tuneable parameter.
Branke and Rosenbusch (2008) suggested an evolutionary algorithm for worst-case
optimization that simultaneously searches for the robust solution and the worst-case
scenario by co-evolving the population of scenarios alongside the candidate solutions.

Aggregation methods use an integral measure that amalgamates the possible values
of the uncertain objective function. The most common aggregated indicators are the
expected value of the objective function or its variance – see the review by Beyer and
Sendhoff (2007). When the distribution of the uncertain parameters can be described
by the probability density function ρ(p), the mean value criterion can be computed
by:

φm [F (x,P)] :=

∫

p∈P

f(x,p)ρ(p)dp, (5)

where f(x,p) is a deterministic model for the objective function. Commonly in real
world problems, Equation (5) cannot be analytically derived for the following reasons:
i) the distribution of the uncertain parameters is not known and needs to be derived
from empirical data, and/or ii) it is not feasible to analytically propagate the uncer-
tainties to form the uncertain objective function. Monte-Carlo sampling can then be
used for these cases to represent the random variate P as a sampled set P of size k.
The mean value then becomes:

φm

[

F
(

x,P
)]

:=
1

k

k
∑

1=1

f(x,pi), (6)

where pi is the ith sample in P. Kang, Lee, and Lee (2012) have considered the ex-
pected value with a partial mean of costs to solve a process design robust optimization
problem. Kumar et al. (2008) have used Bayesian Monte-Carlo sampling to construct
a sampled representation for the performance of candidate compressor blades. They
considered both the mean value and the variance as a multi-objective optimization
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problem, and used a multi-objective evolutionary algorithm to search for robust solu-
tions. An alternative formulation is to aggregate the mean and variance into a single
objective function (e.g. Lee and Park, 2001).

Beyer and Sendhoff (2007) suggested a criterion that uses the probability distribu-
tion of the objective function directly as a robustness measure. This is done by setting
a performance goal, and maximising the probability for achieving this goal, i.e. for
the function value to be better than a desired threshold. Considering a performance
threshold q, a threshold probability indicator can be defined as:

φtp [F (x,p)] := Pr
(

F (x,p) < q
)

. (7)

Reliability-based design aims at minimizing the risk of failure during the product
expected lifecycle (Schuëller and Jensen, 2008). In the context of design optimization,
it can be seen as minimizing the risk of violating the problem’s constraints. The cri-
teria mentioned above for robustness can also be used to assess reliability by applying
them to the constraint functions. A conservative worst-case approach was used by
several authors (e.g. Avigad and Coello, 2010; Albert et al., 2011). The “six-sigma”
methodology (see Brady and Allen, 2006) suggests a goal of 3.4 defects per million
products, which sets a threshold probability for reliability.

2.3 Active Robustness Optimization Methodology

The AR methodology (Salomon et al., 2014), is a special case of robust optimization,
where the product has some adjustable properties that can be modified by the user
after the optimized design has been realized. These adjustable variables allow the
product to adapt to variations in the uncontrolled parameters, so it can actively
suppress their negative effect. The methodology makes a distinction between three
types of variables: design variables, denoted as x, adjustable variables, denoted as
y and uncontrollable stochastic parameters P. A single realized vector of uncertain
parameters from the random variate P is denoted as p.

In a conventional robust optimization problem, each realization p is associated
with a corresponding objective function value f(x,p), and a solution x is associated
with a distribution of objective function values that correspond to the variate of the
uncertain parameters P. This distribution is denoted as F (x,P). In active robust
optimization, for every realization of the uncertain environment, the performance
also depends on the value of the adjustable variables y, i.e., f ≡ f(x,y,p). Since
the adjustable variables’ values can be selected after p is realized, the solution can
improve its performance by adapting its adjustable variables to the new conditions.
In order to evaluate the solution’s performance according to the robust optimization
methodology, it is conceivable that the y vector that yields the best performance for
each realization of the uncertainties will be selected. This can be expressed as the
optimal configuration y⋆:

y⋆ = argmin
y∈Y(x)

f(x,y,p), (8)

where Y(x) is the solution’s domain of adjustable variables, also termed as the solu-
tion’s adaptability.

Considering the entire environmental uncertainty, a one-to-one mapping between
the scenarios in P and the optimal configurations in Y(x) can be defined as:

Y⋆ = argmin
y∈Y(x)

F (x,y,P). (9)

Assuming a solution will always adapt to its optimal configuration, its performance
can be described by the following variate:

F (x,P) ≡ F (x,Y⋆,P). (10)
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Figure 1: A gearbox with N gears. All gears are rotating while at any given moment the power is
transmitted through one of them.

An Active Robust Opimization Problem (AROP) optimizes a performance indicator
φ for the variate F (x,Y⋆,P). It is denoted as φ(x,Y⋆,P). Since enhanced performance
usually increases the costs of the product, the aim of an AROP is to find solutions that
are both robust and inexpensive. Therefore the AROP is a multi-objective problem
that simultaneously optimizes the performance indicator φ and the solution’s cost.

The cost function for the gearbox that is used in this study only depends on
the gearbox’s preliminary design, i.e., the number of gears and their specifications.
Therefore it is not affected by the uncertain load demand and has a deterministic
value. The general definition of an AROP considers a stochastic distribution of the
cost function, but in this case it is denoted as c(x).

Following the above, the Active Robust Opimization Problem is formulated:

min
x∈X

ζ(x,P) = [φ(x,Y⋆,P), c(x)] , (11)

where Y⋆ =argmin
y∈Y(x)

F (x,y,P). (12)

It is a multi-stage problem. In order to compute the objective function φ in
Equation (11), the problem in Equation (12) has to be solved for every solution x with
the entire environment universe P. In a typical implementation the environmental
uncertainty P is sampled using Monte Carlo methods. This sample, P, leads to sample-
based representations of Y⋆ and F – denoted Y⋆ and F respectively. This leads to an
estimated performance vector ζ.

3 Motor and Gear System

The problem at hand is the optimization of a gearbox for a span of torque-speed
scenarios. A DC motor of type Maxon A-max 32 is to convey a torque τL at speed
ωL. In order to do so, it is coupled with a gearbox as shown in Figure 1. The
motor’s output shaft (white) rotates at speed ωm and transmits a torque τm. It is
firmly connected to a cogwheel (black) that is constantly coupled to the layshaft. The
layshaft consists of a shaft and N gears (gray), rotating together as a single piece. N
gears (white) are also attached to the load shaft (black) with bearings, so they are
free to rotate around it. The gears are constantly coupled to the layshaft and rotate
at different speeds, depending on the gearing ratio. A collar (not shown in the figure)
is connected, through splines, to the load shaft and spins with it. It can slide along
the shaft to engage any of the gears, by fitting teeth called “dog teeth” into holes on
the sides of the gears. In that manner the power is transferred to the load through a
certain gear, with the desired reduction ratio.
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The aim of this study is to optimize the gearbox to achieve good performance
over a variety of possible load scenarios. Several objectives might be considered:
monetary costs, energy efficiency for different loads and the transient behaviour of
the gearbox (e.g. energy consumption during speed transitions and time required to
change the system’s speed). A problem formulation that considers all of the aforemen-
tioned objectives is very complex and challenging. However, in order to demonstrate
the features and concerns of the active robustness approach, at this stage it is suffi-
cient to focus on a more restricted formulation of the gearbox optimization problem.
Therefore, only the steady-state behaviour of the gearbox is addressed in this study.

The number of gears in the gearbox, N , and the number of teeth in each ith gear, zi,
are to be optimized. The objectives considered are minimum energy consumption and
minimum manufacturing cost of the gearbox. The system is evaluated at steady-state,
i.e., operating at the torque-speed scenarios. The power required for each scenario
is considered, while the objective is to find the set of gears that will require the
minimum average invested power over all scenarios. For every scenario, the gearbox
is evaluated by the the smallest possible value of input power. This value is achieved
by transmitting the power through the most suitable gear in the box.

3.1 Model Formulation

In this section, the model for the motor and gearbox system is presented according
to Krishnan (2001), and the required performance measures are derived.

The motor armature current can be described by applying Kirchoff’s voltage law
over the armature circuit:

V = Lİ + rI + kvωm, (13)

where V is the input voltage, L is the coil inductance, I is the armature current, r
is the armature resistance and kv is the velocity constant. The ordinary differential
equation describing the motor’s angular velocity as related to the torques acting on
the motor’s output shaft is:

Jmω̇m = ktI − bmωm − τm, (14)

where Jm is the rotor’s inertia, kt is the torque constant and bm is the motor’s damping
coefficient associated with the mechanical rotation. Since this study only deals with
the gearbox’s performance at steady-state, the derivatives of I and ωm are considered
as zero.

There are two speed reductions between the motor and the load. The first is from
the motor shaft to the layshaft. This reduction ratio, denoted as n1, is zl/zm, where
zm is the number of teeth in the motor shaft cogwheel and zl is the number of teeth
in the layshaft cogwheel. The second reduction, denoted as n2, is from the layshaft
to the load shaft. Each gear on the load shaft rotates at a different speed according
to its gearing ratio n2,i = zg,i/zl,i, where zg,i is the number of teeth of the ith gear’s
load shaft cogwheel and zl,i is the number of teeth of its matching layshaft wheel. n2

depends on the selected gear, and it can be one of the values {n2,1, . . . , n2,N}. The total
reduction ratio from the motor to the load is n = n1 ∗n2, and the load speed ω = ωm/n.
The motor and load shafts are coaxial, and the modules for all cogwheels are identical.
Therefore, the total number of teeth Nt for each gearing couple is identical:

Nt = zl + zm = zg,i + zl,i , ∀i ∈ 1, . . . , N. (15)

At steady-state, Equation (14) can be reflected to the load shaft as follows:

0 = nktI −
(

bg + n2bm
)

ω − τ, (16)

where τ is the load’s torque and bg is the gear’s damping coefficient with respect to
the load’s speed.
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If ω from Equation (16) is known, the armature current can be derived:

I =

(

bg + n2bm
)

ω + τ

nkt
. (17)

Once the current is known, and after neglecting İ, the required voltage can be derived
from Equation (13):

V = rI + nkvω. (18)

The invested electrical power is:

s = V I. (19)

It is conceivable that manufacturing costs depend on the number of wheels in the
gearbox, their size, and overheads. A function of this type is suggested for this generic
problem to demonstrate how the various costs can be quantified:

c = αNβ + γ

N
∑

i=1

(

z2l,i + z2g,i
)

+ δ, (20)

where α, β, γ and δ are constants. The first term considers the number of gears. It
takes into account their influence on the costs of components such as the housing and
shafts. The second term relates to the cogwheels material costs, which are propor-
tional to the square of the number of teeth in each wheel. The third represents the
overheads. In practice, other cost functions could be used.

4 Problem Definition

The gearbox optimization problem, formulated as an AROP, is the search for the
number of gears N and the number of teeth in each gear zg,i that minimize the pro-
duction cost c and the power input s. According to the AR methodology, introduced
in Section 2, the variables are sorted into three vectors:

• x is a vector with the variables that define the gearbox, namely the number of
gears and their teeth number. These variables can be selected before the gearbox
is produced, but cannot be altered by the user during its life cycle. The variables
in x are the problem’s design variables.

• y is a vector with the adjustable variables. It includes the variables that can
be adjusted by the gearbox’s user: the selected gear i and the supplied voltage
V . The decisions how to adjust these variables are made according to the load’s
demand, and can be supported by an optimization procedure. For example, a
high reduction ratio will be chosen for low speed, and a low ratio for high speeds,
while the voltage is adjusted to maintain the desired velocity for the given torque.

• p is a vector with all the environmental parameters that affect performance
and are independent of the design variables. Some of the parameters in this
problem are considered as deterministic, but some possess uncertain values. The
uncertainty for ω and τ is aleatory, since they inherently vary within a range of
possible load scenarios. The random variates of ω and τ are denoted as Ω and
T , respectively. Some values of the motor parameters are given tolerances by
the supplier. The terminal resistance r has a tolerance of 5% and the motor
resistance bm has a tolerance of 10%. Additionally, the gearbox damping bg can
be only estimated, and therefore it is treated as an epistemic uncertainty. The
random variates of r, bm and bg are denoted as R, Bm and Bg, respectively. The
resulting variate of p is denoted as P.
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A certain load scenario might have more than one feasible y configuration. When
the gearbox (represented by x) is evaluated for each scenario, the optimal configura-
tion (the one that requires the least input power) is considered. This configuration
is denoted as y⋆, and it consists of the optimal transmission i and input voltage V
for the given scenario. The variate of optimal configurations that correspond to the
variate P is termed as Y⋆. Since the input power varies according to the uncertain
parameters (this can be denoted as S(x,Y⋆,P)), a robust optimization criterion is
used in order to assess its value. The mean value is a reasonable candidate for this
purpose, as it captures the efficiency of the gearbox when it operates over the entire
range of expected load scenarios. It is denoted as π(x,Y⋆,P).

Following the above, the AROP is formulated:

min
x∈X

ζ(x,P) = {π(x,Y⋆,P), c(x)} ,

Y⋆ = argmin
y∈Y(x)

S(y,P),

subject to : I ≤ Inom,

zg,i + zl,i = Nt , ∀i = 1, . . . , N,

where : x = [N, zg,1, . . . , zg,i, . . . , zg,N ] ,

y = [i, V ] ,

P = [Ω, T , R,Bm, Bg, kv, kt, Inom, n1, Nt,

α, β, γ, δ].

(21)

The constraints are evaluated according to Equations (17) and (18), and the objec-
tives according to Equations (19) and (20). Inom, the nominal current, is the highest
continuous current that does not damage the motor. It is significantly smaller than
the motor’s stall current.

By operating with maximum input power (i.e. with maximum voltage and current),
for each velocity ω there is a single transmission ratio n that would allow the maximum
torque, denoted as τmax(ω). This torque can be derived from Equations (16) and (18)
by replacing I with Inom and V with Vmax.

τmax(ω) = max
n∈Y

nktInom −
(

bg + n2bm
)

ω,

subject to : rInom + nkvω = Vmax,
(22)

where Y ⊂ R is the range of possible reduction ratios for this problem. Since a gearbox
in the above AROP consists of a finite number of gears, it cannot operate at τmax

for most of the velocities. In order to obtain feasible solutions with five gears or
less, the domain of possible scenarios in this example is assumed to be in the range
of 0 ≤ τ(ω) ≤ 0.55τmax(ω). The effects of this assumption on the obtained solutions’
robustness are further discussed in Section 5.2.

Some information on the probability of load scenarios is usually known in a typical
gearbox design (e.g. drive cycle information in vehicle design). In this generic ex-
ample this kind of information is not available, and therefore a uniform distribution
is assumed. The other uncertainties are treated in a similar manner: A uniform dis-
tribution is assumed for R and Bm, since the tolerance information provided by the
manufacturer only specifies the boundaries for the actual property values, but does
not specify their distribution. The epistemic uncertainty regarding bg also results in
a uniform distribution of Bg within an estimated interval.

Monte-Carlo sampling is used to represent the uncertain parameter domain P. A
set P of size k, is constructed by a random sampling of P with an even probability.
In this example, P consists of k = 1, 000 scenarios. The choice of sample size is further
investigated in Section 5.2. Figure 2 depicts the domain of load scenarios Ω and T ,
together with their samples in P and the curve τmax(ω).
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Figure 2: The possible domain of torque-speed scenarios, and a representative set randomly sam-
pled with an even probability.

The parameter values and the limits of search variables and uncertainties are pre-
sented in Table 1. The values and tolerances for the motor parameters were taken
from the online catalog of Maxon (2014). Note that the upper limit of the selected
gear i is N , meaning that different gearboxes possess different domains of adjustable
variables. This notion is manifested in the problem definition as y ∈ Y(x).

5 Simulation Results

The discrete search space consists of 1,099,252 different combinations of gears (2–5
gears, 43 possibilities for the number of teeth in each gear: C43

2 +C43
3 +C43

4 +C43
5 ). The

constraints and objective functions depend on the number of teeth z, so they only
have to be evaluated 43 times for each of the 1000 sampled scenarios. As a result, it is
feasible to find the true Pareto optimal solutions to the above problem by evaluating
all of the solutions. The entire simulation took less than one minute, using standard
desktop computing equipment.

A feasible solution is a gearbox that has at least one gear that does not violate the
constraints for each of the scenarios (i.e., I ≤ Inom and V ≤ Vmax). Figure 3 depicts
the objective space of the AROP. There are 194,861 feasible solutions (marked with
gray dots), and the 103 non-dominated solutions are marked with black dots. It is
noticed that the solutions are grouped into three clusters with a different price range
for each number of gears. The three clusters correspond to N ∈ {3, 4, 5}, where fewer
gears are related with a lower cost. None of the solutions with N = 2 is feasible.

5.1 A Comparison Between an Optimal Solution and a Non-Optimal

Solution

For a better understanding of the results obtained by the AR approach, two candidate
solutions are examined: one that belongs to the Pareto optimal front, and another
that does not. Consider a scenario where lowest energy consumption is desired for
a given budget limitation. For the sake of this example, a budget limit of $243 per
unit is arbitrarily chosen. The gearbox with the best performance for that cost is
marked in Figure 3 as Solution A. This solution consists of five gears with z2,A =
{59, 49, 41, 34, 24} and corresponding transmission ratios nA = {9.02, 5.07, 3.38, 2.37, 1.38}.
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Table 1: Variables and parameters for the AROP in (21)

Type Symbol Units Lower Upper
limit limit

x N 2 5
zg 19 61

y i 1 N
V V 0 12

p ω s−1 16 295
τ Nm·10−3 0 0.55 · τmax(ω)
r Ω 2.1 2.4
bm Nm·s·10−6 2.8 3.5
bg Nm·s·10−6 25 35
kv V·s·10−3 24.3
kt Nm·A−1 · 10−3 24.3

Inom A 1.8
n1 61/19
Nt 80
α $ 5
β 0.8
γ $ 0.01
δ $ 50

Another solution with the same cost is marked in Figure 3 as Solution B. The gears
of this solution are z2,B = {57, 40, 34, 33, 21}, and its corresponding transmission ratios
are nB = {7.96, 3.21, 2.37, 2.25, 1.14}.

Figure 4 depicts the set of optimal transmission ratio at every sampled scenario
for both solutions. Each transmission is marked in the figure with a different marker.
This set is in fact the set Y⋆ from Equation (21), that correspond to the sampled
set of load scenarios P, in Figure 2. It is observed that the reduction ratios of So-
lution A almost form a geometrical series, where each consecutive ratio is divided
by 1.6 approximately. The resulting Y⋆(xA) is such that all gears are optimal for a
similar number of load scenarios. Solution B on the other hand has two gears with
very similar ratios. It can be seen in Figure 4(b) that the third and the fourth gears
are barely used. These gears do not contribute much to the gearbox’s efficiency, but
significantly increase its cost. As can be seen in Figure 3, there are gearboxes with
four gears that achieve the same or better efficiency as Solution B.

Figure 5 depicts the lowest power consumption for every sampled scenario, s
(

x,Y⋆,P
)

.
This consumption is achieved by using the optimal gear for each load scenario (those
in Figure 4). It can be seen that Solution A uses less energy at many load scenar-
ios compared to Solution B. This is depicted by the darker shades of many of the
scenarios in Figure 5(b). In order to assess the robustness, the mean input power
π
(

x,Y⋆,P
)

is used as the robustness criterion for this AROP. It is calculated by av-

eraging the values of all points in Figure 5. The results are π
(

xA,Y⋆,P
)

= 5.23W and

π
(

xB ,Y⋆,P
)

= 5.47W. Considering both solutions cost the same, this confirms Solu-
tion A’s superiority over Solution B. Given a budget limitation of $243, Solution A
should be preferred by the decision maker.

5.2 Robustness of the Obtained Solutions

In this section the sensitivity of the AROP’s solution to several factors of the prob-
lem formulation is examined. Two aspects are considered with respect to different
robustness metrics and parameter settings: i) the optimality of a specific solution,
and ii) the difference between two alternative solutions. For this purpose, three tests

12



Figure 3: The objectives values of all feasible solutions to the problem in Equation (21) and Pareto
front.
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Figure 4: Optimal transmission ratio for every sampled scenario.
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Figure 5: Lowest power consumption for every sampled scenario.
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Figure 6: Pareto frontiers for different upper bounds of the uncertain load domain a · τmax(ω).

are performed. The first relates to the robustness of the solutions to epistemic uncer-
tainty, namely the unknown range of load scenarios. The second test relates to the
robustness of the solutions to a different robustness metric. The third test examines
the sensitivity to the sampling size.

Sensitivity to Epistemic Uncertainty

The domain of load scenarios is bounded between 0 ≤ τ ≤ 0.55 · τmax(ω). The choice of
55% is arbitrary, and it reflects an assumption made to quantify an epistemic uncer-
tainty about the load. Similarly, the upper bound for T could be a function a · τmax(ω)
with a different value of a. The Pareto frontiers for several values of a can be seen in
Figure 6. For a = 40%, the Pareto set consists of solutions with two, three, four and
five gears, whereas for a = 70% the only feasible solutions are those with five gears. For
percentiles larger than 70% there are no feasible solutions within the search domain.

To examine the effect of the choice of maximum torque percentile on the problem’s
solution, the three solutions from Figure 3 are plotted for every percentile in Figure 6.
Solutions A and C, who belong to the Pareto set for a = 55%, are also Pareto optimal
for all other values of a smaller than 65%. Solution B remains dominated by both
Solutions A and C. When very high performance is required (i.e. maximum torque
percentiles of 65% or higher), both Solution A and Solution C become infeasible.

It can be concluded that the mean value, as a robustness metric, is not sensitive to
the maximum torque percentile. On the other hand, the reliability of the solutions,
i.e. their probability to remain feasible, is sensitive to the presence of extreme loading
scenarios.

Sensitivity to Preferences

The threshold probability metric is used to examine the sensitivity of the solutions
to different performance goals. It is defined for the above AROP as the probability
for a solution to consume less energy than a predefined threshold:

φtp = Pr(S < q), (23)

where q is the performance goal. The aim is to maximize φtp.
Figure 7 depicts the results of the AROP described in Section 4, when φtp is

considered as the robustness metric, and the goal performance is set to q = 5W.
The same three solutions from Figure 3 are also shown here. Solution A, whose
mean power consumption is the best for its price, is not optimal any more when
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Figure 7: The objectives values of all feasible solutions and Pareto front, for maximizing the
threshold probability φtp = Pr(S < 11W).
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Figure 8: Pareto frontiers for different thresholds q.

the probability of especially poor performance is considered. Solution A manages to
satisfy the goal for 98.6% of the sampled scenarios, while another solution with the
same price satisfies 99% of the scenarios. It is up to the decision maker to determine
whether the difference between 98.6% and 99% is significant or not.

Solutions B and C are consistent with the other robustness metric. Solution B is far
from optimal, and Solution C is still Pareto optimal. This consistency is maintained
for different values of the threshold q, as can be seen in Figure 8. Figure 8 also
demonstrates that setting an over ambitious target results in a smaller probability of
fulfilment by any solution.

Sensitivity to the Sampled Representation of Uncertainties

The random variates are represented in this study with a sampled set, using Monte-
Carlo methods. The following experiment was conducted in order to verify that
1,000 samples are enough to provide a reliable evaluation of the solutions’ statistics:
Solutions A and C were evaluated for their mean power consumption over 5, 000
different sampled sets with sizes varying from k = 100 to k = 100, 000. Figure 9(a)
depicts the metric values of the solutions for every sample size. It is evident from the
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Figure 9: Convergence of the mean power consumption of two solutions for different number of
samples.

results that a large number of samples is required for the sampling error to converge.
For both solution, the standard deviation is 15%, 6%, 2% and 0.5% of the mean value,
for sample sizes of k = 100, k = 1, 000, k = 10, 000, and k = 100, 000, respectively. If an
accurate estimate is required for the actual power consumption, a large sample size
must be used (i.e. larger than k = 1, 000 that was used in this study).

On the other hand, a comparison between two candidate solutions can be based on a
much smaller sampled set. Although the values of π

(

x,Y⋆,P
)

may change considerably

between two consequent realisations of P, a similar change will occur for all candidate
solutions. This can be seen in Figure 9(a) where the “funnels” of the two solutions
seem like exact replicas with a constant bias. The difference in performance between
the two solutions ∆π

(

P
)

is defined:

∆π
(

P
)

= π
(

xC ,Y
⋆,P

)

− π
(

xA,Y
⋆,P

)

(24)

Figure 9(b) depicts the value of ∆π
(

P
)

for every evaluated sampled set. It can be seen
that ∆π converges to 200mW. For a sampling size of k = 100, the standard deviation
of ∆π is 25mW, which is only 12% of the actual difference. This means that it can
be argued with confidence that Solution A has better performance than Solution C,
based on a sample size of k = 100.

Based on the results from this experiment, it can be concluded that the solution to
the AROP (i.e. the set of Pareto optimal solutions) is not sensitive to the sample size.
The Pareto front shown in Figure 3 might be shifted along the π axes for different
sampled representations of the uncertainties, but the same (or very similar) solutions
would always be identified.

6 Conclusions

This study is the first of its kind to extend gearbox design optimization to consider the
realities of uncertain load demand. It demonstrates how the stochastic nature of the
uncertain load demand can be fully catered for during the optimization process using
an Active Robustness approach. A set of optimal solutions with a trade-off between
cost and efficiency was identified, and the advantages of a gearbox from this set over a
non-optimal one were shown. The robustness of the obtained Pareto optimal solutions
to several aspects of the problem formulation was verified.

The approach takes account of – and exploits – user influence on system perfor-
mance, but presently assumes that the user is able to operate the gearbox in an
optimal manner to achieve best performance. Of course, this assumption can only
be fully validated if a skilled user or a well tuned controller activates the gearbox.
This raises an important issue of how to train this user or controller to achieve best
performance, which is identified as a priority for further research.
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Computational complexity is a concern for the AR approach demonstrated in this
study. This case study used very simple analytic functions to evaluate each candidate
solution. Therefore the real solution to the AROP could be found almost instantly.
When applying this method to real world applications, every function evaluation
might require extensive computational effort. In this case, efficient optimization algo-
rithms would be required, and the uncertainties may need to be described by methods
other than Monte-Carlo sampling. However, the large amount of function evaluations
required to solve a typical AROP is a feasible prospect for real industrial problems.
Since the problem is solved off-line, before the product goes to manufacturing, super-
computing facilities are likely to be available, and a reasonable time-scale for solving
the problem might be days or even a few weeks.

Adaptability is the solution’s ability to react to changes in its environment by
adjusting itself to a configuration that improves its performance. In this study the
gearbox’s adaptability was evaluated by only considering its performance at each of
the sampled load scenarios, i.e., at steady-state. However, the Active Robustness
methodology, presented by Salomon et al. (2014), considers adaptability in a wider
sense. In addition to its performance at steady-state, the solution’s transient be-
haviour during adaptation to environmental changes is also considered. For the prob-
lem presented in this paper, an environmental change is a change in demand from one
load scenario to another. Although the optimal configurations can be found for both
scenarios, the gearing ratios and input voltages applied while changing between these
configurations may have a substantial impact on the solution’s performance. This
notion was deliberately not considered in the current study in order to focus on basic
aspects of the approach. An important extension to this work would be to examine
the transient behaviour when evaluating a candidate solution. Additional objectives
such as acceleration and energy consumption during adaptation can be examined by
doing so. The Optimal Adaptation method (Salomon et al., 2013) can be used to
search for adaptation trajectories that optimize these objectives.

The transient extension to the problem formulation requires extra considerations
with respect to computational complexity. The two main reasons for this are: (a) A
change between any two scenarios can be made by infinite possible gear sequences
and voltage trajectories. This requires a search for the optimal trajectory in order to
be consistent with the AR approach. This kind of search is usually computationally
expensive. (b) Each adaptation between two scenarios has to be examined. The
number of possible adaptations between k scenarios are k(k − 1). For the sampled set
of 1,000 scenarios used in this study, there will be 999,000 adaptations to examine for
each solution, implying a requirement to solve 999,000 optimization problems. As a
part of future research, special attention should be given to model simplification and
finding reliable ways to reduce the number of evaluated adaptations, e.g. by using
efficient algorithms and sampling methods.

This initial study of gearbox optimization is based on a simple DC motor and
gearbox. This is advantageous in focusing the presentation on the Active Robustness
approach rather than, for example, constraint handling, and enables the objective
functions to be calculated analytically. Additional applications for the AR methodol-
ogy will be demonstrated in future publications, including more complex real-world
geared systems.
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