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ABSTRACT

ATP is an extrinsic signal that can induce an increase in the cytosolic Ca21 level ([Ca21]c) in
mesenchymal stem cells (MSCs). However, the cognate intrinsic mechanisms underlying ATP-
induced Ca21 signaling in MSCs is still contentious, and their importance in MSC migration
remains unknown. In this study, we investigated the molecular mechanisms underlying ATP-
induced Ca21 signaling and their roles in the regulation of cell migration in human dental pulp
MSCs (hDP-MSCs). RT-PCR analysis of mRNA transcripts and interrogation of agonist-induced
increases in the [Ca21]c support that P2X7, P2Y1, and P2Y11 receptors participate in ATP-induced
Ca21 signaling. In addition, following P2Y receptor activation, Ca21 release-activated Ca21

Orai1/Stim1 channel as a downstream mechanism also plays a significant role in ATP-induced
Ca21 signaling. ATP concentration-dependently stimulates hDP-MSC migration. Pharmacological
and genetic interventions of the expression or function of the P2X7, P2Y1 and P2Y11 receptors,
and Orai1/Stim1 channel support critical involvement of these Ca21 signaling mechanisms in
ATP-induced stimulation of hDP-MSC migration. Taken together, this study provide evidence to
show that purinergic P2X7, P2Y1, and P2Y11 receptors and store-operated Orai1/Stim1 channel
represent important molecular mechanisms responsible for ATP-induced Ca21 signaling in hDP-
MSCs and activation of these mechanisms stimulates hDP-MSC migration. Such information is
useful in building a mechanistic understanding of MSC homing in tissue homeostasis and devel-
oping more efficient MSC-based therapeutic applications. STEM CELLS 2016;34:2102–2114

SIGNIFICANCE STATEMENT

ATP is an important signaling molecule that regulates diverse cell functions. Mesenchymal stem
cells (MSCs) have promising potential of therapeutic application but the migration capacity of
MSCs limits the effectiveness of MSC-based therapies. MSCs release ATP and here we provide
evidence to show that ATP stimulates MSC migration through purinergic P2X7, P2Y1, and P2Y11
receptors. Our study is the first to find that Orai1 and Sitm1 form Ca21-release-activated-Ca21

channel as downstream Ca21 signaling mechanism mediating ATP-induced stimulation of MSC
migration. These results reveal novel mechanisms regulating MSC migration. Such information
is desirable in optimization of MSC cultures for therapeutic use.

INTRODUCTION

Calcium ion (Ca21) is a ubiquitous intracellular
messenger that has a crucial role in determin-
ing a plethora of cellular functions such as
proliferation, migration, differentiation, and
communication, and mammalian cells express
numerous intrinsic mechanisms responding to
various extrinsic signals with specific increases
in the cytosolic Ca21 level ([Ca21]c) and form-
ing diverse cellular Ca21 signatures with dis-
tinct spatial and temporal dynamics [1]. ATP
has been recognized as one of such extrinsic
signals to raise the [Ca21]c via activating multi-

ple plasma membrane P2X and P2Y receptors
[2–6]. ATP binding to the P2X receptors opens
Ca21-permeable channels mediating extracellu-
lar Ca21 influx. ATP can also elevate the
[Ca21]c via Ga,q/11-protein-coupled P2Y recep-
tors, and more specifically, activation of the
P2Y1, P2Y2, and P2Y11 receptors in human cells
stimulates phospholipase C-b (PLC-b) to gener-
ate inositol-1,4,5-triphosphate (IP3), which in
turn activates the IP3 receptor and induces
Ca21 release from the endoplasmic reticulum
(ER). Reduction in the ER Ca21 level can fur-
ther induce store-operated Ca21 entry through
the Ca21 release-activated Ca21 (CRAC)
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channels [7, 8]. Mesenchymal stem cells (MSCs) exhibit an
ability to differentiate into osteoblasts, adipocytes, and chon-
drocytes [9–11]. These multipotent stem cells are readily iso-
lated from various tissues, including bone marrow (BM-MSCs),
adipose tissues (AT-MSCs), and dental pulp (DP-MSCs) and
have been extensively explored as promising cell sources for
therapeutic applications such as tissue regeneration and cell-
based therapies in addition to being used in understanding
tissue homeostasis [12–16]. Accumulating evidence shows
that MSCs release ATP constitutively or in response to
mechanical stimulation [17–20]. Previous studies consistently
demonstrated that ATP induced robust Ca21 responses but
reported expression of a bewildering variety of P2X and P2Y
receptors in MSCs from different tissues and species [17–28]
and, as a result, the cognate intrinsic mechanisms remains
contentious. There is also evidence for occurrence of store-
operated Ca21 entry in BM-MSCs [17], but the molecular iden-
tity of the Ca21 channels is still elusive. Several recent studies
show that ATP significantly regulates MSC differentiation,
although there are striking disparities in the findings and the
proposed underlying mechanisms [20, 23, 24, 27]. MSCs are
highly promising in cell-based therapies for challenging clinical
conditions including cardiac infarction and neurodegenerative
diseases and, once transplanted into the damaged or diseased
tissues or organs, MSCs are anticipated to migrate into the
recipient’s tissue, and the poor homing capability is a critical fac-
tor limiting the effectiveness of in vitro expanded MSC cultures
in clinical applications. How MSC migration is regulated is largely
unknown. Therefore, this study examined the intrinsic mecha-
nisms for ATP-induced Ca21 signaling and their roles in the regu-
lation of cell migration in human DP-MSCs (hDP-MSCs). Our
results provide strong evidence to support the purinergic P2X7,
P2Y1, and P2Y11 receptors and identify the store-operated Orai1/
Stim1 channel as important molecular mechanisms underlying
ATP-induced Ca21 signaling and further show that activation of
these mechanisms stimulates cell migration in hDP-MSCs.

MATERIALS AND METHODS

Chemicals and Culture Media

All general chemicals, including pyridoxal-phosphate-6-
azophenyl-20,40-disulfonic acid (PPADS), 2-aminoethoxydiphenyl
borate (2-APB), and thapsigargin (TG), were purchased from
Sigma-Aldrich (U.K., http://www.sigmaaldrich.com).
AZ1164373, 5-(3-bromophenyl)21,3-dihydro-2H-benzofuro-
[3,2-e]-1,4-diazepin-2-one (5-BDBD), and CGS15943 from Toc-
ris Bioscience (U.K.). Phosphate-buffered saline (PBS), Dulbec-
co’s modified Eagle’s medium (DMEM), OPTI-MEM, fetal
bovine serum (FBS), penicillin-streptomycin, trypsin-EDTA, plur-
onic acid F-127, and SYBR Green I were from Invitrogen (Carls-
bad, CA, http://www.invitrogen.com), and collagenase P from
Worthington Biochem (Lakewood, NJ, http://www.worthington-
biochem.com/).

Cell Isolation and Characterization

All the experiments described below were carried out at
room temperature, unless indicated otherwise. MSCs used for
the vast majority of experiments were isolated from the
molar teeth of three female donors (D1–D3: 9, 21, and 32
years old, respectively) and MSCs in a small number of experi-

ments from 20 years old male donor, provided by the Leeds
Dental Institute Dental Clinic. The procedures were approved
by the Dental Research Ethics Committee of University of
Leeds (280211/LJ/60). In brief, the pulp tissues were removed
from the pulp chamber, minced into small pieces in 2 ml PBS
containing 5 mg/ml collagenase P, and incubated in a humidi-
fied tissue culture incubator at 378C and 5% CO2 for 45–60
minutes, with gentle pipetting every 15 minutes until the tis-
sues were totally dispersed. After addition of 7 ml DMEM
with 10% FBS, cells were collected by centrifugation (�168g),
re-suspended in 5 ml DMEM supplemented with 20% FBS,
2 mM L-glutamine, 100 units/ml penicillin, and 100 mg/ml
streptomycin, and filtered using a 70-mm cell strainer. Cells
were seeded in a T25 (25-cm2) tissue culture plastic flask and
incubated in a humidified tissue incubator at 378C and 5%
CO2 with the media changed every 3–4 days until reaching
approximately 80% confluence. Cells were passaged using
standard culture protocols and seeded in T25 or T75 (75-cm2)
flasks at a density of 1 3 104 cells per cm2. Cells were used
up to five passages.

Expression of the MSC positive and negative cell surface
protein markers was examined by flow cytometry using a
FACSCalibur (BD Biosciences, San Diego, http://www.bdbio-
sciences.com). Cells were suspended in flow cytometry stain-
ing buffer (PBS containing 0.5% bovine serum albumin (BSA)
and 2 mM EDTA) at 1 3 107 cells per ml before treated with
Fc receptor blocking solutions (TruStain FcXTM, Biolegend) for
10 minutes, and 1 3 106 cells were incubated at 48C for 30
minutes with the following mouse anti-human antibodies:
CD105-fluorescein isothiocyanate (FITC), CD90-FITC, CD73-phy-
coerythrin (PE), CD45-FITC, CD34-FITC, CD14-FITC, control-
FITC, control-PE (Biolegend), and mouse anti-STRO-1 antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, http://www.scbt.
com). Cells labeled with the anti-STRO-1 antibody were fur-
ther incubated with FITC-conjugated goat anti-mouse IgG anti-
body (Invitrogen) at 48C for 30 minutes. After washing, cells
were collected by centrifugation (�168g) and resuspended in
400 ll flow cytometry staining buffer. Ten thousand events
were recorded for each sample, and the data were analyzed
with Cell Quest software (BD Biosciences).

For osteogenic differentiation, cells were seeded into 24-
well plates at 4 3 104 cells per well and cultured in basal
medium (BM) for 48 hours and then in BM or osteogenic
medium (OM: 100 nM dexamethasone and 50 mM ascorbate-2-
phosphate in BM) for 2 weeks, with the media replaced every 3
days. The expression of alkaline phosphatase was examined
under a light microscope after cells were fixed in ethanol at 48C
for 10 minutes and stained with 4% a-naphthol in water con-
taining 24 mg/ml Fast violet B salt for 1 hour. For adipogenic
differentiation, cells were seeded onto type I collagen-coated
coverslips (BD Biosciences) placed in 24-well plates at 4 3 104

cells per well and cultured in BM for 48 hours before they were
cultured in BM or adipogenic medium (AM: 0.5 mM isobutyl-
methylxanthine, 10 mM dexamethasone, 10 mg/ml insulin (Invi-
trogen), and 200 mM indomethacin in BM) for 3 weeks, with
the media replaced every 3 days. Cells were fixed with 4% para-
formaldehyde for 30 minutes and stained with 0.3% oil red O
for 15 minutes and then with Harris hematoxylin for 2 minutes.
Adipocytes were identified with oil red O staining. Chondrogen-
esis was examined in three-dimensional cell pellet cultures. Cell
pellets, composed of 1 3 106 cells for each, were cultured in BM
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for 48 hours by gentle shaking and then in BM or chondrogenic
medium (0.1 mM dexamethasone, 10 ng/ml Transforming growth
factor (TGF)-b3, 50 mg/ml ascorbic acid 2-phosphate, 1.0 mg/ml
recombinant human insulin, 0.55 mg/ml human transferrin, and
0.5 lg/ml sodium selenite in BM) for 3 weeks with the media
changed every 3 days. Cell pellets were paraffin embedded, sec-
tioned, and stained with Alcian blue and Sirius red [29].

Reverse Transcriptase Polymerase Chain Reaction

Total RNA was extracted from one T75 flask of cells for each
condition using TRI reagents and treated with RQ1 RNase-free
DNase enzyme (Ambion, Austin, TX, http://www.ambion.com).
The Ribogreen assay was carried out to determine the RNA
concentrations. RNA was reverse-transcribed into cDNA using
High Capacity RNA-to-cDNA Master Mix (Applied Biosystems,
Foster City, CA, http://www.appliedbiosystems.com) using a
Mastercycler Gradient PCR machine (Eppendorf) at 258C for 5
minutes, 428C for 30 minutes, and 858C for 5 minutes. The
cDNA samples were amplified using PCR and primers specific
to the target genes in 5 ll reaction volume containing 0.5 ll
cDNA sample, 0.6 ll 4 mM MgCl2, 0.5 ll SYBR Green (Applied
Biosystems), 0.25 ll 0.5 lM forward primer and 0.25 ll 0.5
lM reverse primer. The primer sequences were described in
our previous studies [30, 31] and/or are available upon

request. The polymerase chain reaction (PCR) protocols con-
sist of 958C for 10 minutes, 45 cycles of 958C for 10 seconds,
608C (for P2X and P2Y) or 558C (for Orai1 and Stim) for 6 sec-
onds and 728C for 16 seconds, followed by a final melting
step from 658C to 958C. The minimal cycle threshold values
(Ct) were calculated from each of the quadruplicate reactions
and the mean was obtained. The expression level of the gene
under investigation was normalized to that of b-actin based
on 22[(Ct,target gene 2 Ct,b-actin)] [32]. The difference in the tar-
get gene expression in cells transfected with siRNA relative to
that in cells transfected with scrambled siRNA was calculated
using 22DDCt method, where DDCt 5 (Ct,target gene 2 Ct,b-actin)-

siRNA 2 (Ct,target gene 2 Ct,b-actin)control [33]. The PCR products
were analyzed by electrophoresis on 2% agarose gels, along-
side with 100 bp DNA standards, and gel images were cap-
tured with a Biorad Gel Doc System.

Immunocytochemistry

Cells were seeded on coverslips with 15,000–20,000 per cov-
erslip, placed in 24-well microplates, and incubated in a
humidified tissue incubator at 378C and 5% CO2 for 24 hours
prior to immunostaining. Cells were fixed with 4% paraformal-
dehyde for 30 minutes. After wishing with PBS three times,
cells were incubated in blocking solution (PBS containing 0.2%

Figure 1. Profiling P2X and P2Y expression and ATP-induced Ca21 responses in human dental pulp mesenchymal stem cell (hDP-MSCs).
(A): Reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNA expression of ATP-sensitive P2X and P2Y receptors in
hDP-MSCs from three donors denoted by the number (1–3). While P2X4, P2X6, P2X7, P2Y1, and P2Y11 were consistently detected, there
was no expression of P2X1, P2X2, P2X3, and P2X5, and P2Y2 expression was extremely low or undetectable. The two arrows on the left
denote 600 bp and 100 bp DNA markers, and the arrow head on the right points to the anticipated PCR product. Plasmids (P) contain-
ing P2X1, P2X2, P2X3, or P2X5 cDNA were used as DNA templates in PCR as positive control for primers. (B, C): Single cell recording of
Ca21 responses in individual cells to 100 lM ATP in extracellular Ca21-containing (B; 16/17 cells) and Ca21-free solutions (C; 14/15
cells). (D, E): FlexStation measurement of Ca21 responses to 300 lM ATP in cells in extracellular Ca21-containing (D; four wells of cells)
and Ca21-free solutions (E; four wells of cells). (F): Ca21 responses induced by 0.3–300 lM ATP from four wells of cells for each concen-
tration (left), and the concentration–response relationship curve with the solid line showing data fit to Hill equation with an EC50 of 22
mM and nH of 0.5 (right). (G, H): Summary of the inhibition of 300 lM ATP-induced Ca21 responses by 10 lM PPADS in cells from the
first donor (G; four wells of cells), and the mean % inhibition for three donors (H; 20 wells of cells in five independent experiments).
**, p< .001; ***, p< .005. Abbreviations: CTL, control; PPADS, pyridoxal-phosphate-6-azophenyl-20,40-disulfonic acid.
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Triton X-100 and 5% goat serum or BSA) for 2 hours. Primary
rabbit antibodies were diluted into the blocking solution at
1:50–100 for anti-P2X7, and 1:100 for anti-P2Y1 and anti-
P2Y11 (all from Alomone Labs), and cells were incubated fur-
ther at 48C for 24 hours. After washing with PBS containing
0.5% Tween-20 three times, cells were incubated in the block-
ing solution containing FITC-conjugated goat anti-rabbit IgG
antibody at 1:1,000 (Sigma) at room temperature for 1.5
hours. After washing with PBS and rinsing with water, the
coverslips were mounted on glass slides with DAPI-containing
anti-fade mounting agent (Molecular Probes, Eugene, OR,
http://probes.invitrogen.com) and kept at 48C overnight
before images were captured using a LSM700 confocal micro-
scope and ZEN software (Zeiss).

Measurement of the [Ca21]c

The [Ca21]c was monitored using single cell imaging and Flex-
Station, as described in our previous studies [34–36]. Cells
were seeded on type I collagen-coated coverslips placed in
24-well plates at a 2 3 103 cells per cm2 for single cell imag-
ing or in 96-well assay plates at 4 3 104 cells per well for
FlexStation. Cells were loaded with 4 lM Fura-2/AM (Molecu-
lar Probes) and 0.4% pluronic acid F-127 in standard Ca21-
containing bath solution (SBS: 147 mM NaCl, 2 mM KCl,
1.5 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, and 13 mM glu-
cose 13, pH 7.3) at 378C for 1 hour, and after washing, incu-
bated in SBS at 378C for 30 minutes. Cells were washed again
and replaced with fresh SBS or Ca21-free solution (147 mM
NaCl, 2 mM KCl, 1 mM MgCl2, 1.147 mM EDTA, 10 mM
HEPES, and 13 mM glucose, pH 7.3). For single cell imaging, a
coverslip with cells was placed in a recording chamber under
an Axiovert S100 TV fluorescent microscope (Zeiss). Cells were
perfused with SBS or Ca21-free solutions. The fluorescence
intensity from selected single cells was imaged every 10 sec-
onds. Cells were perfused with indicated extracellular solu-

tions for 60 seconds to establish the baseline before adding
agonist. The fluorescence intensity from a small collection of
cells was measured every 5–10 seconds using FlexStation II or
III and Softmax Pro (Molecular Devices, Union City, CA, http://
www.moleculardevices.com). Agonists were added after 60
seconds to establish the baseline. The [Ca21]c was monitored
by the ratio of the fluorescence intensity at 510 nm excited
alternatively by 340 nm and 380 nm (F340/F380). Data analysis
was carried out using OriginPro 8.0. The agonist concentra-
tion–response curves (Figs. 1F, 2B) were least squared fit to
Hill equation: DF340/F380 5 DF340/F380max/(11 (EC50/[ago-
nist])nH), where DF340/F380 is agonist-induced change in F340/
F380, DF340/F380max is the maximal change, EC50 is the agonist
concentration evoking half of the maximal change, and nH is
Hill coefficient. In experiments studying the store-operated
Ca21 entry (Figs. 3B–3D, 4C, 4D), cells were pretreated with 1
lM TG for 30 minutes in Ca21-free solutions. TG-evoked
store-operated Ca21 entry was determined by the difference
between the Ca21 responses in TG-treated cells (1TG) and
matched TG-untreated cells (2TG).

Cell Migration Assays

Cell migration was assessed using the wound healing and
trans-well migration assays. For the wound healing assay,
cells were seeded in 96-well plates at 4 3 105 cells per well
and cultured for 48 hours to form confluent monolayers.
The wound was introduced across the well by removing the
cells using a 96-pin WoundMaker (Essen BioScience). Cell
migration was monitored by measuring the average wound
width narrowing every hour using Incucyte (Essen Bio-
Science). Cell migration was also estimated by staining cells
with SYBR Green, imaging two wound areas in each well
using IncuCyte, counting the number of cells migrating into
the wound area, corrected by the cell density in adjacent
healthy area in the same well. The trans-well migration

Figure 2. P2X7, P2Y1, and P2Y11 receptors participate in ATP-induced Ca21 responses in human dental pulp mesenchymal stem cell
(hDP-MSCs). (A): Ca21 responses to 300 lM ATP, 300 lM BzATP, or 100 lM abmeATP (left), and summary of the peak Ca21 responses
(right) in four wells of cells from the first donor. There was no discernible abmeATP-induced Ca21 response. Similar results were
observed in cells from other two donors. (B): Ca21 responses induced by 0.3–300 lM BzATP from four wells of cells for each concentra-
tion (left), and the concentration–response relationship curve, with the solid line showing the data fit to Hill equation with an EC50 of
87 mM and nH of 1.4 (right). (C, D): ATP-induced Ca21 responses (left) and summary of 300 lM ATP-induced peak Ca21 responses (right)
in control cells and cells treated with 1 lM AZ11645373 (AZ) (C) or treated with 10 lM 5-BDBD (5-(3-bromophenyl)21,3-dihydro-2H-
benzofuro-[3,2-e]-1,4-diazepin-2-one) (D), with four wells of cells from the first donor for each case. (E): Quantitative reverse transcrip-
tion polymerase chain reaction (RT-PCR) analysis of P2X7 mRNA expression in cells transfected with P2X7-siRNA, presented as % of that
in cells with Scr-siRNA, from three wells of cells from the second and third donors each. (F, G): Ca21 responses (left) induced by 300
lM ATP (F) or 300 lM BzATP (G), and summary of the peak Ca21 responses (right) in cells treated with Scr-siRNA or P2X7-siRNA, from
four wells of cells from the first donor. (H): Summary of 300 lM ATP-induced peak Ca21 responses in untransfected cells and cells trans-
fected with Scr-siRNA, from four wells of cells from the first donor. (I): Summary of the mean % reduction in 300 lM ATP-induced peak
Ca21 responses by 1 lM AZ11645373 (left; 12 wells of cells) or with 10 lM 5-BDBD (right; 12 wells of cells) for three donors. (J): Sum-
mary of the mean % reduction in the peak Ca21 responses induced by 300 lM ATP or BzATP in control cells and cells transfected with
Scr-siRNA (left; 12 wells of cells), and cells transfected with Scr-siRNA and P2X7-siRNA (middle and right; 12 wells of cells in each case)
for three donors. (K, L): Ca21 responses to 100 lM ATP, 100 lM BzATP, or 100 lM ADP (K) and summary of the peak Ca21 responses
induced by ATP, BzATP, or ADP from four wells of cells from the first donor (L). Similar results were observed in other two donors. (M):
Quantitative RT-PCR analysis of the P2Y1 mRNA expression in cells transfected with P2Y1-siRNA, from three wells of cells for the second
and third donors each. The results are presented as mean % of that in cells transfected with Scr-siRNA. (N, O): Ca21 responses induced
by 100 lM ATP (left), and summary of peak Ca21 responses induced by ATP (right) (N) and 100 lM ADP (O) in cells treated with Scr-
siRNA or P2Y1-siRNA, from four wells of cells from the first donor in each case. (P): Quantitative RT-PCR analysis of the P2Y11 mRNA
expression in cells transfected with P2Y11-siRNA, from three well of cells for the second and third donors each. The results are presented
as mean % of that in cells transfected with Scr-siRNA. (Q): Ca21 responses (left), and summary of the peak Ca21 responses induced by
100 lM ATP (right) in cells treated with Scr-siRNA or P2Y11-siRNA, from four well of cells from the first donor in each case. (R): Sum-
mary of the mean % reduction in ATP or ADP-induced peak Ca21 responses in cells from three donors that were transfected with siR-
NAs. 12 wells from 3 independent experiments were used in each case. NS, no significant difference; *, p< .05; **, p< .001; ***,
p< .005. Abbreviations: AZ, AZ11634737; CTL, control; Scr-siRNA, scrambled siRNA.
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assays were carried out in 24-well plates receiving polyeth-
ylene terephthalate membrane cell culture inserts contain-
ing trans-well pores of 8 lm in diameter (BD Biosciences).
The upper compartment was seeded with 5 3 104 cells, and
both the upper and lower compartments were filled with
DMEM with 10% FBS. ATP was added into the lower com-
partment. After incubation at 378C and 5% CO2 for 6 or 18
hours, cells attached to the side of the inserts facing the
lower compartment were stained with 0.1% crystal violet
prepared in 20% methanol and 80% distilled water for cell
migration at 6 hours and Hoechst (5 ng/ml) for cell migra-
tion at 18 hours; cells in three to five different areas of the
inserts were imaged using an IX51 microscope and CellF

imaging system (Olympus) or a fluorescent microscope
EVOSVR Cell Imaging System (Zeiss). The stained cells with a
size that was discernibly greater than the size of the pore
were counted. For meaningful comparisons between sepa-

rate experiments, relative cell migration was expressed by %
of that in the absence of ATP.

Treatments with Agonists and Antagonists

In single cell imaging and FlexStation measurements of the
[Ca21]c, cells were exposed to ATP or other agonists during
recordings. In some experiments, cells were pretreated with
PPADS, 5-BDBD, 2-APB, AZ11645373, and TG during last 30
minutes incubation. In cell migration assays, antagonist was
added in culture medium 30 minutes before addition of ATP.

Transfection with siRNA

Cells were seeded in 96-well plates for measurements of the
[Ca21]c and cell migration, and in six-well plates for measure-
ments of the gene expression using reverse transcriptase poly-
merase chain reaction (RT-PCR) at the cell densities described
above. After 24 hours incubation, cells were transfected with
siRNAs directed against target gene or scrambled small

Figure 3. Store-operated Ca21 entry contributes to ATP-induced Ca21 responses in human dental pulp mesenchymal stem cell (hDP-
MSCs). (A): Single cell imaging of internal Ca21 release in individual cells (19/19 cells) induced by 100 lM ATP in extracellular Ca21-free
solutions, and subsequent Ca21 influx upon addition of extracellular Ca21-containing solutions. (B): Single cell imaging of extracellular
Ca21 influx upon addition of extracellular Ca21-containing solutions in control cells (CTL; 15/15 cells) or cells pretreated with 1 lM TG
(18/18 cells) in extracellular Ca21-free solutions. (C): FlexStation measurement of internal Ca21 release in control cells (CTL) or cells
treated with 1 lM TG in extracellular Ca21-free solutions, and subsequent Ca21 influx upon addition of extracellular Ca21-containing
solutions (left), and summary of internal Ca21 release and extracellular Ca21 influx in control and TG-treated cells (right). (D): TG-
induced internal Ca21 release in extracellular Ca21-free solutions, and subsequent Ca21 influx upon addition of extracellular Ca21-con-
taining solutions in control cells (CTL) or cells treated with 1 lM and 5 lM 2-APB (left), and summary of TG-induced peak and sustained
store-operated Ca21 entry (right). Data were from 12 wells of cells from the first donor in 3 independent experiments. (E): ATP-induced
Ca21 responses (left), and summary of peak Ca21 responses in control cells (CTL) and cells treated with 5 lM 2-APB, from four wells of
cells in each case. (F): Summary of the mean % inhibition of ATP-induced peak Ca21 responses by 2-APB in 12 wells of cells for each
case from three donors. (G): TG-induced internal Ca21 release in extracellular Ca21-free solutions, and subsequent Ca21 influx upon
addition of extracellular Ca21-containing solutions in control cells (CTL) or cells, pretreated with 1, 3, and 10 lM synta-66 (S66) (left),
and summary of TG-induced peak and sustained store-operated Ca21 entry (right). Data were from 12 wells of cells from the first donor
in three independent experiments. (H): ATP-induced Ca21 responses (left), and summary of peak Ca21 responses in control cells (CTL)
and cells treated with 10 lM S66, from four wells of cells in each case. (I): Summary of the mean % inhibition of ATP-induced peak
Ca21 responses by S66 in 12 wells of cells for each case from three donors. **, p< .001; ***, p< .005. Abbreviations: 2-APB, 2-aminoe-
thoxydiphenyl borate; CTL, control; S66, syntax66; TG, thapsigargin.
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Figure 4. Orai and Stim1 mediate store-operated Ca21 entry and contribute in ATP-induced Ca21 responses in human dental pulp mes-
enchymal stem cell (hDP-MSCs). (A): Reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNA expression of Orai1,
Stim1, and Stim2 in hDP-MSCs from three donors. The two arrows on the left in each panel denote 600 bp and 100 bp DNA markers,
and the arrow head on the right points to the anticipated PCR product. (B): Quantitative RT-PCR analysis of Orai1, Stim1, or Stim2
mRNA expression in cells transfected with indicated siRNA, presented as mean % of that in cells transfected with Scr-siRNA, from three
well of cells for the second and third donors each. (C): Extracellular Ca21 influx in control cells (2TG) or TG-treated cells (1TG) trans-
fected with indicated siRNA (left), and summary of constitutive Ca21 influx (right and top) and TG-induced store-operated Ca21 entry
(right bottom), from four wells of cells from the first donor for each case. (D): Extracellular Ca21 influx in control cells (2TG) or TG-
treated cells (1TG) transfected with indicated siRNA (left), and summary of constitutive Ca21 influx (right top) and TG-induced store-
operated Ca21 entry (right bottom), from four wells of cells from the first donor for each case. The dotted and broken lines (C, D) show
the Ca21 responses in TG-untreated and TG-induced cells transfected with Sci-siRNA. (E): ATP-induced Ca21 responses in extracellular
Ca21-containing solutions (left), and summary of ATP-induced peak Ca21 responses (right) in cells transfected with indicated siRNA,
from four wells of cells from the first donor for each case. (F): ATP-induced Ca21 responses in extracellular Ca21-containing solutions
(left), and summary of ATP-induced peak Ca21 responses (right) in cells transfected with indicated siRNA in four wells of cells from the
first donor for each case. (G): Summary of the peak Ca21 responses in TG-untreated cells (left) and store-operated Ca21 entry in TG-
treated cells (right) transfected with indicated siRNA, presented as mean % of that in cells transfected with Scr-siRNA for three donors,
in 12 wells of cells for each case. (H): Summary of ATP-induced peak Ca21 responses in cells transfected with indicated siRNA as mean
% of that in cells transfected with Scr-siRNA for three donors in 12 wells of cells for each case. NS, no significant difference; *, p< .05;
**, p< .001; ***, p< .005. Abbreviations: Scr-siRNA, scrambled siRNA; TG, thapsigargin.



interference RNA (siRNA) (Scr-siRNA), provided by Ambion.
The specificity was verified by the vendor and our previous
studies [31]. For each transfection, 4 ml 20 lM siRNA and 4 ml
Lipofectamine2000 (Invitrogen) was separately diluted in 200
ml OPTI-MEM medium and incubated for 5 minutes before
they were mixed and incubated for further 20 minutes and
supplemented with 1.6 ml culture media. Cells in each well
were covered with the transfection medium (100 ml for each
well of 96-well plates and 1 ml for each well of 6-well plates)
and cultured for 48–72 hours before use.

Data Presentation and Analysis

All data are presented as mean6 SEM, where appropriately.
Figures show representative data from cells from the first
donor and also show the mean data from the first three
donors. Statistical analysis was carried out using Student’s t

test to compare two groups or one-way ANOVA with Tukey
post hoc test to compare more than two groups by Origin
software, with p< .05 being indicative of significance.

RESULTS

P2X7, P2Y1, and P2Y11 Receptors Participate in ATP-
Induced Ca21 Signaling

Cells used in this study exhibited the characteristics proposed
for MSCs [11], namely, they were adherent to plastic surface,
displayed fibroblast-like morphology, and underwent osteo-
genic, adipogenic and chondrogenic differentiation under
defined inducing conditions (Supporting Information Fig. 1).
These cells also showed expression of MSC positive markers,
CD73, CD90, CD105, and Stro-1, and lack of hematopoietic
and endothelial cell markers, CD14, CD34, and CD45 (Support-
ing Information Fig. 2).

To characterize the expression of ATP-induced Ca21 signal-
ing mechanisms in hDP-MSCs, RT-PCR was firstly used to ana-
lyze the expression of ATP-sensitive purinergic P2 receptors,
P2X1-7, P2Y1, P2Y2, and P2Y11. In cells from the three donors
examined, the mRNA transcript was detected for P2X4, P2X6,
and P2X7, but not for P2X1, P2X2, P2X3, and P2X5 (Fig. 1A).
Among the three ATP-sensitive P2Y receptors, the mRNA
expression of P2Y1 and P2Y11 was readily detected, whereas
the P2Y2 expression was extremely low or undetectable (Fig.
1A). As introduced above, activation of the ATP-sensitive P2X
and P2Y receptors induces extracellular Ca21 influx and intra-
cellular Ca21 release respectively, leading to increases in the
[Ca21]c. Therefore, to determine their functional expression,
ATP-induced increase in the [Ca21]c was measured using fura-
2 based ratiometry. Single cell imaging showed that individual
cells responded to 100 lM ATP with strong, albeit various,
increases in the [Ca21]c in extracellular Ca21-containing solu-
tions (Fig. 1B). ATP also induced salient Ca21 responses in
extracellular Ca21-free solution (Fig. 1C), indicating internal
Ca21 release and expression of functional P2Y receptors. ATP-
induced Ca21 responses in Ca21-containing solution last
noticeably longer, suggesting that ATP induces extracellular
Ca21 influx in addition to internal Ca21 release. Measure-
ments using FlexStation recorded similar Ca21 responses from
a group of cells in extracellular Ca21-containing and Ca21-free
solutions (Fig. 1D, 1E). Construction of ATP concentration-
Ca21 response relationship curve and fitting to Hill equation

yielded an EC50 of 22 mM and nH of 0.5 (Fig. 1F). ATP-induced
increases in the [Ca21]c in extracellular Ca21-containing solu-
tions were reduced by 10 lM PPADS, a generic P2 antagonist
(Fig. 1G, 1H), and almost completely abolished by 30 lM
PPADS (Supporting Information Fig. 3a, 3c). These results pro-
vide initial but clear evidence to confirm the expression of
functional P2 receptors as the cognate Ca21 signaling mecha-
nisms to respond to extracellular ATP in MSCs.

Consistent with lack of the P2X1, P2X3, or P2X5 mRNA
expression, 100 lM abmeATP induced no discernible Ca21

response (Fig. 2A), indicating lack of functional P2X receptors
containing any of these subunits, at which abmeATP is known
as a potent agonist [6]. In contrast, 300 lM BzATP evoked a
greater increase in the [Ca21]c than 300 lM ATP (Fig. 2A),
indicating that BzATP is more potent than ATP. Construction
and fitting of BzATP concentration-Ca21 response relationship
curve yielded an EC50 of 87 lM and nH of 1.4 (Fig. 2B). ATP-
induced increase in the [Ca21]c was significantly reduced by 1
lM AZ11645373 (Fig. 2C), a human P2X7 selective antagonist
[37]. In contrast, ATP-induced Ca21 response was completely
insensitive to 10 lM 5-BDBD (Fig. 2D), a P2X4 specific antago-
nist with submicromolar potency [38], indicating lack of func-
tional P2X4 receptor. Transfection of hDP-MSCs with P2X7-
siRNA led to significant reduction in the P2X7 expression (Fig.
2E) and the Ca21 responses induced by both BzATP and ATP
(Fig. 2F, 2G), whereas transfection with scrambled siRNA (Scr-
siRNA) resulted in no detectable inhibition (Fig. 2H; Support-
ing Information Fig. 4). The greater potency of BzATP over
ATP and the sensitivity of Ca21 responses induced by ATP and
BzATP to inhibition by AZ11645373 and P2X7-siRNA were con-
sistently observed in cells from three donors examined (Fig.
2I, 2J). These results provide compelling evidence to support
the expression of functional P2X7 receptor.

ATP induced substantial increases in the [Ca21]c in extrac-
ellular Ca21-free solutions (Fig. 1C, 1E; Supporting Information
Fig. 3c). Such ATP-induced Ca21 responses were almost com-
pletely abolished by 30 lM PPADS (Supporting Information
Fig. 3b, 3c). These results indicate functional expression of
ATP-sensitive PLC-IP3-coupled P2Y receptors. To further elabo-
rate the P2Y receptors, internal Ca21 release induced by P2Y
subtype-preferring agonists was determined in extracellular
Ca21-free solution. ADP, an agonist at P2Y1, and BzATP, an
agonist at P2Y1 and P2Y11, both applied at 100 lM, evoked
substantial Ca21 release, albeit with variable amplitudes (Fig.
2K, 2I). Moreover, knockdown of the P2Y1 expression (Fig.
2M) attenuated the increases in the [Ca21]c induced by ATP
(Fig. 2N) and ADP (Fig. 2O) in extracellular Ca21-containing
solution. Similarly, knockdown of the P2Y11 expression (Fig.
2P) diminished ATP-induced increase in the [Ca21]c in extrac-
ellular Ca21-containing solution (Fig. 2Q). These results, even
though bearing some variations, were consistently observed
in cells from the three donors examined (Fig. 2R), and there-
fore strongly support participation of the P2Y1 and P2Y11
receptors in ATP-induced Ca21 signaling.

To provide further supporting evidence, immunofluores-
cence confocal microscopy was used to examine protein
expression of the P2X7, P2Y1, and P2Y11 receptors. There
were strong immunoreactivities in cells labeled with the anti-
body recognizing the P2X7, P2Y1, or P2Y11 receptor, respec-
tively (Supporting Information Fig. 5). Taken together, the
results described above provide consistent evidence to show
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that the P2X7, P2Y1, and P2Y11 receptors participate in media-
ting ATP-induced Ca21 signaling in hDP-MSCs.

Orai1/Stim1-Mediated Store-Operated Ca21 Entry
Contributes in ATP-Induced Signaling

Internal Ca21 release following activation of the P2Y1 and P2Y11
receptors reduces the ER Ca21 level and therefore is anticipated
to induce subsequent store-operated Ca21 entry. Indeed, single
cell imaging showed that ATP-induced internal Ca21 release in

extracellular Ca21-free solution led to massive Ca21 influx upon
Ca21 add-back in individual hDP-MSCs (Fig. 3A). Pretreatment
with TG in extracellular Ca21-free solution to deplete the ER
Ca21 store and subsequent Ca21 add-back, a widely used
experimental paradigm to characterize store-operated Ca21

entry, was used to examine the store-operated Ca21 entry and
its contribution to ATP-induced Ca21 signaling in hDP-MSCs.
Treatment with 1 lM TG induced internal Ca21 release and led
to robust store-operated Ca21 entry, as shown by single cell

Figure 5. Extracellular ATP stimulates human dental pulp mesenchymal stem cell migration. (A): Representative images showing the
wound area at indicated time points during 72 hours in culture medium without (CTL) or with 3 lM and 30 lM ATP. (B): The time
course of wound width narrowing in the absence (CTL) and presence of ATP, from five wells of cells from the first donor for each case.
(C, D): Analysis of wound area narrowing at 24, 36, and 48 hours (C) and expressed as % of that under control conditions (no ATP) (D).
(E): Number of cells migrating to the wound area over 24 hours, expressed as % of that under control conditions (no ATP), from seven
wells of cells from the first donor. (F, G): Summary of the mean wound area narrowing (15 wells of cells in 3 independent experiments)
(F) and cell migration (17 wells in 3 independent experiments) (G), presented as % of that under control conditions for three donors.
*, p< .05; **, p< .001; ***, p< .005. Abbreviation: CTL, control.

2110 ATP-Induced Ca21 Signaling in MSC Migration

VC 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press STEM CELLS



imaging (Fig. 3B) and FlexStation (Fig. 3C). In TG-untreated cells,
removal of extracellular Ca21 resulted in modest constitutive
Ca21 influx upon Ca21 add-back (Fig. 4B, 4C). 2-APB is a non-
selective Ca21 channel inhibitor that blocks store-operated Ca21

entry with an IC50 of approximately 10 lM but has various
effects on other Ca21-permeable conductance(s) [39]. Indeed,
2-APB inhibited the constitutive Ca21 flux at �10 lM and
induced discernible internal Ca21 release at �50 lM (Support-
ing Information Fig. 6). Treatment with 5 lM 2-APB reduced
TG-induced store-operated Ca21 entry without significant effect
on TG-induced Ca21 release (Fig. 3D). Application of 5 lM
2-APB suppressed both sustained and peak components of ATP-
induced increases in the [Ca21]c in extracellular Ca21-containing
solution (Fig. 3E), suggesting that 2-APB even at such a titrated
concentration inhibits ATP-induced store-operated Ca21 entry
but it has additional effect. We also examined the effect of
Synta66, a selective inhibitor for store-operated Ca21 entry [31],
on TG-induced store-operated Ca21 influx and ATP-induced
increases in the [Ca21]c. Synta66 reduced TG-induced store-
operated Ca21 influx in a concentration-dependent manner (Fig.
3G) without effect on TG-induced Ca21 release (Fig. 3G) or con-
stitutive Ca21 influx (Supporting Information Fig. 7). Treatment
with Synta66 significantly inhibited the sustained but not the
peak component of ATP-induced increases in the [Ca21]c in
extracellular Ca21-containing solution (Fig. 3H). These results,
albeit with some variation, were observed in cells from three
donors examined (Fig. 3F, 3I), providing strong evidence to sup-
port that store-operated Ca21 entry as a downstream mecha-
nism contributes to ATP-induced Ca21 signaling.

Recent studies have established that the store-operated Ca21

entry in a variety of non-excitable cells is primarily mediated by
the CRAC channel composed of plasma membrane pore-forming
Orai1 and ER-localized Ca21 sensor stromal interaction molecule 1

(Stim1) [7, 8]. There is evidence to suggest a role for the Stim1
homolog, Stim2, in the regulation of the ER Ca21 level [40]. Fur-
ther experiments were conducted to investigate the molecular
mechanism for store-operated Ca21 entry and seek molecular evi-
dence to support contribution of store-operated Ca21 entry to
ATP-induced Ca21 signaling in hDP-MSCs. RT-PCR analysis showed
mRNA expression of Orai1, Stim1, and Stim2 in cells from the three
donors examined (Fig. 4A). Transfection with Scr-siRNA resulted in
no effect on TG-induced Ca21 release and store-operated Ca21

entry as compared to those in non-transfected cells (Supporting
Information Fig. 8). Transfection with specific siRNA for Orai1,
Stim1, and Stim2, as shown in our previous study [31], led to
strong reduction in the expression of Orai1, Stim1, and Stim2 (Fig.
4B). Transfection with any of these siRNAs caused no effect on the
constitutive Ca21 influx (in grey in Fig. 4C, 4D). However, transfec-
tion with Orai1-siRNA, Stim1-siRNA but not Stim2-siRNA signifi-
cantly attenuated TG-induced store-operated Ca21 entry (Fig. 4C).
Cotransfection with Orai1-siRNA and Stim1-siRNA inhibited TG-
induced store-operated Ca21 entry but there was no additive or
synergistic inhibition (Fig. 4D). Consistently, knockdown of the
expression of Orai1, Stim1 or both, but not Stim2, significantly
reduced ATP-induced increases in the [Ca21]c in extracellular
Ca21-containing solution (Fig. 4E, 4F). These results, consistently
observed in cells from the three donors examined (Fig. 4G, 4H),
provide the first evidence to show that Orai1 and Stim1 form the
CRAC channel and further support that store-operated Ca21 entry
has an important role in ATP-induced Ca21 signaling in MSCs.

Extracellular ATP Stimulates hDP-MSC Migration

It was unclear whether ATP regulated MSC migration and
thus the wound healing assay in combination with time-lapse
imaging was used to determine the effect of ATP on hDP-MSC
migration. Figure 5A, 5B illustrates a set of representative

Figure 6. Pharmacological effects on ATP-induced stimulation of human dental pulp mesenchymal stem cell migration. (A): Representa-
tive time course of wound width narrowing in cells with exposure to 30 lM ATP alone or together with 30 lM PPADS, 1 lM CGS15943
(CGS), 1 lM AZ11634737 (AZ), or 5 lM 2-APB, from four wells of cells from the first donor for each case. (B): Analysis of wound area
narrowing at 24, 36, and 48 hours for cells shown in (A), expressed as % of that in cells with ATP alone. (C): Summary of the mean
wound area narrowing at 24, 36, and 48 hours for three donors, expressed as % of that in cells with ATP alone, from 10–14 wells of
cells from at least two independent experiments. *, p< .05; ***, p< .005, compared to control cells. †, p< .05; ††, p< .01;
†††, p< .005, compared to cells treated with ATP alone. Abbreviations: 2-APB, 2-aminoethoxydiphenyl borate; AZ, AZ1164373; CTL, con-
trol; CGS, CGS15943; PPADS, pyridoxal-phosphate-6-azophenyl-20,40-disulfonic acid.
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images showing the wound areas at various time points and
the corresponding time course of wound healing over 72
hours in the absence and presence of 3 and 30 lM ATP.
Detailed analysis of the wound healing area at 24, 48, and 72
hours indicates that the wound healing process remained not
altered by 3 lM ATP but was accelerated by approximately
50% by 30 lM ATP (Fig. 5C, 5D). Similar results were obtained
by nucleus staining and counting of cells migrating into the
wound area during 24 hours; the number of cells in the
wound area in the presence of 3 lM ATP were similar to, but
the number of cells in the wound are in the presence of 30

lM ATP significantly greater than, that under condition (Fig.
5E). These results were consistently observed in cells from
three donors examined (Fig. 5F, 5G), demonstrating that ATP
induces concentration-dependent stimulation of hDP-MSC
migration. Trans-well chamber assay also showed that cell
migration was noticeably increased after exposure to ATP for
18 hours (Supporting Information Fig. 9). It is recognized that
during such relatively long exposure ATP is steadily metabo-
lized to ADP and particularly further to adenosine, which can
act on structurally and functionally distinctive adenosine
receptors [41]. Increased cell migration could arise from

Figure 7. Genetic interventions of ATP-induced stimulation of human dental pulp mesenchymal stem cell migration. (A): Representative
time course of wound width narrowing in cells without (no ATP) or with exposure to 30 lM ATP (1ATP), from four wells of cells from
the first donor that were transfected with indicated siRNA. The results from Scr-siRNA-transfected cells without (in grey filled symbol) or
with exposure to ATP (in open symbols) were shown in the following panels for comparison. (B–E): Wound area narrowing at 24, 36,
and 48 hours in cells without (no ATP) or with exposure to 30 lM ATP, transfected with indicated siRNA (B) for four wells of cells from
the first donor (B, D) and eight wells of cells from the first and third donors (C, E) for each case. *, p< .05; ***, p< .005, compared to
control cells. †, p< .05; ††, p< .01; †††, p< .005, compared to control cells treated with ATP alone. Abbreviation: Scr-siRNA, scrambled
siRNA.
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activation of adenosine receptors. However, ATP-induced stim-
ulation of hDP-MSC migration was not significantly inhibited
by 1 lM CGS15943, a generic adenosine receptor inhibitor
with submicromolar potency [42], and by contrast completely
abolished by 30 lM PPADS (Fig. 6A, 6B). These results,
observed in cells from all three donors (Fig. 6C), show that
ATP stimulates hDP-MSC migration predominantly via activa-
tion of the P2 receptors.

P2X7, P2Y1, and P2Y11 Receptors, and Orai1/Stim1
Channel Play a Role in Mediating ATP Stimulation of
hDP-MSC Migration

Finally, the role of the above-described ATP-induced Ca21 sig-
naling mechanisms in ATP-induced stimulation of hDP-MSCs
was investigated by determining the effects of pharmacologi-
cal and genetic inhibition of their expression and/or function.
ATP-induced stimulation of cell migration was attenuated by 1
lM AZ11645373 or 5 lM 2-APB (Fig. 6A–6C). ATP-induced
stimulation of cell migration was also significantly reduced by
siRNA knockdown of the expression of P2X7 or P2Y11 receptor
(Fig. 7A–7C). Moreover, ATP-induced stimulation of hDP-MSC
migration was strongly inhibited by siRNA knockdown of the
expression of Stim1 or both Orai1 and Stim1 (Fig. 7A, 7D, 7E).
Knockdown of the P2Y1 or Orai1 expression resulted in signifi-
cant inhibition of ATP-induced stimulation of cell migration in
hDP-MSCs, albeit the inhibition being less effective and more
variable among different donors (Fig. 7B, 7C). These results
overall support that the P2X7, P2Y1 and P2Y11 receptors and
the Orai1/Stim1 channel play a significant role in ATP-induced
stimulation of hDP-MSC migration.

DISCUSSION

This study has made several important findings. First, the
P2X7, P2Y1, and P2Y11 receptors are identified as molecular
mechanisms that contribute in mediating ATP-induced Ca21

signaling in hDP-MSCs. Second, the Orai1/Stim1 CRAC channel
is expressed and mediates store-operated Ca21 entry in hDP-
MSCs and, as a downstream mechanism following activation
of the P2Y receptors, participates in ATP-induced Ca21 signal-
ing. Third, ATP stimulates hDP-MSC migration, and finally, the
above-described purinergic and store-operated Ca21 signaling
mechanisms play a significant role in mediating ATP-induced
stimulation of hDP-MSC migration.

As introduced above, previous studies consistently showed
that extracellular ATP induced pronounced increases in the
[Ca21]c in MSCs but reported expression of a striking variety
of P2X and P2Y receptors, in part due to the fact that MSCs
used in previous studies were from different tissue origins or
less well-defined donors. This study examined hDP-MSCs from
several donors and obtained consistent evidence to demon-
strate that P2X7, P2Y1, and P2Y11 are the purinergic P2 recep-
tors responsible for ATP-induced Ca21 signaling in hDP-MSCs
(Figs. 1 and 2), confirming expression of these P2 receptors in
MSCs reported by some previous studies using BM-MSCs and
AT-MSCs [19–22, 28]. Nonetheless, this study observed notice-
able variations in the results obtained in cells from different
donors, for example, at both mRNA and functional expression
levels (Figs. 1A, 4A). Such variations may explain to some
extent the variable efforts of treating cells with the same

inhibitor or siRNA on ATP-induced Ca21 responses (Fig. 2R)
and stimulation of cell migration (Figs. 6B, 6C, 7B–7D) that
were noticed in this study, as well as the disparate results
reported by previous studies. This study has provided the first
evidence, as far as we are aware, to identify that Orai1 and
Stim1 are expressed in hDP-MSCs and form a CRAC channel
to mediate store-operated Ca21 entry and, furthermore,
Orai1/Stim1-mediated Ca21 entry contributes to ATP-induced
Ca21 signaling as an important downstream mechanism fol-
lowing the P2Y receptor activation (Figs. (3 and 4)).

The ability of MSC differentiation along specific lineages
is clearly important for tissue regeneration and replace-
ment. Several recent studies show that ATP regulates adipo-
genesis and osteogenesis of hBM-MSC and hAT-MSCs, albeit
with discrepancies in the reported findings and the pro-
posed underlying mechanisms [20, 23, 24, 27]. The poor
migration/homing capacity of in vitro expanded MSC cul-
tures is critical in limiting the effectiveness of MSC-based
therapies. This study using the widely used cell migration
assays showed that ATP at micromolar concentrations stimu-
lates hDP-MSC migration (Fig. 6). Furthermore, this study
using pharmacological and genetic interventions provides
consistent evidence to suggest that the P2X7, P2Y1, and
P2Y11 receptors and the Orai1/Stim1 channel play a signifi-
cant role in ATP-induced stimulation of hDP-MSC migration
(Fig. 7). This is the first report describing ATP-induced stimu-
lation of MSC migration and shedding light on the underly-
ing mechanisms. Evidently, further efforts are required to
better understand how purinergic and store-operated Ca21

signals regulate cell migration and whether in vitro priming
with ATP increases the homing capacity of MSC in vivo.
Emerging evidence shows that extracellular magnesium
influences ATP-induced Ca21 signaling and mineralized
matrix deposition in BM-MSC [43], and it is interesting to
examine whether extracellular magnesium can affect ATP-
induced regulation of MSC migration.

CONCLUSION

In conclusion, this study shows that purinergic P2X7, P2Y1,
and P2Y11 receptors and store-operated Orai1/Stim1 channel
represent the intrinsic mechanisms for ATP-induced Ca21 sig-
naling in hDP-MSCs and activation of such signaling mecha-
nisms stimulates cell migration. Such information is useful in
optimizing MSC cultures to improve the efficiency of their
therapeutic applications as well as in better understanding
MSC-mediated tissue homeostasis.
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