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Criteria for convective versus absolute

string instability in car-following models

By Jonathan A. Ward1,† and R. Eddie Wilson2

1MACSI, Department of Mathematics and Statistics, College of Science and

Engineering, University of Limerick, Limerick, Republic of Ireland
2Department of Engineering Mathematics, University of Bristol, Queen’s Building,

University Walk, Bristol BS8 1TR, UK

The linear stability properties of car-following models of highway traffic are anal-
ysed. A general family of models is introduced and the subsequent analysis devel-
oped in terms of its partial derivatives. Two measures of wave propagation, namely
(i) the group velocity and (ii) the signal velocity, are introduced and computed.
These measures are used to classify how instability propagates disturbances, mea-
sured relative to the frame of the road along which the vehicles drive. Detector data
suggest that disturbances should propagate only in an upstream direction (convec-
tive upstream instability) and it is shown how to parametrise models to agree with
data and avoid unrealistic downstream propagation (absolute and convective down-
stream instability).

Keywords: highway traffic; car-following models; instability; wave propagation

1. Introduction

Since the mid-1990s, there has been an intense and sometimes argumentative dis-
cussion about the spatio-temporal patterns observed in highway traffic flow, see for
example Kerner & Rehborn (1996, 1997); Kerner (2002a,b); Treiber et al. (2000);
Helbing et al. (2009); Schönhof & Helbing (2009); Treiber et al. (2010). A typi-
cal spatio-temporal pattern is displayed in figure 1. The features of interest are a
region of congestion developing at an on-ramp, out of which nucleate stop-and-go

waves, which propagate upstream at about 15 to 20km/h — a figure that seems
almost universal in that it has been observed on highways in many different coun-
tries across the Western world (Zielke et al., 2008). One explanation for stop-and-go
waves is that uniform traffic flow is unstable (either linearly or non-linearly) under
certain conditions. The inevitable fluctuations (due to lane-changing, noise etc.) at
the level of individual vehicles then become magnified so as to result in large am-
plitude patterns with macroscopic spatial scales (i.e., much longer than the range
of the individual vehicle interactions).

To understand the ‘up-scaling’ process, we analyse the stability properties of
car-following models that describe vehicles as discrete entities moving in contin-
uous space and time, whose motions solve simple ordinary (or delay) differential
equations coupling the motion of nearest neighbours. In terms of the linear stability
properties that we focus on here, this analysis began in the late 1950s (Chandler
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Figure 1. An example of spatio-temporal patterns in inductance loop data from the
north-bound M42 Motorway in the UK. This kind of spatially extended pattern is a
common feature of highways around the world (Treiber et al., 2010). Distance in kilome-
tres is plotted on the vertical axis against time in hours on the horizontal axis. Colour
corresponds to speed in kilometres per hour. There are two junctions present in this figure,
labelled J5 and J6. Drivers travel up the page, in the direction of increasing distance and
time. A zone of congestion (sometimes called synchronized flow) builds at J6, due to the
combined volume of the main carriageway and on-ramp flow. The region of synchronized

flow has a stationary downstream front which remains fixed at the junction. However,
numerous stop-and-go waves emerge in an upstream direction, propagating against the
flow of the traffic.

et al., 1958). In particular, Herman et al. (1959) developed the concept now known
as string instability, in which a growing wave envelope may propagate up a column
of vehicles, even when the ‘local’ dynamics of each individual vehicle are stable.
In mathematical language, string instability is a special case of convective spatio-
temporal instability, in that growth is via a localised travelling envelope, in contrast
to absolute instability where the linearised model experiences blow-up at all points
in the spatial domain.

In realistic traffic models, driver behaviour is governed by vehicles in front,
rather than behind, so instability is necessarily convective when measured in the
frame of the vehicles. The complication is that data such as figure 1 are presented
in the frame of the road, rather than in the frame of the vehicles, each of which
is driving forward relative to the road. So an instability which is convective in the
vehicle frame can be either absolute or convective in the road frame, depending on
whether vehicles drive forward faster than the wave envelope propagates backwards
relative to them. See figure 2. The importance of this distinction between convective
and absolute instability in the vehicle and road frames has been recognised by
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Convective instability in traffic models 3

Figure 2. Illustration of vehicle trajectories with equilibrium velocity v∗ in (x, t) space for
upstream convective instability (a), absolute instability (b) and downstream convective
instability (c). The wedges of growing instability are shaded in grey and bounded up and
downstream by the velocities c− and c+ respectively.

Treiber et al. (2000, 2010), but so far a full mathematical analysis has been lacking.

In this paper we present rigorous mathematical criteria that distinguish been
convective string instability and absolute string instability in the road frame. The
calculations are developed for a general family of car-following models introduced
in §2. The basis structure of the linearisation is then explained in §3. The chief
idea is to calculate ranges of wave speeds that correspond to the propagation of
information. The calculations that then follow are of two types:

• Firstly (§4), we compute the group velocity that can be supported by growing
modes. This work is thus a generalisation of Mitarai & Nakanishi (2000) who
computed group velocity for a particular car-following model known as the
Optimal Velocity model. More recent work by Helbing & Johansson (2009)
revisited the Optimal Velocity model and in addition computed the group ve-
locity for a family of related macroscopic (partial differential equation) mod-
els. All of these group velocity calculations are attractive because they are
simple both conceptually and in terms of their mathematical details. How-
ever, this approach is based on the flawed assumption that group velocity is
equivalent to the velocity of information — when, in fact, this assumption is
true only for non-dissipative media (Brillouin, 1960).

• The correct approach (§5) employs the calculation of signal velocity, which
may be defined loosely as the velocity at which a new signal can penetrate
a medium which is at rest. This calculation employs the steepest-descent
method to determine the large-time asymptotics of the vehicle trajectories.
This leads to an intriguing mathematical problem concerning the saddle se-
lection procedure that is described in detail in Appendix B.

Unfortunately (from the point of view of the practitioner), the extra complication
of the signal velocity calculation is required, because the group velocity and signal
velocity are only the same for non-dissipative media (Brillouin, 1960). For example,
in light propagation, it is know that dissipative media may exhibit superluminal
group velocity (Garrett & McCumber, 1970; Wang et al., 2000).

Article submitted to Royal Society



4 J.A. Ward and R.E. Wilson

Figure 3. Car-following model set-up, see equation (2.2).

Section 6 gives numerical results for two particular examples of car-following
models. In particular, figure 1 suggests that in congested conditions, information
should propagate only upstream in the road frame, and hence we seek models and
parametrisations which replicate this behaviour. In fact, the absence of downstream
growth in macroscopic data is not incompatible with convective downstream or
absolute linear instability, if it is combined with more complicated model features.
For example, one might try to construct set-ups in which the downstream growth
is trapped at junctions by the spatial heterogeneity of the road, and where the
consequent upstream propagation results from nonlinear effects.

However, in the parsimonious framework that we consider, it is a sensible start-
ing point to require that models display only convective upstream linear instabil-
ity in the road frame. As we shall see, this is a rather strong criterion in model
parametrisation, which not all models obey for all parameter values. This practical
theme is taken up further in §7, where conclusions and opportunities for further
work are presented.

2. Modelling details

We follow the general car-following model framework developed in Wilson (2008).
Our starting point is the standard situation depicted in figure 3. We consider a single
lane of traffic with identical vehicles labelled 1, 2, etc., in the upstream direction.
Displacements and velocities are denoted xn(t) and vn(t) ≥ 0 respectively, and our
models shall also involve the front-to-front spacing hn(t) := xn−1(t) − xn(t) > 0 of
consecutive vehicles, sometimes referred to as the headway. Note that overtaking is
neglected in our framework in return for analytical tractability, and our approach is
to view lane-changes (and other imperfections, such as noise, heterogeneous road,
differences between drivers etc.) as external perturbations to a deterministic single
lane model whose stability should then be analysed.

In their simplest form, car-following models consist of a set of coupled differen-
tial equations for the trajectory of each vehicle, which supplements the kinematic
relations

ẋn = vn, (2.1)

with a behavioural model

v̇n = f(hn, ḣn, vn). (2.2)

Article submitted to Royal Society



Convective instability in traffic models 5

Here dot denotes differentiation with respect to time, and equation (2.2) mimics
how drivers accelerate or decelerate in response to the distance to the vehicle in
front, the relative velocity

ḣn = vn−1 − vn, (2.3)

and their own velocity. The point of this paper is to derive results for models in the
general form of equation (2.2) with the minimum number of additional assumptions.
However, to demonstrate the theory in operation, we illustrate the paper with two
representative examples:

1. The OVRV (Optimal Velocity with Relative Velocity) model, see Jiang et al.

(2001); Ward (2008). We have

f(hn, ḣn, vn) = α (V (hn) − vn) + βḣn, (2.4)

where V is the so-called Optimal Velocity function defining the maximum safe
speed for a given headway, which drivers relax towards at rate α > 0. The term
βḣn (β > 0) models the tendency for drivers to brake when closing in on their
predecessor, and to accelerate when the gap is increasing. The OVRV model
is not intended to model quantitative details of driver behaviour, but rather
to capture the correct qualitative features in the simplest possible functional
form. When β = 0, the OVRV model reduces to the much-studied Optimal
Velocity model due to Bando et al. (1995). We will follow Bando et al. (1995)
and work in dimensionless variables with the choice

V (h) = tanh(2) + tanh(h − 2). (2.5)

2. The Intelligent Driver Model (IDM), see Treiber et al. (2000). We have

f(h, ḣ, v) = a



1 −
(

v

v0

)δ

−
(

s∗(v, ḣ)

h − l

)2


 , (2.6)

where

s∗(v, ḣ) := s0 + s1

√

v

v0
+ τv − vḣ

2
√

ab
, (2.7)

and the notation and standard parameter values are given in table 1. In con-
trast to the OVRV model, the IDM is an attempt to model driver behaviour
quantitatively in dimensional terms, and we may view equations (2.6,2.7) as
a proxy for the complicated schemes that one usually finds in commercial
microsimulation packages.

Note in practice there are many possible refinements to equation (2.2) such as the
inclusion of reaction-time delay, multi-anticipation (where the motion of more than
one vehicle ahead is considered), lane-changing effects, and heterogeneity of the
vehicle fleet and driver population — but these are beyond the scope of this paper:
see Brackstone & McDonald (1999); Helbing (2001) for reviews.
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6 J.A. Ward and R.E. Wilson

Table 1. IDM parameter values

Parameters Dimensional values

Desired velocity, v0 120 km/h (33.33 m s−1)

Safe time headway, τ 1.6 s

Max. acceleration, a 0.73 m s−2

Desired deceleration, b 1.67 m s−2

Acceleration exponent, δ 4

Jam distance, s0 2 m

Jam distance, s1 0 m

Vehicle length, l 5 m

3. Uniform flow and linear stability preliminaries

Motivated by data, we focus on models described by equation (2.2) that have an
equilibrium speed-headway function V such that

f(h∗, 0, V (h∗)) = 0 for all h∗ > 0. (3.1)

In some models, such as the OVRV (see equation (2.4)), the function V is pro-
vided explicitly as a parameter, whereas in others, such as the IDM (see equa-
tions (2.6,2.7)) it is derived by isolating v∗ from the relation f(h∗, 0, v∗) = 0.
Whichever is the case, we require that V satisfies: 1. V (0) = 0, 2. V ′ ≥ 0 and
3. V (h) → Vmax as h → ∞.

The consequence of equation (3.1) is a one-parameter family of steady driving
solutions known as uniform flows, in which xn(t) = x0 − nh∗ + tV (h∗). Thus in
a uniform flow solution, all vehicles drive at the same speed V (h∗) (so that the
relative velocity of any pair of vehicles is zero) with the same time-independent
headway h∗. In the t-x plane, vehicle trajectories are thus equally spaced parallel
straight lines.

Our approach is to consider small perturbations to the uniform flow equilibria
by setting hn = h∗ + h̃n(t) and vn = V (h∗) + ṽn(t), where h̃n and ṽn are small.
Assuming f is sufficiently smooth, this linearisation yields

˙̃vn = fhh̃n + fḣ

˙̃
hn + fvṽn, (3.2)

where the partial derivatives are evaluated at the constant equilibrium arguments
(h∗, 0, V (h∗)), and necessary constraints for rational driver behaviour are

fh, fḣ > 0 and fv < 0. (3.3)

These conditions simply state that drivers increase their acceleration in response to
an increase in headway or relative velocity but tend to decrease their acceleration as
their own velocity increases. At very large headway, the sensitivity of the dynamics
to the vehicle in front is very slight, so we should also allow fh, fḣ = 0. However,
since the focus of our stability calculations is on close-following situations, we shall
maintain strict inequality in equation (3.3).

Since equation (2.3) implies
˙̃
hn = ṽn−1 − ṽn and

¨̃
hn = ˙̃vn−1 − ˙̃vn, we may apply

the difference operator to equation (3.2) to obtain

¨̃
hn + (fḣ − fv)

˙̃
hn + fhh̃n = fḣ

˙̃
hn−1 + fhh̃n−1, (3.4)

Article submitted to Royal Society



Convective instability in traffic models 7

which is the key equation in this paper. Fundamentally, equation (3.4) describes
the second order dynamics of vehicle n driven by those of vehicle n − 1 ahead of
it. We stress that in this modelling framework, perturbations can only propagate
upstream relative to the vehicle frame, however it remains an open question as to
which direction disturbances propagate relative to the road frame.

Let us consider the the left-hand side differential operator of equation (3.4). Its
characteristic equation (cf Kesting & Treiber (2008)) is

µ2 + (fḣ − fv)µ + fh = 0. (3.5)

Since all coefficients are positive (by equation (3.3)), the roots (that we call platoon

eigenvalues) are either complex conjugate with negative real parts, or both real
and negative. Hence the differential operator is stable. The consequence is that
if an instantaneous perturbation is applied to a finite platoon of vehicles whose
leader’s velocity is held fixed, then as t → ∞, every vehicle returns to equilibrium.
Hence the models that we consider do not exhibit platoon instability (sometimes
referred to as local instability in the classical traffic literature).

However, the key point is that a platoon-stable model can nevertheless display
instability when observed in a moving frame of reference. This is the essential
point of convective instability, also known as string instability in the classical traffic
literature. To understand this point, consider a semi-infinite column of vehicles in
uniform flow whose leader drives at a fixed speed. Let us suppose that the second
vehicle in the column is instantaneously ‘kicked’ out of equilibrium, and let us
study the ensuing fluctuations which propagate back up the column of vehicles.
Each vehicle in turn will be disturbed momentarily from equilibrium, but then
return to steady driving owing to platoon stability. However, if the column is string-

unstable, the maximum departure from equilibrium that each vehicle experiences
will increase as one goes further and further up the column of vehicles. See Wilson
& Ward (2010) for a more detailed discussion of this process.

4. Group velocity calculations

Our first attempt at understanding string instability is a development of the general
Fourier analysis presented in Wilson (2008). The point is to solve equation (3.4)
via the ansatz

h̃n = Re
(

Aeinθeλt
)

, (4.1)

which yields the quadratic characteristic equation

λ2 +
{

fḣ(1 − e−iθ) − fv

}

λ + fh(1 − e−iθ) = 0, (4.2)

to solve for the (generally complex) growth rate λ in terms of the discrete wave-
number θ, 0 < θ ≤ π. Here a small (positive) value of θ corresponds to very long
wavelength fluctuations, and θ = π gives the shortest possible wavelength in this
discrete setting, i.e., a perturbation that is period-two in the vehicle index. The
solutions to equation (4.2) are given exactly by

λ±(θ) =
1

2

{

−
[

fḣ

(

1 − e−iθ
)

− fv

]

±
√

[

fḣ (1 − e−iθ) − fv

]2 − 4fh (1 − e−iθ)

}

,

(4.3)
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8 J.A. Ward and R.E. Wilson

where stability of a given mode is governed by the root λ+ with greatest real part.
In Wilson (2008) it is proven that if any given wavenumber θ is unstable, i.e., if
λr(θ) := Re(λ+(θ)) > 0, then all smaller wavenumbers (i.e., longer wavelengths)
are unstable too — in the sense that λr(θ̃) > 0 for 0 < θ̃ < θ. Hence stability of a
given uniform flow solution is controlled by long wavelengths in that one only need
test the sign of λr(0+).

From equation (4.2) we have λ(−θ) = λ(θ) and hence that the real and imag-
inary parts of λ are even and odd functions of θ respectively. Thus we seek the
expansion

λ+ = iλ1θ + λ2θ
2 + iλ3θ

3 + λ4θ
4 + . . . , (4.4)

with real coefficients λ1, λ2, . . ., etc. Here the sign of the real part

λr(θ) = λ2θ
2 + λ4θ

4 + . . . (4.5)

governs whether a given mode grows or decays, and we define

ω(θ) := −Im(λ+(θ)), = −λ1θ − λ3θ
3 − . . . , (4.6)

so that ω(θ)/θ gives the phase velocity measured relative to the discrete lattice
coordinate, with a positive value denoting upstream propagation.

By equating powers of θ in equation (4.2), we find

λ1 =
fh

fv

, = −V ′(h∗) < 0, (4.7)

and

λ2 =
fh

f3
v

(

f2
v

2
− fḣfv − fh

)

. (4.8)

Note the sign of λr(0+) is given by the sign of λ2, which thus gives the bifurcation
condition (Wilson, 2008). Precisely:

• For λ2 < 0, the given uniform flow is linearly stable in that all wavenumbers
are linearly stable.

• For λ2 > 0, the given uniform flow is linearly unstable to small wavenumber
(long wavelength) modes, and we may speak of a window of instability, i.e. a
range 0 < θ < θmax of unstable wavenumbers for which λr(θ) > 0.

Plots of λr(θ) for the stable and unstable cases are displayed in figure 4.
When a uniform flow is only marginally unstable, the window of instability is

confined to relatively small wavenumbers. In this case, λr(θ) is well approximated
by the first two terms in its series, see equation (4.5). Since it may be shown that
λ4 < 0 when λ2 > 0 (see Appendix A), it follows that

θmax ≃ θapprox
max :=

√

−λ2/λ4. (4.9)

However, the exact value of θmax may also be calculated numerically from equa-
tion (4.3).

The point now is to determine the speed of packets of waves (focusing later
on unstable modes for which λr(θ) > 0). In the lattice frame (i.e., relative to the

Article submitted to Royal Society



Convective instability in traffic models 9

Figure 4. Growth rate λr as a function of discrete wavenumber θ: (a) stable; (b) unstable.
The transition to instability is given by a change in the sign of the second derivative λ2 at
θ = 0. Observe that λr = 0 when θ = 0 because of neutral stability within the continuous
family of uniform flow solutions.

column of vehicles), the upstream speed of a packet of wavenumber θ is given by
the well-known group velocity ω′(θ) = dω/dθ, which must be multiplied by the
underlying lattice spacing h∗ to give a dimensional speed. However, since vehicles
(i.e., the lattice points) are moving downstream with the underlying velocity V (h∗),
the velocity of the wave packet relative to the road frame is given by

cg(θ) := V (h∗) − h∗ω
′(θ), (4.10)

where a positive (resp. negative) value denotes downstream (resp. upstream) prop-
agation. Henceforth we refer to cg(θ) defined by equation (4.10) as simply the group
velocity.

To calculate cg(θ) exactly, we need to differentiate the quadratic formula in
equation (4.3) directly. However, for small θ we may alternatively use equation (4.7)
and the first two terms of equation (4.6) to obtain

cg(θ) ≃ [V (h∗) + h∗V
′(h∗)] + 3h∗λ3θ

2. (4.11)

Since it may be shown that λ3 > 0 when λ2 > 0 (see Appendix A), it follows that
cg(θ) is an increasing function for small θ. In fact, cg(θ) is increasing for all θ, but
the proof requires the direct differentiation of equation (4.3) (details omitted here).

We now return to the fundamental question, namely how to classify the insta-
bility of uniform flow. The approach that we take here is to view the group velocity
cg(θ) as a proxy for the velocity of propagation of information. In fact, as we have
discussed, this approach is flawed, because the traffic models that we consider are
not non-dissipative and so instead the signal velocity should be used. (This is a
more difficult calculation that follows in §5.)

However, for the time being, we identify the range of group velocities exhibited
by unstable wavenumbers, and consequently the range of velocities with which wave
packets can be propagated without decay. Specifically, we take an unstable uniform
flow (for which λ2 > 0) and define

c−g := inf{cg(θ) : 0 < θ < θmax} and c+
g := sup{cg(θ) : 0 < θ < θmax}. (4.12)

Article submitted to Royal Society



10 J.A. Ward and R.E. Wilson

Figure 5. Illustration of how the group velocity cg(θ) may be used to identify convective
and absolute instabilities. The leading and trailing edge velocities, c+

g = cg(θmax) and
c−g = cg(0) respectively, are labelled. In panel (a), both c+

g and c−g are negative, thus the
disturbance travels upstream against the flow of traffic and is convective. In panel (b) c+

g

is positive and c−g is negative and hence the disturbance travels simultaneously up and
downstream and is absolutely unstable. Panel (c) is convectively unstable because both
c+
g and c−g are positive.

In some sense, c−g and c+
g thus capture respectively the velocities of the upstream

and downstream edges of the wedge of instability (see figure 2). The three types of
instability are then characterised as follows:

• c−g < c+
g < 0. Convective upstream instability. (Wave packets only propagate

upstream.)

• c−g < 0 < c+
g . Absolute instability. (Wave packets propagate in both direc-

tions.)

• 0 < c−g < c+
g . Convective downstream instability. (Wave packets propagate

only downstream.)

This classification is depicted in the numerical examples in figure 5. Because
cg(θ) is an increasing function, it follows that

c−g = cg(0) and c+
g = cg(θmax). (4.13)

Thus we have the exact formula

c−g = V (h∗) + h∗V
′(h∗), (4.14)

but the exact calculation of c+
g requires the application of numerical methods to

equation (4.3), to calculate θmax and the derivative ω′. However, for cases which
are only marginally unstable, in that θmax is small, we may use equation (4.9) in
combination with equation (4.11) to obtain

c+
g ≃ c−g − 3h∗

λ2λ3

λ4
. (4.15)

The analytical details of the group velocity calculation are now complete. Later,
in §6, we classify whole ranges of uniform flows for the exemplar models introduced
in §2, and in particular we chart how the stability changes with parameters. This
process involves calculating the transitions between absolute and convective up-
stream (resp. downstream) instability defined by the locus of c+

g = 0 (resp. c−g = 0).

Article submitted to Royal Society



Convective instability in traffic models 11

5. Signal velocity calculations

So far we have used the group velocity (which characterises the propagation of
wave packets) in order to classify instability in the linearised general car-following
model defined in equation (2.2). We now use asymptotic methods to calculate the
signal velocity, at which information penetrates a medium that is initially at rest
(Brillouin, 1960). As we have discussed, the group velocity and signal velocity are
usually different. The group velocity is found by a simpler calculation, but it is the
signal velocity which correctly represents the propagation of information.

Our set-up is a notional experiment in which a semi-infinite column of vehicles
n ≥ 0 are given equilibrium initial data hn(0) = h∗ and vn(0) = V (h∗). We then
prescribe a small disturbance to the trajectory of the lead vehicle n = 0, which is
localised in time, and we examine how this perturbation drives the motion of the
vehicles upstream. Thus for n ≥ 1 we take the Laplace transform of equation (3.4)
and obtain

[

z2 + (fḣ − fv)z + fh

]

Fn(z) =
[

fḣz + fh

]

Fn−1(z), (5.1)

where Fn(z) denotes the Laplace transform of h̃n(t). This recursion relation can be
solved to yield

Fn(z) = g(z)nF0(z), (5.2)

where

g(z) =
fḣz + fh

z2 + (fḣ − fv)z + fh

. (5.3)

For n ≥ 1, we apply the Laplace inversion formula

h̃n(t) =
1

2πi

∫ γ+i∞

γ−i∞

g(z)nF0(z)etzdz, (5.4)

where γ is chosen to the right of the poles of g(z), given by the platoon eigenvalues µ
that solve equation (3.5). In fact, this integral can be solved explicitly by calculating
the residue at the poles, but since these are degree n, we must apply the Leibnitz
formula to compute the (n − 1)-th derivative of the regular part of the integrand.
This procedure is tractable but yields a complicated double sum which cannot be
analysed further.

Hence instead we analyse equation (5.4) by asymptotic methods. Our approach
is to apply the method of steepest descents to equation (5.4) to extract the t → ∞
behaviour: see Bender & Orszag (1999, Chap. 6) for details. The general scope of
the method is the integral

I =

∫

C

f(z) exp(tρ(z)) dz, (5.5)

where f(z) and ρ(z) are analytic except at isolated singularities (poles, branch cuts
etc.). The idea is then to consider an alternative contour C′ which is obtained by
deforming C. If this can be achieved without crossing the integrand’s singularities,
then I is unchanged by Cauchy’s theorem. We seek such a C′ that passes through
a saddle point z∗ at which ρ′(z∗) = 0, and at which is attained the local and
global maxima of Re(ρ(z)) along the contour. In consequence, as t → ∞, the local
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12 J.A. Ward and R.E. Wilson

properties of the integrand at the saddle point dominate the integral, and the
leading order asymptotics may be computed in the form

I ∼
(√

2π

t|ρ′′(z∗)|

)

f(z∗) exp (tReρ(z∗)) exp (i(ζ + tIm(ρ(z∗)))) , (5.6)

where ζ = arg ρ′′(z∗)/2 + π/2.
In its present form, the integral (5.4) gives ρ(z) = z, and consequently there is

no saddle point. The trick is thus to write the integrand in the form

g(z)nF0(z)etz = F0(z) exp (tz + n log g(z)) , (5.7)

so that we may proceed with f(z) = F0(z) and

ρ(z) = z + κ log g(z), (5.8)

where κ = n/t. For the method of steepest descents to work, we require ρ(z) and
f(z) to be independent of t, so we fix κ while we apply the t → ∞ asymptotics. In
essence, we thus analyse wave propagation along a ray with speed κ upstream in
the lattice frame.

To clarify the structure of the calculation: we have h̃n(t) = I/2πi, where I is
given asymptotically (for large t) by (5.6). In equation (5.6), the saddle point z∗ is
a function of κ = n/t, which is found by the procedure that we now develop.

The saddle points are found by computing

ρ′(z) = 1 + κ
g′(z)

g(z)
, (5.9)

and thus we seek solutions of

g(z) + κg′(z) = 0, (5.10)

yielding the cubic equation

fḣz3+
[

fh + fḣ(fḣ − fv) − fḣκ
]

z2+
[

fhfḣ + fh(fḣ − fv) − 2fhκ
]

z+f2
h+fhfvκ = 0,

(5.11)
parametrised by κ.

In general, equation (5.11) must be solved numerically. The question is then for a
given κ, which of the three roots of equation (5.11) should be taken as z∗ in formula
(5.6). The requirements are that 1. the saddle point in question is a local maximum
(rather than a local minimum) of Re(ρ(z)) in the direction of the contour; 2. that
it is also the global maximum of Re(ρ(z)) on the contour; and 3. that the contour
may be obtained by deformation of the line (γ − i∞, γ + i∞) without crossing the
poles of g(z) (i.e., the platoon eigenvalues µ). These requirements concern the level
set geometry of Re(ρ(z)) which is considered in detail in Appendix B.

The selection procedure developed in Appendix B has some delicate features
for small κ which nevertheless may be automated by computer. However, for κ >
0.1

√
fh, the following particularly simple prescription holds:

Case 1. Equation (5.11) has one real and two complex conjugate roots. The two
complex conjugate roots are the saddles z∗ of interest and the contour should
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Figure 6. In panel (a) we compare the asymptotic expansion (grey) and microscopic sim-
ulation data (black) for the IDM model with standard parameter values (see table 1) at
the equilibrium velocity v∗ = 10ms−1. The lead vehicle has a fixed constant speed and
instability is triggered by increasing the initial velocity of the second vehicle by 0.5% above
the equilibrium value. The perturbation field h̃n(t) of vehicle n = 200 is plotted against
time t. The asymptotic expansion is calculated from equation (5.6) over a range of values
of κ = n/t. A close up of the comparison is plotted in the inset. In panel (b) we plot
the corresponding exponential growth factor Φ(κ) for the asymptotic results presented in
panel (a). The time scale is plotted linearly on the lower horizontal axis, as in panel (a),
and the corresponding values of κ are labelled on the upper horizontal axis. The critical
speeds, κ1 and κ2, bounding the envelope of the disturbance, are marked with dashed
lines.

be deformed over both, to incorporate two terms of the form of equation (5.6).
However, each complex conjugate contributes the same exponential growth
factor, so that either may be used in the criterion that follows.

Case 2. Equation (5.11) has three real roots. The greatest, i.e., z∗ = max(z1, z2, z3)
is the one of interest.

Once the correct saddle z∗(κ) has been selected, formula (5.6) may be used to
derive the t → ∞ asymptotics of h̃n(t) as we have described above. Note that this
procedure gives rise automatically to a real answer for h̃n(t). In case 2., this is
because the saddle in question is real, whereas in case 1. it is due to cancellation of
the conjugate components from the pair of saddles that is used.

Figure 6(a) shows an example of just how close the asymptotic agreement is.
However, more importantly, we may extract the dominating exponential growth
factor from equation (5.6), in the form

Φ(κ) := φ(z∗(κ)), (5.12)

where
φ(z) := Re(ρ(z)) = Re(z) + κ log |g(z)|. (5.13)

If Φ(κ) > 0, then perturbations grow along the ray in question, whereas if Φ(κ) < 0,
they decay.

The next task is to consider how Φ depends on κ. We have no proofs as to
the general structure, but rather we use a numerical procedure which loops over κ,
solving the cubic equation (5.11) and selecting the correct saddle for each individual

Article submitted to Royal Society



14 J.A. Ward and R.E. Wilson

value of κ. A typical computation is illustrated in figure 6(b). In general, for linearly
unstable uniform flows, we find κ1, κ2 > 0 such that Φ(κ) > 0 for κ1 < κ < κ2,
and Φ(κ) < 0 elsewhere. Thus κ1 and κ2 identify critical speeds bounding a wedge
in which perturbations grow. Thus we may establish signal velocities

c−s := V (h∗) − κ2h∗ and c+
s := V (h∗) − κ1h∗, (5.14)

measured relative to the road frame, which bound the envelope in which perturba-
tions grow. The signs of the signal velocities c−s and c+

s may then be analysed in
the same way as those of the group velocities c−g and c+

g (§4) in order to classify
the type of stability.

6. Examples and illustrations

So far, in §4 and §5, we have developed general analytical methods in order to
establish a recipe that can be used to classify the stability of any car-following
model that complies with the general formulation (2.2). To illustrate what may be
achieved, we now apply these techniques to the exemplar models introduced in §2.

Note that it is no longer sufficient to study the stability of a single uniform flow
solution. Rather, a car-following model should be characterised by analysing the
stability class of all of its uniform flow solutions, as the equilibrium headway (or
velocity) and the model parameters are varied.

To begin with, we fix the model parameters by choosing (a) α = 0.6 and β = 0.2
for the OVRV model and (b) by selecting the standard published parameters for
the IDM model (table 1). We then scan through a range of equilibrium velocities
v∗ and compute the corresponding bounding group velocities c±g (§4) and signal
velocities c±s (§5).

See figures 7(a,b) for the results. In each plot we observe ‘bubbles’ formed by the
pairs of curves (c−g , c+

g ) and (c−s , c+
s ) which mark the extent of the unstable regime.

Note that in general the group velocities and signal velocities do not agree, except
at the left- and right-hand edges of the bubbles which correspond to the onset of
instability — at which points the underlying linear models are non-dissipative.

Furthermore, in figures 7(a,b) we classify ranges of equilibrium velocity v∗ ac-
cording to the bounding signal velocities, so that

1. Cu (convective upstream instability) corresponds to c−s < c+
s < 0;

2. A (absolute instability) corresponds to c−s < 0 < c+
s ; and

3. Cd (convective downstream instability) corresponds to 0 < c−s < c+
s .

In the unshaded ranges labelled S, the dynamics are linearly stable because λ2 < 0,
see equation (4.8).

When traffic is unstable, we find

c−g < c−s < c+
g < c+

s , (6.1)

and we conjecture that this is a general result. In consequence, the range (c−s , c+
s ) of

possible signal velocities overlaps but is downstream of the range (c−g , c+
g ) of possible

group velocities. Extreme caution is thus required if group velocity is used as a
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Figure 7. Comparison of the bounding group c±g and signal velocities c±s as the equilibrium
velocity v∗ is varied. The OVRV model with parameters α = 0.6 and β = 0.2 is used in
panel (a) and the IDM model with standard parameter values (see table 1) is used in panel
(b). Here S denotes stable dynamics and instability is classified according to the signal
velocities: Cu denotes convective upstream instability; A denotes absolute instability; and
Cu denotes convective downstream instability. Note that all wave propagation velocities
are less than the traffic equilibrium velocity v∗, because information always propagates
upstream relative to the vehicles.

proxy for the propagation of information. In particular, a model may be considered
‘good’ from the point of view of group velocity, in that c−g < c+

g < 0 and thus
downstream propagation in the road frame appears to be avoided. However, one
may have c+

s > 0 so that instability is in fact absolute.
To investigate the classification of instability further, we now compute two-

parameter diagrams in which both the equilibrium velocity and a single model
parameter are varied. For the latter (and for the purposes of illustration), we choose
the sensitivity parameters, namely α in the OVRV model (see equations (2.4,2.5))
and a in the IDM model (see equations (2.6,2.7)).

See figure 8 for the results, where the regimes are computed and labelled ac-
cording to the signal velocity, in the same way as for the one-parameter pictures in
figure 7. The boundaries between the different instability regions (denoted by solid
lines) are thus computed by tracing out the loci of c−s = 0 and c+

s = 0. In addition,
dashed lines show the loci of c−g = 0 and c+

g = 0, so that it is clear that using the
group velocity will not achieve the same classification as using the signal velocity.
The boundary of the stable regime S is found by computing the locus of λ2 = 0.

Note that figure 8 establishes that the stability charts for the OVRV model and
the IDM are qualitatively the same. We have found that most ‘reasonable’ car-
following models seem to generate similar pictures, but this assertion can only be
supported by a much more detailed numerical study that is beyond the scope of
this paper.

As we have discussed, we consider it appropriate that practical car-following
models are parametrised so that linear stability is only ever convective upstream
(type Cu) in the road frame. However, in the IDM model, the standard choice

a = 0.73m/s
2
, indicated by the horizontal dotted line in figure 8(b), attains all 3

types of instability. Thus our analysis suggests that a larger value, e.g., a ≃ 1.2m/s2

is better.
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Figure 8. Classification of the stability regions for (a) the OVRV model (with β = 0.2) and
(b) the IDM model (standard parameters from table 1). We vary the sensitivity parame-
ters α and a respectively, and consider the stability of uniform flows parametrised by the
equilibrium velocity v∗ (in order to compress the horizontal axis). The horizontal dotted
lines (α = 0.6 and a = 0.73 in panels (a) and (b) respectively) denote the one-dimensional
sections which were explored in figure 7. As for figure 7, S denotes stable dynamics and
instability is classified according to the signal velocities: Cu denotes convective upstream
instability; A denotes absolute instability; and Cd denotes convective downstream insta-
bility. The solid lines labelled c±s denote the loci c±s = 0 and hence the boundaries of the
different instability regions. The dashed lines labelled c±g denote the loci c±g = 0 and hence
indicate how the classification would change if computed according to the group velocity.

In fact, in figure 8 we may observe that as the sensitivity parameter (α or a)
is reduced, the onset of instability is convective upstream, i.e., the desirable kind
of instability. Only when the sensitivity parameter is reduced much further do
we also obtain (undesirable) absolute and convective downstream instability. This
suggests that when parametrising microsimulation models, one should generally
choose parameters which are only slightly unstable at the linear level, so that only
type Cu instability is obtained.

Why is the onset of instability (as α or a is reduced) convective? Recall (figure 7)
that at onset, the bounding signal and group velocities coincide so that the group
velocity classifies the type of instability correctly. Further, at onset, θmax = 0+,
so that c+

g = cg(0+) = c−g from equation (4.13). Thus there is a single value of
group velocity (rather than an admissible window) and instability is thus convective
upstream (resp. downstream) if the group velocity is negative (resp. positive). To
distinguish the two possible types, equation (4.14) gives

c−g = c+
g = V (h∗) + h∗V

′(h∗), = Q′(ρ∗), (6.2)

at onset, where ρ∗ = 1/h∗, and

Q(ρ) = ρV̂ (ρ), (6.3)

with V̂ (ρ) = V (1/ρ). Relation (6.3) is the so-called fundamental diagram relating
macroscopic flow and density. Equation (6.2) then captures the well-known prop-
erty of hydrodynamic theory that the local wave-propagation speed is equal to the
gradient of the fundamental diagram.
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To guarantee that the onset of instability is convective upstream, it thus suffices
to parametrise one’s car-following model so that the first instability (as sensitivity
is reduced) occurs to the right of the fundamental diagram’s maximum value, so
that Q′(ρ∗) < 0.

Finally, note that the locus of c−g = 0 corresponds in general to the maximum of
the fundamental diagram at which Q′(ρ∗) = 0 — a condition which is independent
of the sensitivity (α or a), thus giving rise to the vertical sections of dashed line in
figures 8(a,b).

7. Conclusion

The message of this paper is that there are important distinctions in the type of
instability that highway traffic models display. The concepts presented here are
standard in the Mathematical wave propagation literature (Huerre & Rossi, 1998,
Sec. 3), but are not appreciated by traffic modellers and in particular the microsim-
ulation community. However, we view the stability properties as an essential part of
the design and parametrisation of car-following models. Firstly, no good simulation
model should display platoon instability, see equation (3.5). Secondly, if a model
displays string instability, then one should consider how it propagates disturbances
relative to the frame of the road. Our view is that only convective upstream (type
Cu) instability should be allowed. This is because spatio-temporal patterns in de-
tector data which display growth only do so in the upstream direction. However, we
should emphasise that the absence of downstream growth in data does not rule out
downstream linear instability (of types Cd and A), if it is combined with more com-
plicated model features (e.g., nonlinearity, or spatial heterogeneity at junctions).
Thus the arguments presented here should be viewed only as the first step in a
more detailed modelling debate.

We have seen that there are two quantities which can be used to describe the
overall wave propagation properties and classify the direction of instability. These
are the group velocity (§4) and the signal velocity (§5). The group velocity describes
the propagation of wave packets, whereas the signal velocity describes how a new
disturbance penetrates a medium which is initially at rest. Our view is that traffic
instability is triggered by instantaneous microscale events in the vicinity of junc-
tions, and so the signal velocity is the correct measure to determine the envelope
of the resulting disturbance and so classify the type of instability.

Unfortunately, the calculation of the signal velocity is more complicated than
that for the group velocity, but in principle all of the steps shown here can be auto-
mated using automatic differentiation and root-finding methods, if a car-following
model were to be supplied as a black-box routine which complies with the structure
described in §2. However, more work is required to generalise the model structure
still further, for example, to incorporate reaction-time delay and multi-anticipation
effects.

Finally, an example of the kind of practical lesson that can be achieved by our
analysis is displayed in figure 8 — which although it is model-specific, suggests more
broadly that the undesirable types of string instability (convective downstream Cd

and absolute A) may be eliminated if models are parametrised so that linear insta-
bility is only marginal. Recent analysis of empirical stop-and-go wave data (Zielke
et al., 2008) has indicated surprisingly small growth rates which are consistent with
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the suggestion that linear instability is a marginal effect. However, an alternative
perspective (Wilson, 2008) for further investigation is that nonlinear stability prop-
erties are also crucial in determining the overall wave propagation properties.

We thank Martin Treiber who brought this problem area to our attention at a meeting
in Hamburg in October 2007, and for interesting conversations with him since, in Vienna
(May 2008) and in Dresden (April 2009). JAW acknowledges the support of the Science
Foundation Ireland (grant ref. 06/MI/005). REW acknowledges the support of EPSRC
Advanced Research Fellowship EP/E055567/1 and the Highways Agency for access to
MIDAS inductance loop data.
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Appendix A. Details of the small wavenumber expansion

In §4, we introduced the perturbation expansion for λ+ in terms of the real coeffi-
cients λ1, λ2, . . . , which we solved for up to second order. Furthermore, we showed
that λ1 < 0 and the sign of λ2 controls stability. In this section we prove that
λ3 > 0 and λ4 < 0 when λ2 > 0, i.e. when the system is unstable.

Collecting the third order terms in the small θ perturbation expansion of the
dispersion relation given by equation (4.2), we find

λ3 =
1

6fv

(

6λ2

[

fḣ + 2λ1

]

+ 3fḣλ1 − fh

)

. (A 1)

Using equation (3.3) we observe that

[

fḣ + 2λ1

]

=
1

fv

[

fḣfv + 2fh

]

< 0 when λ2 > 0, (A 2)

since

0 <
f2

v

2
+ fh < fḣfv + 2fh. (A 3)

Thus when λ2 > 0, all the grouped terms in parenthesis in equation (A 1) have
negative sign and therefore λ3 > 0. Collecting the fourth order terms, we find

λ4 =
1

24fv

(

24λ2
2 + fḣλ2 − 24λ3

[

fḣ + λ1

]

− 4λ1

[

6λ3 − fḣ +
fv

4

])

. (A 4)

Using the same argument as before, when λ2 > 0, we find

−24λ3

[

fḣ + λ1

]

> 0, (A 5)

and

− 4λ1

[

6λ3 − fḣ +
fv

4

]

=

− 4λ1

fv

[

6λ2

(

fḣ + 2λ1

)

+ 3fḣλ1 +

{

(fv)
2

2
− fḣfv − fh

}

− (fv)
2

4

]

> 0, (A 6)

since all the grouped terms in square brackets are negative. Thus when λ2 > 0, all
the grouped terms in parenthesis in equation (A 4) have positive sign and therefore
λ4 < 0.

Appendix B. Details of the saddle selection procedure

We now give further details of the selection of the saddle point z∗ required in the
signal velocity calculation as described in §5. This is a rather technical argument
which the end-user may skip. Recall that we seek saddle points of ρ(z) defined
by equation (5.8), which are thus roots of the cubic equation (5.11) parametrised
by fh, fḣ, fv and κ. Ultimately we are interested in calculating the correct choice
of saddle as κ is varied. However, here we develop the prescription for fixed (but
general) values of all of the parameters including κ.
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Because the cubic equation (5.11) has real coefficients, ρ(z) has generically either
three real saddles or a single real saddle and a complex conjugate pair. Our tactic is
to analyse the local behaviour of ρ(z) at the real saddle(s) and to determine whether
the direction of their curvature is suitable for employment in the steepest-descent
method. If no real saddle can be used, we infer that the complex conjugates must
be chosen instead.

When a candidate saddle has thus been identified, the global geometry must be
checked to ensure that the original contour C = (γ − i∞, γ + i∞) can be deformed
to pass through the saddle without crossing singularities. Moreover, we require that
φ(z) := Re(ρ(z)) attains not only a local maximum but also its global maximum
on the deformed contour C′ at the selected saddle point. In practice this last point
can be checked by inspecting the level set geometry of φ(z) and ensuring that C′

does not re-cross the level sets which emanate from the saddle.
We shall seek deformed contours C′ which are symmetric about the real axis

in the complex plane, and which thus cross the real axis orthogonally, i.e., parallel
to the imaginary axis at the point of crossing. If φ has a local maximum in the
imaginary direction at real z∗, then by the Cauchy-Riemann equations, φ has a
local minimum in the real direction. Real saddles of φ thus correspond to turning
points of the real function

φ(x) = x + κ log

∣

∣

∣

∣

p(x)

q(x)

∣

∣

∣

∣

, (B 1)

and candidates for the steepest-descent method correspond to local minima. Here
x is real, and we define

p(x) := fḣx + fh, (B 2)

and

q(x) := x2 + (fḣ − fv)x + fh. (B 3)

The key simplification is that we may analyse the real geometry of equation (B 1)
without solving the cubic equation (5.11), but rather by studying its (real) singu-
larities, which are of two types:

• P: the single zero −fh/fḣ of p(x). Note φ(x) → −∞ as x → P±.

• Q: the real zeroes of q(x), if there are any. These correspond to the platoon
eigenvalues that solve equation (3.5). Note φ(x) → +∞ as x → Q±.

Note also that φ(x) → −∞ as x → −∞ and φ(x) → +∞ as x → +∞. The
geometry of φ(x) may thus be classified according to the order of the singularities
on the real line, which we may describe intuitively via the notation QQP, QPQ,
PQQ, or P. Here case P denotes when the platoon eigenvalues are complex.

We now analyse how the singularity structure depends on the choice of param-
eters fh, fḣ, fv and κ. To simplify the study, we observe that a non-dimensional
time t̂ = t

√
fh can be introduced, for example in equation (3.4). This eliminates the

parameter fh and introduces re-scaled parameters f̃ḣ := fḣ/
√

fh and f̃v := fv/
√

fh

and subsequently κ̃ := κ/
√

fh. Hence in what follows, we set fh = 1 and analyse
how the problem depends on fḣ, fv and κ only, where the ‘tildes’ are dropped for
notational convenience.

Article submitted to Royal Society



22 J.A. Ward and R.E. Wilson

−2 −1 0
0

1

2

P

QQP

QPQ

PQQ

Unstable

fv

fḣ
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Figure 9. Illustration of the (fv, f
ḣ
) plane which is split into four regions according to

the order of the singularities of φ(x), namely QQP, QPQ, PQQ and P. These regions are
bounded by the curves f

ḣ
= fv + 2 (double root of q(x)) and f

ḣ
= −1/fv (at which one

of the roots of q(x) coincides with the root of p(x)). The region of instability is shaded
in grey. Note that only the QQP and P regions occur for parameters corresponding to
instability.

The order of the singularities of φ(x) is independent of κ, and so may be de-
scribed entirely in terms of the (fv, fḣ) parameter plane. See figure 9. Here the
boundaries between the different classes can be described analytically, and in par-
ticular, it may be proven that only cases QQP and P occur for parameters corre-
sponding to instability. For these cases, the putative geometries for φ and a notation
to describe them are shown in figure 10.

The next task is to investigate which of the geometries in figure 10 are actually
achieved, as κ is varied. This is a problem with intriguing mathematical structure,
but to simplify matters, we have addressed it by numerical search. The results are
summarised in figure 11. In each of the sub-plots, κ is held fixed, and the geometry
in the (fv, fḣ) plane is analysed. To focus attention on parameters corresponding
to instability, the horizontal axis in these pictures is re-scaled so that the unstable
regime is a rectangular strip which fills the scope of each sub-plot.

We find

• The QQP cases (0,1,0,0) and (0,1,0,2) and the P cases (1,0) and (1,2) dominate
for most parameters. For these, the simple saddle selection rules as presented
in §5 apply.

• There is a thin slice of parameters confined to 0 < κ < 0.1 (or 0 < κ < 0.1
√

fh

in the dimensional units used in the main body of the paper) where cases
(0,1,2,0) and (3,0) occur. For these, the middle saddle should actually be
selected. To clarify: if the real saddles are given by z1 < z2 < z3, then z2

should be selected. These rare cases are contrary to the usual prescription
given in §5.

• The cases (0,3,0,0) and (2,1,0,0), which have no admissible saddles, do not
occur. In fact, this result can be proved rigorously by considering the small
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Figure 10. Putative geometries for φ(x) for the cases QQP and P. Singularities are marked
with dashed lines. Each distinct case is labelled according to the number of saddle points
and their position relative to the singularities. For example, case (1,2) (bottom right) has
a singularity P with one saddle to the left and two to the right. Saddle points that lie
on the real line and satisfy the selection criteria are indicated by circular markers. Cases
(1,0) and (0,1,0,0) have admissible complex conjugate saddles. In contrast, cases (0,3,0,0)
and (2,1,0,0) have no admissible saddles, because there are no local minima to the right
of both Q singularities. Consequently, the contour deformation would involve crossing the
poles of φ(z). However in figure 11 we show that cases (0,3,0,0) and (2,1,0,0) do not occur
in practice.

and large κ limits of the cubic equation (5.11) and its derivative with respect
to κ, however this analysis is beyond the present discussion.

Finally, figure 12 shows the level set geometry of φ(z) and the saddle selection
procedure and deformed contours for each of the six geometries that occur. These
plots establish that the rules described above provide saddles and contours which
satisfy the global geometric constraints of the steepest-descent method.

Article submitted to Royal Society



24 J.A. Ward and R.E. Wilson

−1 0
0

3

−1 0
0

3

−1 0
0

3

−1 0
0

3

−1 0
0

3

−1 0
0

3

fḣ
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Figure 11. Rescaled (f̂v, f
ḣ
) plane where f̂v = −fv/(f

ḣ
−

√
(f2

ḣ
+ 2)), i.e. the stability

boundary is given by f̂v = −1. Panels (a)–(f) illustrate where the possible geometries of
φ(x) occur as κ is increased. Each region is labelled according to the notation introduced
in figure 10 and the motion of the boundaries as κ increases is indicated by the grey
arrows. The inset in panel (b) is a zoom of the tiny region around the QQP/P boundary
where geometry of type (3,0) occurs.
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Figure 12. Contour plots of φ(z) for each of the cases introduced in figure 10. The grey
lines indicate the deformed integration contour C′. Singularities are indicated by black
markers and saddle points by white markers.
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