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Abstract In this article, we present a unified perspec-

tive on the cognitive internet of things (CIoT). It is

noted that within the CIoT design we observe the con-

vergence of energy harvesting, cognitive spectrum ac-

cess and mobile cloud computing technologies. We unify
these distinct technologies into a CIoT architecture which
provides a flexible, dynamic, scalable and robust net-

work design road-map for large scale IoT deployment.

Since the prime objective of the CIoT network is to en-

sure connectivity between things, we identify key met-

rics which characterize the network design space. We

revisit the definition of cognition in the context of IoT

networks and argue that both the energy efficiency and

the spectrum efficiency are key design constraints. To

this end, we define a new performance metric called

the ‘overall link success probability’ which encapsulates

these constraints. The overall link success probability

is characterized by both the self-sustainablitiy of the

link through energy harvesting and the availability of

spectrum for transmissions. With the help of a refer-

ence scenario, we demonstrate that well-known tools
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from stochastic geometry can be employed to investi-

gate both the node and the network level performance.

In particular, the reference scenario considers a large

scale deployment of a CIoT network empowered by so-

lar energy harvesting deployed along with the central-

ized CIoT device coordinators. It is assumed that CIoT

network is underlaid with a cellular network, i.e., CIoT

nodes share spectrum with mobile users subject to a

certain co-existence constraint. Considering the dynam-

ics of both energy harvesting and spectrum sharing, the

overall link success probability is then quantified. It is

shown that both the self-sustainability of the link, and

the availability of transmission opportunites, are cou-

pled through a common parameter, i.e., the node level
transmit power. Furthermore, provided the co-existence
constraint is satisfied the link level success in the pres-
ence of both the inter-network and intra-network inter-

ference is an increasing function of the transmit power.

We demonstrate that the overall link level success prob-

ability can be maximized by employing a certain opti-

mal transmit power. Characterization of such an opti-
mal operational point is presented. Finally, we highlight
some of the future directions which can benefit from the
analytical framework developed in this paper.

Keywords Internet-of-Things · Cognitive Radios ·
Solar Energy Harvesting · Stochastic Cloud Cover ·
Shared Spectrum · Underlay · Interference

1 Introduction

The term ‘internet-of-things’ (IoT) was coined by Kevin

Ashton in 1999. The central idea was to empower ev-

eryday objects with internet connectivity thus enabling

pervasive and autonomous communication. The foun-

dation of IoT is based on Weiser’s [1] vision of profound
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software/hardware technologies that weave themselves

into the fabric of everyday life such that they become

indistinguishable. The functionality and modalities of

these technologies is distributed across a variety of in-

terconnected objects. This inter-connectivity of these

objects is pivotal as the collective intelligence of the IoT

network emerges from simple object level interactions.

In turn, such a collective intelligence can be credited
with driving significant innovations in the context of
various applications under the umbrella of smart homes

and cities.

1.1 The IoT Grand Challenge

A recent survey from EiU [2] indicated that around 75%

of businesses are either actively considering or employ-

ing IoT enabled solutions. It is projected that around

500 billion [3] so-called ‘smart things’ will become part

of our day-to-day activities by 2020. Consequently, the
IoT faces the challenge of becoming heavy on ‘things’
while struggling on the connectivity frontier.

A quick glance at the frequency allocation charts

provided by the regulatory bodies reveals that most of
the prime spectrum is already assigned and the mar-

gin for accommodating emerging wireless applications

(such as IoT) is low. Consequently, it seems natural to

think of the spectrum scarcity as a real challenge posed

due to the high utilization of the Hertzian medium.

However, a reality check on the usage patterns of the

available spectral resources reveals that in a nutshell the

spectrum scarcity is nothing but artificial. Spectrum oc-

cupancy measurements [4, 5] have revealed that these

licensed bands are highly under-utilized across space

and time. From 13% to 87% of the radio spectrum

remains unused across spatio-temporal domains. This

sporadic utilization of scarce electromagnetic spectrum

creates an artificial scarcity which in turn poses the

inter-connectivity challenge for IoT. Regulatory bodies

such as the FCC (in the USA) and Ofcom (in the UK)

have already noticed that such under-utilization of the

spectrum can be avoided by more flexible and dynamic

spectrum access (DSA) mechanisms [6]. Radio spec-

trum is a multidimensional entity, i.e., frequency is not

the only parameter/dimension which characterizes the

spectral opportunity. Space, time, transmission power,

polarization, medium access and interference all com-
binely shape the radio environment. The DSA mecha-
nism employs one or more of these parameters to break

the shackles of rigidity imposed by the command and

control mechanism. Cognitive radios (CRs) are envi-

sioned to be the key enablers for provisioning DSA.

CRs are based on opportunistic exploitation of radio

spectrum across one or more dimensions. Nevertheless,

while the CR platform renders itself as a promising so-

lution for improving connectivity, its suitability in the
context of IoT is limited for two main reasons:

1. High cost: CRs employ sophisticated hardware to

derive operational environment awareness and so
naturally the radio platforms costs are higher as
compared to dumb radio terminals. For IoT solu-
tions, the radio platforms will be embedded inside

objects requiring both additional cost and form fac-
tors. Thus the radio platforms should be as sim-
ple as possible, ideally comprising of a single chip

on which a radio transceiver is integrated with the

micro-controller unit (MCU). Manufacturers such as

Texas Instrument, Nordic Semiconductor, Maxim,

CSR, etc., are already providing such simple solu-

tions.
2. Energy consumption and life-time: CR terminals of-

ten pay the cost of opportunism in terms of their

higher energy consumption. More specifically, the

operational environment awareness is driven from

the inference process which consumes more energy

as compared to simple radio platforms. For the wire-
less access applications, energy consumption is not
considered as a design constraint due to the con-

stant supply of power from the grid. Nevertheless,

for IoT based applications energy-consumption is of

the utmost important. As discussed earlier, the ra-

dio platform is part of a variety of objects, most

of them having no/limited access to the power run-
ning on coin cell batteries, etc. In this context, the
cost of opportunism may be incurred in terms of the

reduced operational life-time of these objects.

While object life-time is a critical aspect of design, the

issue of so called ‘green design’ is further brought into

play due to the predicted high volume of ‘smart things’.

Specifically, as predicted in a recent report by Ericsson

[3], the CO2 emissions due to a growing number of inter-
net connected devices will increase from 800 Mtonnes to

1200 Mtonnes by 2020. In terms of net emissions, ICT
will continue to maintain its 2% contribution to the
global carbon foot-print. Nevertheless, according to the

Intergovernmental Panel on Climate Change (IPCC),

current emission trends are far from sustainable, re-

quiring an exponential reduction to meet a 2◦C rise in
global temperature. In a recent survey by Cable News

Network (CNN) it was estimated that a 2◦C rise in
global temperature will result in a 100 billion US dol-

lar expense rise for addressing various challenges due to

climate change. In summary, like all other sectors, ICT

should exponentially reduce its energy consumption to

operate in an eco-friendly manner. Thus in summary,

for future deployment of 500 billion IoT devices a clean
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Fig. 1 Proposed Architecture for the Cognitive IoT Net-
works

slate design is necessary to address both energy and

spectral efficiency issues.

1.2 Design Attributes and Proposed Architecture

The grand challenges posed in the context of the cog-

nitive IoT (CIoT) can be easily translated into design

attributes/constraints. To summarize, the radio plat-

form employed in CIoT devices should be: (i) simple

yet agile; (ii) spectrally efficient and (iii) low power with

a minituarized form factor. To satisfy these design at-

tributes, the definition of cognition in the context of the

IoT must be revisited. In particular, not only is spectral

agility of a prime importance, but power consumption

awareness should also be embedded into the cognitive

engine. We advocate that the cognitive engine must be

equipped with a potential to harvest energy from am-
bient sources and in some cases from the objects them-
selves. For instance, consider smart door locks installed
in modern houses. The radio transceivers on these locks

can be powered using solar panels harvesting indoor

ambient light from both natural and synthetic sources.

Moreover, these locks can also harvest power from the

mechanical motion of door itself. As smart objects have

a very low-duty cycle, harvested energy provides a sig-

nificant potential for designing self-sustainable so called

‘zero-energy consumption’ CIoT networks.

In this paper, we propose a cloud enabled CIoT plat-
form as depicted in Fig. 1 to address the aforementioned

challenges. From an object oriented programming ap-

proach it is well known that an object can be adequately

described by its attributes and functionalites. These

functionalites and attributes can be linked to external

stimuli characterizing events. The behavior of the ob-

ject in response to an external stimulus is defined by the

device profile. External and internal stimului may trig-

ger interrupts which should be handled in accordance
with device profile and current state. We propose that
this object related functionality should be implemented

in the so called ‘object manager’ which forms the cen-

tral part of CIoT engine. The object engine coordinates

with both the energy and spectrum managers to pro-

vide context awareness and indicate required quality-

of-service (QoS) or quality-of-information (QoI) con-

straints. The object management life cycle can be sim-

plified as most of the inference can be moved up to the

centralized cloud processor. Thus objects can be made

simpler by implementing basic look-up tables which

map events, stimulus, attributes and functionality. No-

tice that the cloud based architecture provides flexibil-
ity of re-configuring the object management engine on
the fly.

Spectrum and energy management engines are re-

sponsible for maximizing the spectral and energy effi-
ciencies of a CIoT network. Unlike data-intensive ap-
plications such as cellular networks, where optimizing
area spectral efficiency and load balancing are the crit-

ical tasks [7], the main purpose of an IoT network is to

provide reliable interconnections between smart things.

A number of sensors and devices need to communicate

with a central controller for inferences, decisions and
processing. We advocate the use of a cognitive under-
lay based spectrum access which requires only trans-

mit power/medium access probability adaptation at the

CIoT platforms. The interested reader is refered to [8]

for a detailed discussion on exploitation of different de-

grees of freedom in cognitive underlay networks. In the

case of a cognitive underlay mode of operation, it is
important to know the spectrum availability and the
probability of successful reception when the spectrum

is utilized. Moreover, catering for the energy demands of

the increased number of CIoT nodes is yet another im-

portant issue. The intrinsic advantage of the proposed

spectrum access is that its implementation is simple

and does not require additional sophisticated hardware.
Based on the dynamics of the primary network, the
cloud reconfiguration engine can reconfigure the spec-

trum access probability and the transmit power to guar-

antee that the QoS of the legacy network is not violated.

This is to ensure a robust co-existence framework be-

tween the primary users (such as mobile users in cellular

network) and the CIoT devices. The practical imple-

mentation of such a spectrum access would require a

simple look up table at each device so that CIoT plat-

forms do not lose their cost-effectiveness or the form

factor by implementing the proposed cognitive access

strategy. In the subsequent discussion, we develop an

analytical framework for quantifying the performance
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of the large scale CIoT network by considering a refer-

ence scenario under the proposed architecture.

1.3 Outline

The outline of the rest of the paper is as follows: In sec-

tion 2, we introduce our reference scenario and math-

ematical preliminaries which are employed throughout

the remainder of this paper. Additionally, we introduce

the proposed energy harvesting model and detail its

dynamics. In section 3, we define two CIoT perfor-

mance metrics called (i) the energy success probabil-

ity and (ii) spectral success probability for the consid-

ered CIoT network. We consider a realistic model to
compute the harvested power and develop a stochastic
model for the energy success probability which can be
treated as a proxy for self-sustainability of a CIoT inter-

connect. Considering, the proposed spectrum manage-

ment engine, the co-existence constraint is enforced on a

CIoT network to provision spectrum access in underlay

mode. The co-existence constraint is defined in terms of
the average outage probability for an arbitrary mobile
user (MU) scheduled in downlink1 of the primary net-

work. Notice that in context of the considered primary
network, i.e., cellular network, the outage probability
is the complement of the coverage probability. More-
over, the averaging is performed over the location of

the MU since it is unknown a priori (see [9]). Conse-
quently, the definition of outage for the primary net-
work differs from the one employed in [8]. With the

outage analysis of the primary network, we obtain the

maximum allowable spectrum access probability for the

considered CIoT network under Slotted-ALOHA type

protocol2. The maximum allowable access probability

ensures that the primary user’s enforced co-existence

constraint is not violated. Section 4 combines the afore-

mentioned performance metrics and introduces a new

metric called the overall success probability. The intro-

duced metric provides interesting insight for optimizing

the transmit power employed by CIoT nodes to strike

a balance between the spectrum access and the energy
usage. Section 5 concludes the paper and summarizes
the important future directions.

1 Notice that the analysis is general and is not affected by
considering the uplink of the primary cellular network.

2 In this paper, we consider the Slotted-ALOHA type access
strategy for a CIoT network. However, the spectral access
probability computed here, can be effectively mapped to the
carrier sensing threshold for a CSMA/CA type protocol.

1.4 Notations

Throughout this paper, we use the following mathemat-
ical notations. The probability density of a random vari-

able X is represented by fX(x) and the corresponding
cumulative distribution function is denoted by FX(x),

where the lowercase letter x is a particular realization

of X. The expectation of a function with respect to X

is represented by EX[.]. A bold face lower-case letter,

for e.g. y, is used to denote a vector on R
2 and it’s

Euclidean norm is represented by ||y||. Symbol \ refers

to the exclusion of elements from a set, for instance,

[1, 2, 3]\[1] = [2, 3]. The expression b(o, r) represents a

ball of radius r centered at the origin.

2 System Model for the Considered Reference

Scenario

In this paper, we consider a large scale energy harvest-
ing CIoT network co-existing with a primary cellular

network as shown in Fig. 2. We consider that the CIoT
nodes are furnished with solar panels to harvest ambi-
ent energy. The CIoT devices with sufficient harvested

energy, employ the cognitive underlay approach and

utilize the same resource blocks as the primary base sta-

tions (BSs) to communicate with the central CIoT con-

troller. We assume that full frequency reuse is employed

in the primary cellular network for maximizing the area
spectral efficiency. The cognition employed at IoT plat-
forms shapes transmission parameters such that the ag-

gregate interference at the primary MU remains below

a certain threshold to satisfy the desired QoS require-

ment. Consequently, only a fraction of CIoT devices are

activated during each transmission sub-frame. From the

context of the CIoT network, the accumulation of in-
terference from the primary BSs and other CIoT de-
vices plays a critical role in determining whether the

transmissions can be successfully decoded at the cor-

responding controller. Thus both the opportunity for

the transmission and the probability of success when

provided with such opportunity collectively define the

performance of the CIoT network for the considered

reference scenario.

2.1 Spatial Model

The spatial distribution of the primary BSs, CIoT nodes

and controllers is captured by the independent homoge-
nous Poisson point processes (HPPPs) Πp (λp), Πc (λc)

and Πk (λk) respectively, with λi, i ∈ [p, c, k] being the

average number of these entities in a unit area. Mathe-
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Fig. 2 Top-level diagram showing the coexistence of a CIoT network with the primary cellular network in spectrum underlay
mode.

matically, the probability of having n devices in a region
B ∈ R

2 follows the Poisson distribution and is given as

P {Πi(ν(B)) = n} =
(ν(B)λi)n

n!
exp(−ν(B)λi),

i ∈ [p,m, c, k]. (1)

where ν(B) =
´

B
dx is the Lebesgue measure on R

2.

For a circular disc of radius r centered at orig (i.e., B =

b(o, r) ), the Lebesgue measure simplifies to ν(B) = πr2

which is simply the area of the disc.

The selection of HPPPs to model the location of the

primary BSs and MUs is widely studied in the literature

[9]. In the context of CIoTs, the HPPP assumption is

quite reasonable as the objects are spatially distributed

across the neighborhood with considerable irregular-

ity. Fig. 3 depicts a realization of the network under

these considerations. The primary BSs, CIoT devices

and controllers are distributed according to a HPPP.

The primary MUs (not shown in the figure), as we av-

erage the performance metric over all possible locations

of MU in each cell. Each MU associates itself with the

nearest primary BS. The coverage areas of BSs and

CIoT controllers result in separate Voronoi tessellations

on R
2 [10]. Without any loss of generality a probe CIoT

controller can be placed at the origin3 and the signal

from the nearest active CIoT device is considered as the

intended signal. All the other active CIoT devices and

BSs are considered as interferers for the transmission

received on the probe CIoT controller.

3 This follows from the Slivnyak’s theorem and the palm
distribution of HPPPs [11].
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Fig. 3 Realization of the CIoT network in the underlay mode
with λp = 10−4, λc = 10−3, λk = 3× 10−4.

2.2 Spectrum Access Strategy

It is assumed that, the CIoT nodes employ random

access strategy similar to the Slotted ALOHA MAC

protocol to schedule their transmissions over a shared

medium for communicating with the corresponding con-

trollers. More specifically, at an arbitrary time instant,

the CIoT devices can be classified into two distinct

groups, i.e., nodes which are granted spectrum access

and those whose transmissions are deferred. If pc de-

notes the spectrum access probability (SAP) for an ar-

bitrary device x ∈ Πc
4, then the set of active users un-

4 With a slight abuse of notation, x ∈ R
2 is employed to

refer to the node’s location as well as the node itself.
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der the considered spectrum access paradigm also forms

a HPPP Π
{TX}
c = {x ∈ Πc : 1(x) = 1} with density

λcpc, where 1(x) denotes a Bernoulli random variable

and is independent of Πc.

2.3 Channel Model

Throughout this paper, all wireless communication links

assume Rayleigh flat fading. We adopt a standard power

loss propagation model with the environment depen-

dent path loss exponent 2 ≤ α ≤ 5. So the overall chan-
nel gain is represented as hr−α, where h ∼ E(1) follows

a unit-mean exponential distribution representing the

received power gain under Rayleigh fading and r is the

distance between the transmitter and the receiver. We

focus on the interference limited scenario and assume

that the effects of the thermal noise on the network’s

performance are negligible.

2.4 Energy harvesting

Harvesting energy from natural (solar, wind, vibration,

etc.) and synthesized (microwave power transfer) sources

is envisioned as a key enabler for realizing green wire-

less networks. The choice of a suitable renewable source

depends on a number of factors including, the avail-

ability of a particular source, ease of harvesting from

it and most importantly the energy demand of the ap-

plication. A detailed comparison of the power densities

from various sources is provided in [12]. As solar energy

is currently the most scalable renewable resource, from

powering small indoor sensors to huge buildings, it nat-

urally becomes a suitable candidate to cater for the con-

trasting power requirements of things operating under

the umbrella of a CIoT. Consequently, in the considered

reference scenario, we assume that CIoT nodes are fur-

nished with solar panels to harvest ambient energy. We

begin our discussion on the solar energy harvesting in

a outdoor setting5.

2.4.1 Solar Energy Harvesting

The solar power density measured just above the earth’s

atmosphere is about 1367Watts/m2 and it is commonly

referred to as extra-terrestrial (ET) irradiance. The power

density at the surface of the solar panel, also known as

insolation, is much less than the ET irradiance and it

5 Notice that the model remains same for the indoor setting
except for the fact that the output power is attenuated by a
factor of 10-100. This is because, indoor panels cannot harvest
the direct component of a solar energy field and must rely on
the diffuse component.

Hourly okta Distribution of cloud cover, fkc(.)

0 N (0.99, 0.08)
≤ 6 N (0.6784, 0.2046)
7 W(0.5577, 2.4061)
8 G(3.5624, 0.0867)

Table 1 Distribution of clearness index for various levels of
cloud cover

depends on a number of geometrical and astronomical
aspects such as the earth’s elliptical orbit around the
sun, earth’s tilted axis of rotation, sun’s position from

directly overhead the panel, the panel’s location and its

angle of tilt6. The aforementioned factors are determin-
istic and can be quantified. However, the effect of both

cloud cover and atmosphere induces randomness in the
observed insolation energy field.

While the atmospheric profile of temperature, con-

centration of water vapor, ozone, aerosol gases, other
particles and the surface albedo remains fairly constant

during the day, the cloud cover may fluctuate consider-

ably. Meteorologists classify the cloud density in terms

of oktas, which are increasing levels of cloud cover with

values from 1−8. The extreme scenarios of the absence

of clouds on a clear day and completely overcast condi-

tions or night time are represented by okta 0 and okta 9

respectively. For a particular value of okta or a range of

oktas, the atmospheric transmission of the solar energy

is commonly parametrized by the clearness index (kc),
which takes the form

kc =
I

Ic
, (2)

where, Ic is the theoretical clear-sky (cloud free) inso-
lation and I is the instantaneous insolation observed

at the panel. This clearness index is a random vari-

able encapsulating the effect of atmospheric variations.

The authors in [13] obtained the distributions for kc for

a range of oktas as described in Table 1. They use the

data provided by the UK Met Office Integrated Archive
System (MIDAS) for hourly values of I, and the corre-

sponding cloud okta for the year 2012. For the compu-
tation of realistic values of Ic, they used the DISTORT

radiative transfer solver [14] in the libRadtran package
[15] with the actual data for the atmospheric condi-
tions. Maximum likelihood estimation (MLE) is used

to fit the distributions. To this end, we employ these
distributions in our solar panel model to observe the
effect of the cloud intensity on the harvested energy.

6 For medium to average size cities, variations in longitude
and latitude are not significant. Thus neglecting the environ-
mental randomness, the ET irradiance does not vary signifi-
cantly over the spatial scale of neighborhood.
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3 Performance Analysis of an Energy

Harvesting Empowered CIoT Network

Before moving on to the mathematical analysis of the

performance determining variables, we define the two

key metrics as follows:

Definition 1 Assuming that the harvested energy is

utilized for scheduling the transmissions, we define ‘en-

ergy success probability’ as a metric to measure the

availability of energy for a certain desired transmit power

Pc. The dynamics of the energy harvester and thus

management engine of a CIoT platform can be com-

pletely characterized in terms of energy success proba-

bility given as [16]

ǫ{e}suc = P {PPV ≥ Pc} . (3)

Notice that the definition can be easily modified to cater

for the case where energy storage of finite size is present.

However, in this article, we do not consider storage

and thus harvested energy is employed for transmis-

sion scheduling in an instantaneous manner. Such con-

sideration results in a lower bound on actual perfor-

mance which can be attained by exploiting the energy

storage. Furthermore, we assume that transmit energy

is the dominant factor in terms of energy consump-

tion and that the power consumption foot-print of the

transceiver circuitry is negligible. The circuit power con-

sumption can be accommodated by performing an affine

transformation on Pc.

Definition 2 We define the term ‘spectrum success

probability’ as the probability that a CIoT object is

able to access the spectrum and subsequently success-

fully communicate with the CIoT controller while sat-

isfying the MU’s desired QoS constraint. It does this by

employing the maximum SAP pmax
c .

P
{c}
suc (p

max
c ) = ERc [P {Γc(p

max
c , r) ≥ γc}] , (4)

where Γc is the SIR received at a CIoT controller placed

at the origin, Rc is the random distance between a CIoT

device and its nearest controller and γc is the modula-

tion dependent decoding threshold which is selected to

satisfy a certain desired frame error rate.

3.1 Energy Success Probability in Harvesting

Empowered CIoT

We calculate the harvested power using a well-known

single diode model for a PV module. The output power
can be expressed in terms of the clearness index as fol-
lows [17]

IPV = Isc

[

1− κ3

{

exp

(

VPV

κ4Voc

)

− 1

}]

, (5)

where κ3 =
(

1− IMPP
Isc

)

exp
(

VMPP
κ4Voc

)

and

κ4 =
(

VMPP
Voc

−1
)

/ln
(

1−
IMPP
Isc

)

. The current generated by

the module depends on several parameters: (i) short
circuit current Isc; (ii) open circuit voltage Voc; (iii)

maximum power point voltage VMPP and (iv) maxi-

mum power point current IMPP . These parameters can

be expressed as functions of ambient temperature and
global horizontal irradiance as follows

Isc = Iscs × kc × [1 + ς1(T − Ts)] , (6)

Voc = Vocs + ς2(T − Ts), (7)

IMPP = IMPPS × kc × [1 + ς1(T − Ts)] , (8)

VMPP = VMPPS + ς2(T − Ts), (9)

where Iscs, Vocs, IMPPS , and VMPPS are defined for

standard conditions, Ts = 25◦C with ς1 and ς2 being the

current and the voltage coefficients. These parameters

are generally provided in the data sheet of a PV mod-

ule. From (5), the output power of the PV panel can be

computed as the function of voltage as PPV = IPV VPV .

For the ease of tractability, we consider standard con-

ditions ( T = Ts) for the panel for our further analysis.

The equation for the harvested power (in Watts) sim-

plifies to

PPV = kcVPV Iscs

[

1− κ3

{

exp

(

VPV

κ4Vocs

)

− 1

}]

.

(10)

Using definition 1 and the expression for the out-

put panel power available for transmission, the energy

success probability is given as

ǫ{e}suc (Pc) = P

{

kc ≥
Pc

τ

}

, (11)

where τ = VPV Iscs

[

1− κ3

{

exp
(

VPV
κ4Vocs

)

− 1
}]

.

It is evident from (11) that ǫ
{e}
suc (Pc) follows the same

distribution as kc, only scaled by a factor of τ . The ex-

pressions for ǫ
{e}
suc (Pc) for various oktas are presented in

Table 2. µi and σi, i ∈ [1, 2] are the mean and standard

deviation of the normal distribution of kc for okta ∈
[0− 6], ω and ψ are the shape and scale parameters of
the Weibull distribution of kc for okta 7, K and θ are

the shape and scale parameters of the Gamma distri-

bution of kc for okta 8 and γ(a, x) =
´ x

0
ta−1exp(−t)dt

is the lower incomplete Gamma function. For the ap-

plication of CIoT devices, we consider a mini portable

1.6W solar panel which can be used outdoors to power
small devices such as sensors, chargers, etc. [18].
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Hourly okta Energy success probability
[

ǫ
{e}
suc

(

Pc
τ

)

= 1− Fkc

(

Pc
τ

)]

0 1
2
[1− erf

(

Pc−τµ1√
2τσ1

)

], µ1 = 0.99, σ1 = 0.08.

1 ≤ 6 1
2
[1− erf

(

Pc−τµ2√
2τσ2

)

], µ2 = 0.6784, σ2 = 0.2046.

7 exp
(

−
(

Pc
τψ

)ω)

, ω = 2.4061, ψ = 0.5577.

8 1−
γ(K, Pc

τθ
)

Γ (K)
,K = 3.5624, θ = 0.0867.

Table 2 Energy success probability for various levels of cloud cover in oktas.

3.2 Spectrum Access Success Probability in CIoT

To compute the spectrum success probability, we first

consider the outage constraint enforced by the primary

network on the CIoT transmitters. The received SIR

of a typical MU in an interference limited scenario is

characterized as

Γp(r) =
hpl(‖x‖)

∑

i∈L hil (‖xi‖) +
∑

j∈M ηgj l (‖xj‖)
, (12)

=
hpl(r)

Ip(r) + ηIc
=
hpl(r)

Itot
,

where L = Πp\b(o, ‖x‖), M = Π
{TX}
c and hp, hi, gj ∼

E(1) are random variables capturing the effect of Rayleigh

fading; l(r) = r−α is the path-loss function; η = Pc
Pp

is

the transmit power ratio of the CIoT and primary net-

works and r = ‖x‖ is the distance between the primary

BS and the MU. The primary user’s QoS constraint

can be expressed in terms of its desired SIR threshold

γp and an outage probability threshold ρ
{p}
out as

P
{p}
out (Pc, pc) = ERp [P {Γp(r) ≤ γp}] ≤ ρ

{p}
out , (13)

where Rp is the random distance between the MU and

its corresponding BS in a reference Voronoi cell. Notice

that the primary user’s outage probability is coupled

with the aggregate interference generated by the CIoT
network. Consequently, secondary access is limited sub-
ject to the constraint ρ

{p}
out in (13).

Proposition 1 (Maximum permissible SAP for a CIoT
device.) Given the QoS of a MU in terms of the desired
SIR threshold γp and its maximum tolerable link outage

ρ
{p}
out , the SAP for the CIoT devices which can operate in

a concurrent manner without violating the co-existence
constraint can be quantified as

pmax
c = λp

(

1− (1− ρ
{p}
out)(1 + β(γp, δ))

λcmηδ(1− ρ
{p}
out)

)

. (14)

where m = Γ (1 + δ)Γ (1 − δ), δ = 2/α and β(γp, δ) =
δγp
1−δ 2F1(1, 1 − δ; 2 − δ;−γp). Here 2F1(a, b; c; z) is the
Gauss Hypergeometric function [19]. For α = 4 (δ =

1/2), β(γp, δ) =
√
γp arctan

(√
γp
)

and the maximum
permissible SAP simplifies to

pmax
c = λp

(

1− (1− ρ
{p}
out)

(

1 +
√
γp arctan

(√
γp
))

λcm
√
η(1− ρ

{p}
out)

)

,

(15)

Proof Following the steps in [9] and [8], the outage

probability of the primary MU can be written as

P
{p}
out (Pc, pc) = 1− (16)

ˆ

r>0

LItot(γpr
α) exp(−πλpr2) 2πλpr dr.

For the considered scenario, LItot(s) = LIp(r)(s) ×
LIc(ηs)|s=γprα

7, and LIp(r)(s) and LIc(ηs) are respec-

tively the Laplace transforms of the interference on the

aggregate interference on the MU from the other-cell

co-channel interferers and the spectrum sharing CIoT

devices. Using the well-known definition of the generat-

ing functional of a HPPP in [11], the following Laplace
transforms can be evaluated as

LIp(γpr
α) = exp{−2πλp

ˆ ∞

r

(1− Eh[exp(−γprαhv−α)])dv } (17)

= exp{−πλpr2β(γp, δ)} (18)

and

LIc(ηγ
{p}
th rα) = exp{−2πλc

ˆ ∞

0

(1− Eg[exp(−γprαgu−α)])du}(19)

= exp{−πmλcpcγδpηδr2}, (20)

where m = Γ (1 + δ)Γ (1 − δ), δ = 2/α and β(γp, δ) =

γδp
´∞

γ−δ
p

(1 + u
1
δ )−1du. The solution for this integral in

terms of the hypergeometric function can be obtained
by substituting y = u

1
δ and using Eq. 3.194-2.6 from

[20].

Notice the difference in the limits of integration in

(17) and (19). This is due to the fact that the other-cell
interferer will be separated by a minimum distance of

7 This is because of the independence of the point processes
Πp (λp) and Πc (λc).
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r from the tagged MU while such a constraint is not

enforced on the CIoT devices. Inserting the above two
expressions into (16) and solving the integral provides
us with the outage probability of the MU. Furthermore,

enforcing the outage constraint ρ
{p}
out as in (13) and in-

verting the equation for pc concludes the proof.

Implementation Note: From (14), we notice that

pmax
c is function of both the primary and the IoT net-

work parameters. Thus cloud based coordination is benef-

ical to dynamically reconfigure the SAP based on the

prevelant network conditions. More specifically, (14)

can be implemented in the cloud re-configuration, infer-

ence, learning and adaptation engine to provison self-

organization.

Proposition 2 (Spectrum success probability of the CIoT.)
The probability that a CIoT user is able to access the
available spectrum and successfully communicate with
its controller in the uplink is given as

ǫ{s}suc (Pc) =
1

1 + pmax
c β(γc, δ) +

λp
λc
mη−δγc

. (21)

Proof The proof for (21) follows similar steps as in the

proof of (16). The received SIR at the CIoT controller
placed at the origin is given as

Γc =
gcl(r)

∑

i∈Π{TX}
c \b(o,r) gil (‖xi‖) +

∑

j∈Πp
η−1hj l (‖xj‖)

,

=
hcl(r)

η−1Ip + Ic(r)
=
hcr

−α

Itot
. (22)

Using the definition 4, the spectrum success probability
is given as

P {Γc ≥ γc} =

ˆ

r>0

LItot(γcr
α) exp(−πλcr2) 2πλcr dr.

(23)

In this case, LItot(s) will be

LItot(s) = LIp(η
−1s)× LIc(s)|s=γcrα

,

and the limits of integration are interchanged for the
Laplace transform of the primary and the CIoT inter-
ferences as now the underlay network is under consid-

eration and the interference is being measured on the

CIoT controller in the uplink. Hence, the Laplace trans-

forms are given by the following expressions

LIp(η
−1γcr

α) = exp{−2πλc
ˆ ∞

0

(1− Eh[exp(−γprαhv−α)])dv }(24)

= exp{−πmλpγδcη−δr2} (25)

and

LIc(γcr
α) = exp{−2πλc

ˆ ∞

r

(1− Eg[exp(−γprαgu−α)])du} (26)

= exp{−πλcpcβ(γc, δ)r2}, (27)

where m = Γ (1+δ)Γ (1−δ), δ = 2/α and β(γc, δ) =

γδc
´∞

γ−δ
c

(1 + w
1
δ )−1dw = δγc

1−δ 2F1(1, 1− δ; 2− δ;−γc).

4 Overall Success Link Probability

Employing the existing analytical characterizations, we

define the unified performance metric for the energy
harvesting empowered CIoT network. Intuitively, a CIoT
object will only be able to successfully communicate

with its nearest controller if the following conditions

are met:

1. The harvested energy is greater than the required

transmit power;
2. The object is allowed to access spectrum while sat-

isfying the primary MU’s QoS constraint; and
3. The ratio of the received signal’s power to the in-

terference from all the other CIoT devices and the

primary BSs is greater than the desired SIR thresh-

old γc.

The performance metricsǫ
{s}
suc (Pc) and ǫ

{e}
suc (Pc) derived

in the previous section are both important in charac-
terizing the performance of a CIoT network. Never-
theless, ǫ

{e}
suc (Pc) only signifies the energy availability

and ǫ
{s}
suc(Pc) signifies the spectrum availability. For a

more comprehensive analysis, there is a need to com-
bine these two metrics such that all the factors govern-

ing the performance of a CIoT network can be captured

by a single metric. Hence, we introduce the overall link

success probability metric as follows

ǫtotsuc (Pc) = ǫ{s}suc (Pc)× ǫ{e}suc (Pc) , (28)

where ǫtotsuc (Pc) is the overall success probability, which

depends on the communication aspects, CIoT transmit
power, and the solar panel parameters. Using the ex-
pressions in Table 2 and with a few manipulations in
(21), the overall success probability in (28) is given as

For okta ≤ 6 :

ǫtotsuc (Pc) =
1

1 + ξP−δ
c

1

2

[

1− erf

(

Pc − τµi√
2τσi

)]

,

i ∈ [1, 2], (29)

For okta 7 :

ǫtotsuc (Pc) =
1

1 + ξP−δ
c

exp

(

−
(

Pc

τψ

)ω)

(30)
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For okta 8 :

ǫtotsuc (Pc) =
1

1 + ξP−δ
c

[

1− γ
(

K, Pc
τθ

)

Γ (K)

]

(31)

where ξ = P
{opt}δ

p (a1+a2); a1 = mγδc
λp
λc
, a2 = λpβ(γc, δ)

× 1−(1−ρ
{p}
out )(1+β(γp,δ))

(1−ρ
{p}
out )mλcγδp

, i = 1 represents okta 0, while

i = 2 represents 1 ≤ okta ≤ 6.

It follows from (29), (30) and (31) that for all values

of oktas, the effect of modulation dependent decoding
thresholds γc and γp, path loss exponent δ, CIoT de-

vice density λc and primary BS density λp remains the

same on the overall success probability. This is because
the cloud cover only affects the availability of the en-
ergy and the spectrum success probability remains un-

changed. However, from (28), we observe that both the

terms ǫ
{s}
suc (Pc) and ǫ

{e}
suc (Pc) depend on the device level

transmit power Pc, which could be adapted to optimize

the CIoT performance. In the following section, we see

how Pc could be adapted to achieve better connectiv-
ity for the CIoT devices and also, what impact will

the densification of CIoTs devices have on the required
transmit power and the coverage characteristics.

4.1 Optimal transmit power

As the CIoT transmit power Pc increases (and in turn η

increases keeping Pp constant), ǫ
{s}
suc(Pc) also increases

as the maximum permissible SAP (pmax
c ) decreases.

This implies that transmission opportunities of CIoT

devices will diminish due to interference protection im-
plemented by the cloud controller to guarantee the pri-
mary user’s QoS requirement. On the contrary, increas-

ing Pc results in a drop in ǫ
{e}
suc(Pc) as more and more

harvested power is required to meet the energy demand.

However, the low transmit power employed by a CIoT

platform may not be able to guarantee the required QoS

or QoI at each CIoT node. Consequently, the transmit
power must be optimized through considering energy
and spectral success. The inverse relationship between

the two terms can be observed in Fig. 4. Since the over-

all success probability is the product of these two terms,

there must exist an optimal power which maximizes the

overall success probability. We see in Fig. 5 that as the

cloud okta increases and consequently the harvested en-

ergy decreases, the overall success probability decreases

and for a fixed value of cloud okta, there always exists

an optimal transmit power which maximizes the overall

success probability.

Proposition 3 (Optimal Transmit Power) The opti-
mal transmit power can be numerically evaluated by
solving the following equations for P

{opt}
c :
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Fig. 4 Existence of an optimal power which maxi-
mizes the overall success probability with 1 ≤ okta ≤

6, λc/λp = 10, α = 4, ρ
{p}
out = 0.2, Pp = 10W, γc =

−7dB, γp = −6dB, Iscs = 0.277A, Vocs = 6.9V, VMPPS =
6V, IMPPS = 0.27A (see Eq. (11), (21) and (29)).
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Fig. 5 Overall success probability with transmit power
adaptation for various okta values, forλc/λp = 10, α =

4, ρ
{p}
out = 0.2, Pp = 10W, γc = −7dB, γp = −6dB, Iscs =

0.277A, Vocs = 6.9V, VMPPS = 6V, IMPPS = 0.27A (see
Eq. (29)-(31) and (32)-(34)).

For okta ≤ 6 :

√

2

π

P
{opt}
c

τσi
(ξ + P {opt}δ

c ) exp



−1

2

(

τµi − P
{opt}
c

τσi

)2




+ξδ

[

erf

(

P
{opt}
c − τµi√

2τσi

)

− 1

]

= 0, i ∈ [1, 2], (32)

For okta 7 :

P {opt}δ+ω

c + ξP {opt}ω

c − δξ(τψ)ω

ω
= 0, (33)
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For okta 8 :

(

P
{opt}
c

τθ

)K

exp

(

−P
{opt}
c

τθ

)

(ξ + P {opt}δ

c ) +

ξδγ

(

K,
P

{opt}
c

τθ

)

− ξδΓ (K) = 0. (34)

Proof The optimal transmit power (P
{opt}
c ) is the solu-

tion of

∂ ǫtotsuc(Pc)

∂ Pc

= 0 (35)

From (35), we obtain the partial derivatives of ǫtotsuc

for various oktas, which can be numerically solved to

obtain the optimal transmit power of the CIoT.

4.1.1 Discussion

1. As seen from Figs. 4 and 5, there always exists

an optimal transmit power point which maximizes

the overall success probability. This is due the fact

that as the transmit power increases, the maximum

SAP (pmax
c ) reduces to activate lesser CIoT de-

vices and the SIR increases and hence the probabil-

ity of successful transmission increases. However, as

the desired transmit power goes high, the available

harvested energy becomes insufficient. The optimal

transmit power point may lie in either the spectrum

limited regime, i.e. when ǫ
{e}
suc(Pc) > ǫ

{s}
suc(Pc) or the

energy limited regime, i.e. when ǫ
{s}
suc(Pc) > ǫ

{e}
suc(Pc).

The location of the optimal point depends solely on

the solar panel parameters and other network re-

lated parameters which affect the slope of ǫ
{e}
suc(Pc)

and ǫ
{s}
suc(Pc). As illustrated in Fig. 4, the decrease in

ǫ
{e}
suc(Pc) is more rapid than the increase in ǫ

{s}
suc(Pc)

for the given set of parameters hence, the optimal

power point lies in the spectrum limited regime.

2. Cloud cover plays an immensely important role in

determining the CIoT performance. Comparing the

clear sky (okta 0) and heavily cloudy conditions

(okta 8) in Fig. 5, a drop of almost 76% in the maxi-
mum overall success probability is observed while for
partially cloudy conditions, this drop is fairly rea-
sonable (around 17% and 24% for okta 6 and less

and okta 7 respectively). Not only does the cloud

cover affect the maximum overall success probabil-

ity, it also changes the optimal transmit power. This

can be intuitively explained by the fact that as the
sky becomes clearer, a higher amount of energy can
be harvested and also consumed in achieving a high
spectral coverage. Thus, the a higher optimal power

can be adopted when the harvested energy is high.
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Fig. 6 Effect of changing transmit power on energy success,
Spectrum success and overall success probabilities for various
values of CIoT density with 1 ≤ okta ≤ 6, λp = 10−4, α =

4, ρ
{p}
out = 0.2, Pp = 10W, γc = −7dB, γp = −6dB, Iscs =

0.277A, Vocs = 6.9V, VMPPS = 6V, IMPPS = 0.27A (see
Eq. (11), (21) and (29)).

3. In heavily cloudy conditions (okta 8), optimizing

transmit power is of a little or no value as the CIoT

devices remain in outage for 80% of the time be-

cause of the lack of harvested solar energy. Hence,

it is more effective to turn off the devices completely

or switch to a backup energy supply.

4. As the relative density of CIoT devices is increased,
the spectrum success probability increases and the

overall success probability also increases as observed

in Fig. 6. Even though the maximum SAP of CIoTs

is inversely related to its density (14), the non-linear

increase in overall success is attributed to the fact

that the CIoT controller is closer to the device itself.
This greatly reduces path loss for the desired signal.
Figs. 6 and 7 illustrate the diminishing gains in op-
timal power with the increase in the CIoT density.

5 Conclusion

In this article, we provided a unified architecture for the
cognitive internet-of-things (CIoT) framework. We ad-
vocate that the definition of cognition must be extended

to incorporate IoT specific design challenges. We so-

licited a cloud based cognitive underlay spectrum access

for the IoT radio platforms. Furthermore, energy har-

vesting is proposed to attain so called self-sustainable

network design. We introduce a novel statistical frame-

work to characterize the energy and spectral success in

CIoT networks. The relationship between energy and

spectral outages was explored for a reference scenario

of solar energy harvesting with stochastic cloud cover.
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Fig. 7 Effect of changing the CIoT density on the optimal

transmit power P optc , λp = 10−4, α = 4, ρ
{p}
out = 0.2, Pp =

10W, γc = −7dB, γp = −6dB, Iscs = 0.277A, Vocs =
6.9V, VMPPS = 6V, IMPPS = 0.27A.

It was shown that both metrics are coupled as ‘over-

all success’ as they are governed by same underlying

parameter, i.e., transmit power. Finally, there exists a

tradeoff between maximizing spectral success and the

availability of energy and thus an analytical framework

was developed to obtain the optimal transmit power to

maximize network level performance.
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