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LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUPZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3Abstra
t. We study representations of the loop braid group LBn from the perspe
-tive of extending representations of the braid group Bn. We also pursue a gener-alization of the braid/He
ke/Temperlely-Lieb paradigm|uniform �nite dimensionalquotient algebras of the loop braid group algebras.1. Introdu
tionNon-abelian statisti
s of anyons in two spatial dimensions has attra
ted 
onsiderableattention largely due to topologi
al quantum 
omputation [27, 32℄. Re
ently, non-abelian statisti
s is extended to statisti
s of point-like topologi
al defe
ts proje
tively[6℄. But an extension of non-abelian statisti
s of point-like ex
itations to three spatialdimensions is not possible. However, loop or 
losed string ex
itations o

ur naturallyin 
ondensed matter physi
s and string theory. Therefore, it is important to studystatisti
s of extended obje
ts in three spatial dimensions.A systemati
al way to produ
e interesting and powerful representations of the braidgroup is via (2+1)-topologi
al quantum �eld theories (TQFTs) [32℄. Sin
e the loop braidgroup is a motion group of sub-manifoldsy, we expe
t that interesting representationsof the loop braid group 
ould result from extended (3 + 1)-TQFTs. But (3 + 1)-TQFTs are mu
h harder to 
onstru
t, and the largest known expli
it 
lass is the Crane-Yetter TQFTs based on pre-modular 
ategories [11, 34℄. The diÆ
ulty of 
onstru
tinginteresting representations of the loop braid group re
e
ts the diÆ
ulty of 
onstru
tingnon-trivial (3 + 1)-TQFTs. Potentially, given a pre-modular 
ategory C, there areKey words and phrases. Loop braid group, braided ve
tor spa
e, TQFT.The �rst author is supported by EPSRC grant EP/I038683/1. The se
ond author is partially sup-ported by EPSRC grant EP/I038683/1, and would like to thank James GriÆn for useful 
onversations.The third author is partially supported by NSF grant DMS-1108725. The fourth author, partially sup-ported by NSF DMS 1108736, would like to thank the S
hool of Mathemati
s and Department ofPhysi
s at University of Leeds for their hospitality during his visit, where this proje
t began.yRoughly speaking, a motion of a submanifold N of a smooth manifold M is a path ft in thedi�eomorphism group Di�(M) su
h that the start and end points are in the subgroup Di�(M;N) ofelements that restri
t to elements of Di�(N) [12, 16, 22℄. When N is n points in R2 the group ofmotions up to suitable equivalen
e is a braid group; and when N is the trivial link with n 
omponentsin R3 we get a loop braid group. See also later. 1



2 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3representations of all motion groups of sub-manifolds in
luding the loop braid groupasso
iated to C, but no expli
it 
omputation has been 
arried out for any non-trivialtheory. Hen
e, we will take a 
losely related, but di�erent �rst step in the study ofrepresentations of the loop braid group.The tower of group algebras of Artin's braid group Bn, for n � 1 have topologi
allyinteresting quotients, su
h as the Temperley-Lieb algebras [17℄, He
ke algebras [18℄and BMW-algebras [9, 26℄. Ea
h of these algebras support a Markov tra
e whi
hthen produ
es polynomial knot and link invariants. Moreover, at roots of unity manysu
h quotient algebras 
an be realized as endomorphism algebras in unitary modular
ategories{the algebrai
 stru
ture underlying 
ertain (2 + 1)-TQFTs [30℄. These, inturn, des
ribe the quantum symmetries of topologi
al phases of matter in 2 spatialdimensions [33℄. The braid group representations asso
iated with unitary modular
ategories would be physi
ally realized as the motion of point-like parti
les in the diskD2. Our goal is to generalize this pi
ture to topologi
al systems in 3 spatial dimensionswith loop-like ex
itations.The loop braid group LBn is the motion group of the n-
omponent oriented unlinkinside the 3-dimensional ball D3 [12, 16, 22℄. It has appeared in other 
ontexts as well:it is isomorphi
 to the braid-permutation group (see [3℄), the welded-braid group (see[14℄) and the group of 
onjugating automorphisms of a 
ertain free group (see [23℄),the group of ribbon tubes [2℄, the group of 
ying rings [7℄ and the fundamental groupof the 
on�guration spa
e of Eu
lidian 
ir
les [10℄. For an exploration of the stru
tureas a semidire
t produ
t, see [4℄. Very little is known about the linear representationsof LBn. We investigate when a given representation of Bn may be extended to LBn.Some results in this dire
tion are found in [5℄ and [31℄. For example, it is known thatthe faithful Lawren
e-Krammer-Bigelow (LKB) representation of Bn does not extendto LBn for n � 4 ex
ept at degenerate values of the parameters ([5℄), but the Buraurepresentation of Bn does extend.It seems to be a rather hard problem to dis
over interesting �nite-dimensional quo-tients of the tower of loop braid group algebras of LBn. Considering that the LKBrepresentation appears in the BMW-algebra, we should not expe
t to simply extendknown Bn quotients. Our approa
h is to 
onsider extensions of Bn representations as-so
iated with solutions to the parameter-free Yang-Baxter equation. This ensures thatthe quotient algebras are �nite dimensional. The main problem we study is when su
hrepresentations extend. One parti
ular family of extendible representations are studiedin some detail: the so-
alled aÆne group-type solutions.The 
ontents of the paper are as follows. In Se
. 2, we re
all a presentation of the loopbraid group. In Se
. 3, we study representations of the loop braid group from braidedve
tor spa
es, and hen
e make the 
onne
tion to Drinfeld doubles. In Se
. 4, we initiate



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 3a general program to generalize the braid/He
ke/Temperlely-Lieb paradigm|uniform�nite dimensional quotient algebras of the loop braid quotient algebras, and reportsome preliminary analysis. In parti
ular we answer a question that has been openfor some time, raised in [24, x12.1℄, about the stru
ture of 
ertain `
ubi
' braid grouprepresentations that lift to loop braid representations.2. The loop braid group and its relativesLet us start with a group presentation.Theorem. [14℄ The loop braid group LBn is isomorphi
 to the abstra
t group gener-ated by 2(n� 1) generators �i and si for 1 � i � (n� 1), satisfying the following threesets of relations:The braid relations:(B1) �i�i+1�i = �i+1�i�i+1(B2) �i�j = �j�i for ji� jj > 1,the symmetri
 group relations:(S1) sisi+1si = si+1sisi+1(S2) sisj = sjsi for ji� jj > 1,(S3) s2i = 1and the mixed relations:(L0) �isj = sj�i for ji� jj > 1(L1) sisi+1�i = �i+1sisi+1(L2) �i�i+1si = si+1�i�i+1 �The images of the generators �i; si in the motion group per se are given for examplein [10, 7, 3℄. The subgroup generated by the f�ig is Artin's braid group Bn. (There isan isomorphism of LBn to the automorphism group of the free group with n generators[8℄ whi
h takes this subgroup to Bn [19℄.) The se
ond set fsig generate the symmetri
group Sn. The loop braid group is a quotient of the virtual braid group V Bn [31℄whi
h satis�es all relations above ex
ept (L2).The relations (L1) also hold if read ba
kwards, i.e. si+1si�i+1 = �isi+1si, but (L2) isnot equivalent to its reverse:(L3) si�i+1�i = �i+1�isi+1.However, in the transposed group OLBn (i.e. the group that 
oin
ides with LBn asa set, but with the opposite multipli
ation a � b = ba) one has all relations as in LBnex
ept (L2) is repla
ed by (L3). Every group is isomorphi
 to its transposed group (viainversion) so we may freely work with either LBn or OLBn.



4 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3We de�ne the symmetri
 loop braid group SLBn to be LBn modulo the relations(L3). In parti
ular we have surje
tions V Bn � LBn � SLBn. Note, that this groupwas 
alled unrestri
ted virtual braid group in [21℄.3. LBn representations from braided ve
tor spa
esSeveral authors (see e.g. [31℄) have 
onsidered the question of extending representa-tions of Bn to LBn. In this se
tion we 
onsider extending 
ertain lo
al representationsof Bn (see [29℄).A braided ve
tor spa
e (BVS) (V; 
) is a solution 
 2 GL(V 
2) to the Yang-Baxterequation: (

 IdV )(IdV 
 
)(

 IdV ) = (IdV 
 
)(

 IdV )(IdV 
 
):Any BVS gives rise to a lo
al representation �
 of Bn via �i ! Id
i�1V 


Id
n�i�1V .If an extension of �
 to LBn or OLBn is given via si ! Id
i�1V 
 S 
 Id
n�i�1V whereS 2 GL(V 
2), then it will be also 
alled lo
al. The 
orresponding triple (V; 
; S) willbe 
alled a loop braided ve
tor spa
e.A spe
ial 
ase of lo
al Bn representations through group-type BVSs were introdu
edby Andruskiewits
h and S
hneider [1℄. These play an important role in their 
lassi�-
ation program for pointed �nite-dimensional Hopf algebras. We extend their de�ni-tion slightly and say that a BVS (V; 
) is of left group-type (resp. right group-type) if there is an ordered basis X := [x1; : : : ; xn℄ of V and gi 2 GL(V ) su
h that
(xi
z) = gi(z)
xi (resp. 
(z
xj) = xj
gj(z)) for all i; j and z 2 V . There is a one-to-one 
orresponden
e between left and right group-type BVSs, sin
e the Yang-Baxterequation is invariant under 
 $ 
�1. Indeed, the inverse of 
(xi 
 xj) = gi(xj) 
 xi is
�1(xi 
 xj) = xj 
 g�1j (xi), so that (V; 
) is a BVS of left group-type if and only if 
�1is a BVS of right group-type.Lemma 3.1. Suppose that (V; 
) is a BVS of left group-type with respe
t to X :=[x1; : : : ; xn℄ and 
orresponding gi de�ned on X by gi(xj) := Pnk=1 gj;ki xk. If gj;ki 6= 0then gigj = gkgi.Proof. we 
ompute (

 I)(I 
 
)(

 I)(xi 
 xj 
 z)and (I 
 
)(

 I)(I 
 
)(xi 
 xj 
 z)and 
ompare the two sides. This yields the equality:nXk=1 gj;ki gigj(z)
 xk 
 xi = nXk=1 gj;ki gkgi(z)
 xk 
 xi:



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 5Thus we see that if gj;ki 6= 0 then gigj(z) = gkgi(z) for all z, and the result follows. �The proof of Lemma 3.1 shows that the Yang-Baxter equation for (V; 
) of left grouptype is equivalent to the matrix equation:(3.1) gj;ki gigj = gj;ki gkgi for all i; j; k:A similar result may be derived for right group type BVSs.If gi a
ts diagonally with respe
t to the basis X so that 
(xi 
 xj) = qij(xj 
 xi) forsome s
alars qij then we say (V; 
) is of diagonal type. More generally we will saythat (V; 
) is diagonalizable if there exists a basis of V with respe
t to whi
h (V; 
)is a BVS of diagonal type. We do not need to spe
ify a handedness for diagonal typeBVS, indeed we have:Lemma 3.2. A BVS (V; 
) is of both left and right group type if and only if (V; 
) isdiagonalizable.Proof. If 
 is of left group type with respe
t to X and gi 2 GL(V ) and right grouptype with respe
t to Y := [y1; : : : ; yn℄ and hj 2 GL(V ) then xi 
 yj is a basis for V ,and 
(xi 
 yj) = gi(yj)
 xi = yj 
 hj(xi). This implies that the gi are simultaneouslydiagonalized in the basis Y so that the gi pairwise 
ommute. Denote by G the (abelian)group generated by the gi and let g(j;k)i be the 
oeÆ
ient of xk in gi(xj). Sin
e the gipairwise 
ommute, Lemma 3.1 shows that g(j;k)i 6= 0 implies gj = gk. Now note that thespa
es Wk := C fxj : gj = gkg are G-invariant, and denote by Ik := fj : xj 2 Wkg, sothat the distin
t Ik partition [n℄. So 
hoose a basis for ea
h Wk with respe
t to whi
hea
h gi is diagonal, and denote the union of these bases by Z. It is 
lear that gi arediagonal with respe
t to the basis Z, but we must 
he
k that (V; 
) is of group typewith respe
t to this basis. Let zk =Pj2Ik zkj xj 2 Wk \ Z. Then
(zk 
 zs) =Xj2Ik zkj 
(xj 
 zs) =Xj2Ik gj(zs)
 zkj xj = qk;szs 
 zksin
e all the gj with j 2 Ik are identi
al and so a
t by a 
ommon s
alar qk;s on zs.The other dire
tion is 
lear: diagonal type BVSs are of both left and right grouptype. �BVSs of group type always extend to loop BVSs, with left group-type BVSs givingrepresentations of OLBn and right group-type BVSs giving representations of LBn:Proposition 3.3. De�ne S(xi 
 xj) := xj 
 xi. If (V; 
) is a BVS of left (resp. right)group-type then (V; 
; S) is a loop braided ve
tor spa
e.



6 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3Proof. De�ne �
(si) = Id
i�1V 
 S 
 Id
n�i�1V . Relations (B1); (B2); (S1); (S2); (S3)and (L0) are immediate. Sin
e inversion gives an isomorphism from LBn to OLBn andprodu
es a left group-type BVS from a right group-type BVS it suÆ
es to 
he
k therelations (L1) and (L3) for i = 1. Firstly,�
(s1s2�1)(xi 
 xj 
 xk) = (xk 
 gi(xj)
 xi) = �
(�2s1s2)(xi 
 xj 
 xk)verifying (L1). Similarly,�
(�2�1s2)(xi 
 xj 
 xk) = gi(xk)
 gi(xj)
 xi = �
(s1�2�1)(xi 
 xj 
 xk):so we have (L3). �Suppose that (V; 
) is of left group-type, and we de�ne �
(si) via S as in the proof ofProposition 3.3. Then (L2) is satis�ed if and only if the gi pairwise 
ommute:�
(�1�2s1)(xi 
 xj 
 xk) = gjgi(xk)
 j 
 i = gigj(xk)
 xj 
 xi = �
(s2�1�2):In parti
ular, if (V; 
) is both of left and right group-type then �
 extends to a repre-sentation of SLBn. More generally, we have:Proposition 3.4. Suppose that (V; 
) and (V; S) are of diagonal type with respe
t tothe (same) basis X and S2 = IdV 
2. Then �
 extends to a representation of SLBn via�
(si) = Id
i�1V 
 S 
 Id
n�i�1V .Proof. It suÆ
es to 
he
k (L1); (L2) and (L3), whi
h are straightforward 
al
ulations.�Note, that in 
ase (V; 
) is of group type (either right or left), 
 takes a 
anoni
al formin terms of the basis X = [x1; : : : ; xn℄ and in terms of that basis S(xi 
 xj) = �xj 
 xithen (V; 
) is of diagonal type if 
S = S
. In this 
ase the index of the subgroup �
(Bn)in �
(LBn) is �nite. The representations �N in se
tion 4.4 belong to this 
lass.3.1. AÆne group-type BVSs. We are interested in lo
al representations of LBnthat dete
t symmetry, i.e. that do not fa
tor over SLBn. Fix m 2 N and let Vbe an m-dimensional ve
tor spa
e with basis [x1; : : : ; xm℄. For ea
h 1 � j � m de�nehj(xi) = x�i+�j for some �; � 2 N , where indi
es are taken modulom. We will determinesuÆ
ient 
onditions on � and � so that 
(xi
xj) := xj
hj(xi) gives (V; 
) the stru
tureof a right BVS. We will 
all these aÆne group-type BVSs. For notational 
onvenien
ewe will identify xi with i (mod m) and de�ne hj(i) = �i + �j where now �; � areintegers modulo m, and denote xi 
 xj by (i; j).The operator hj is invertible if and only if g
d(�;m) = 1. Sin
e we are interested in�nding BVSs that do not fa
tor over SLBn, we should look for non-diagonalizable aÆneBVSs. By the proof of Lemma 3.2 we see that a BVS 
orresponding to fhj : 1 � j � mgis diagonalizable if and only the hj pairwise 
ommute. Computing hihj(k) = hjhi(k)



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 7we see that this happens pre
isely when (�� 1)� � 0 (mod m). In parti
ular we mustassume that � 6� 1 (mod m) and � 6� 0 (mod m).By Proposition 3.3 as soon as we have determined values �, � so that (V; 
) is a(right) BVS we may extend �
 to LBn by taking S(xi 
 xj) = xj 
 xi. Computing, wehave:�1�2�1(i; j; k) = (k; hk(j); (hk Æ hj)(i)) = �2�1�2(i; j; k) = (k; hk(j); (hhk(j) Æ hk)(i)):Therefore we must have(hk Æ hj)(i) = �2i+ ��j + �k = (hhk(j) Æ hk)(i) = �2i+ ��(k + j) + �2k;that is, �(�+�) = �. One family of solutions 
orresponds to �+� = 1 so we set t = �and � = (1� t). In this 
ase (�� 1)� = �(t� 1)2, so we have proved:Theorem 3.5. Let m; t 2 N with g
d(m; t) = 1 and (t � 1)2 6� 0 (mod m). Thende�ning hj(xi) = xti+(1�t)j and S(xi 
 xj) = xj 
 xi (indi
es modulo m) on the basisX := [x1; : : : ; xm℄ gives rise to a loop braided ve
tor spa
e (V; 
; S) of LBn su
h that the
orresponding LBn representation, ', does not fa
tor over SLBn.Remark 3.6. For m prime, the family of loop braided ve
tor spa
es in Theorem 3.5are all possible non-diagonalizable aÆne BVSs, but for m 
omposite there are othersolutions. We will only fo
us on these solutions in the present work.It is 
lear from the 
onstru
tion that the representations ' a
t by permutation onthe standard basis ve
tors of V 
n. By passing to the a
tion on indi
es, we may identifythe C -representation ' in Theorem 3.5 with the following homomorphism �m;t : LBn !GLn(Zm) via�m;t(�i) = 0�Ii�1 0 00 M 00 0 In�i�11A ; �m;t(si) = 0�Ii�1 0 00 P 00 0 In�i�11Awhere M = �0 1t 1� t� and P = �0 11 0� with entries in Zm. For later use, we pointout that evaluating �m;t(�i) at t = 1 gives �m;t(si).We now investigate the images of these representations.The restri
tion of �m;t toBn may look familiar: it is nothing more than the (inverse of)the (unredu
ed) Burau representation, spe
ialized at an integer t with entries modulom. In light of [31℄ it is not surprising that the Burau representation should admitan extension to LBn (although we 
aution the reader that [31℄ may have a di�erent
omposition 
onvention than ours). Note, that the extended Burau representation atinteger t, redu
ed mod m is also found in [5℄. The form of the representation heredi�ers from that of lo
. 
it. be
ause there the (isomorphi
) group OLBn is 
onsidered.



8 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3The pre
ise relationship is that the image of �i is repla
ed by its inverse, followed by aparameter 
hange t� > t�1.Observe that the row-sums of �m;t(�i) and �m;t(si) are 1; therefore they are n �n (row)-sto
hasti
 matri
es (modulo m). In parti
ular sin
e the aÆne linear groupAGLn�1(Zm) is isomorphi
 to the group of n � n sto
hasti
 matri
es modulo m (see[28℄, where m prime is 
onsidered, but the proof is valid for any m), we see that theimage of �m;t is a subgroup of AGLn�1(Zm). The question we wish to address is: Whenis �m;t : LBn ! AGLn�1(Zm) surje
tive?The group AGLn�1(Zm) is the semidire
t produ
t of (Zm)n�1 with GLn�1(Zm) (withthe obvious a
tion). The standard way to view AGLn�1(Zm) is as the subgroup ofGLn(Zm) 
onsisting of matri
es of the form �A v0 1� where A 2 GLn�1(Zm) and v 2Zn�1m (a 
olumn ve
tor). For e
onomy of notation, we will denote these elements byg(A; v). In this notation the multipli
ation rule is:(A1; v1)(A2; v2) = (A1A2; A1v2 + v1):To determine the 
onditions onm; t so that �m;t is surje
tive, we need some additionalnotation and te
hni
al results.� For i 6= j, de�ne �i;j 2Mat(n) to be the matrix with (i; j)-entry equal to 1 andall other entries zero.� For i 6= j, de�ne Ei;j(�) = I + ��i;j, i.e. the elementary matrix 
orrespondingto the row operation whi
h adds � times the jth row to the ith row.� Let D(�; i) := I + (�� 1)�i;i be the diagonal matrix with the (i; i)-entry equalto � and the remaining (diagonal) entries equal to 1.Lemma 3.7. Let B = g(I; ei) 2 AGLn�1(Zm), with ei 2 (Zm)n�1 a standard basisve
tor. Then AGLn�1(Zm) � GLn(Zm) is generated by B and the following matri
es:(a) Ei;j(1), all 1 � i 6= j � n� 1 and(b) D(�; 1) all � 2 Z�m.Proof. Let ej 2 (Zm)n�1 be an arbitrary standard basis ve
tor and 
hoose A so thatAei = ej. Then g(A; 0)g(I; ei)g(A�1; 0) = g(I; ej):Sin
e the matri
es g(I; ej) generate all elements of the form g(I; b), b 2 (Zm)n�1, it isenough to show that matri
es in (a) and (b) generate all matri
es of the form g(A; 0)with A 2 GLn�1(Zm).Sin
e [Ei;j(1)℄k = I+k�i;j = Ei;j(k) we see that we 
an obtain all elementary matri
es
orresponding to repla
ing row/
olumn i with a multiple of row/
olumn j plus row i.



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 9Moreover, we may obtain all matri
es that permute rows and all matri
es of the formD(�; j) indu
tively from D(�1; 1) via:�1 10 1���1 00 1��1 �10 1 ��1 10 1� = �0 11 0� :Thus we obtain all elementary matri
es in GLn�1(Zm) as produ
ts of matri
es as in (a)and (b).Finally, observe that the g
d of the entries in any row/
olumn of A 2 GLn�1(Zm) mustbe a unit in Zm. Using elementary row/
olumn operations (left/right multipli
ation byelementary matri
es) we may transform A into a matrix with the (1; 1) entry equalto 1 and the remaining entries equal to zero. It then follows by indu
tion that everyA 2 GLn�1(Zm) is a produ
t of matri
es as in (a) and (b), as required. �Proposition 3.8. Suppose that t 2 Z is 
hosen so that t and (1 � t) are units in Zmand Z�m = ht;�1i. Then �m;t(LBn) �= AGLn�1(Zm).Proof. We pro
eed by indu
tion on n. For the 
ase n = 2 we must show that Mand P as above generate AGL1(Zm). By taking the transpose of M and P followedby a 
hange of basis we 
an transform these into our standard AGL1(Zm) form as:� = g(�t; t) = ��t t0 1� ; s = g(�1; 1) = ��1 10 1� :Now g(�t; t)g(�1; 1) = g(t; 0), and g(�1; 1)g(t; 0)g(�1; 1)g(1=t; 0) = g(1; 1�t). Sin
e(1� t) is invertible and g(1; a)g(1; b) = g(1; a+ b), we obtain all g(1; a). Sin
e one of tor 1� t is even, 2 is a unit in Zm, with multipli
ative inverse, say i2. Now we 
omputeg(1;�i2)g(�1; 1)g(1; i2) = g(�1; 0). Sin
e Z�m = ht;�1i we obtain all g(x; 0) wherex 2 Z�m. Therefore we have all g(1; a)g(x; 0) = g(x; a) 2 AGL1(Zm).Now we again take the transpose of �m;t(�i) and �m;t(si) for 1 � i � n � 1 andthen 
hange to the ordered basis: [(1; : : : ; 1); (0; 1; : : : ; 1); : : : ; (0; : : : ; 0; 1)℄, so that thegenerators have the form g(A; a) with A 2 GLn�1(Zm) and a 2 (Zm)n�1. By theindu
tion hypothesis, the images of �i; si for 1 � i � n � 2 generate all matri
esof the form g(B; 0) where B 2 AGLn�2(Zm). That is, we have all g(g(C; 
); 0) withC 2 GLn�2(Zm) and 
 2 (Zm)n�2. With respe
t to this basis the image of the generator�n�1 has the form �n�1(t) := g(J; ten�1) where J = 0BB�1 0 � � � 0... . . . � � � ...0 � � � 1 00 � � � 1 �t1CCA, and the imageof the generator si is obtained by evaluating �n�1(t) at t = 1.We have now redu
ed to showing that g(g(C; 
); 0) together with �n�1(t) and �n�1(1)generate all of AGLn�1(Zm). By Lemma 3.7 it suÆ
es to obtain g(I; en�1) as well as all



10 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3g(Ei;j(1); 0) for 1 � i; j � n�1 and g(D(�; 1); 0) for all � 2 Z�m. Sin
e C 2 GLn�2(Zm)and 
 2 (Zm)n�2 
an be 
hosen arbitrarily, we immediately obtain all g(D(�; 1); 0) aswell as the g(Ei;j(1); 0) for i � n� 2 and 1 � j � n� 1.Let en�1 denote the standard basis ve
tor in (Zm)n�1 and setT (t) := �n�1(t)�n�1(1)�n�1(t)�1�n�1(1) = I + (1� t)(�n�1;n�2 ��n�1;n):We 
ompute T (t)k = I + k(1 � t)(�n�1;n�2 � �n�1;n) and sin
e (1 � t) is invertiblemodulo m we may 
hoose k = (1� t)�1 to obtain T (0) = I +(�n�1;n�2��n�1;n). Nowwe 
ompute:g(D(�1; n� 2); 0)T (0)g(D(�1; n� 2); 0)T (0) = g(I;�2en�1):Sin
e �2 is invertible modulo m, we may appeal to Lemma 3.7 to produ
e all elementsof the form g(I; b), on
e we obtain the remaining generators of GLn�1(Zm).Thus it remains to produ
e g(En�1;j(1); 0) for all 1 � j � n � 2. For this weset X = g((I +Pn�2j=1 ai�n�3;i)D(an�2; n � 2); 0), that is, the n � n matrix with the(n � 2)th row equal to (a1; : : : ; an�2; 0; 0) and Xi;j = Æi;j for i 6= (n � 2). Noti
e thatX is of the form g(g(C; 0); 0) with C 2 GLn�2(Zm), assuming that an�2 is invertible.Setting Z = X�1�n�1(1)X�n�1(1) we �nd that the (n � 1)th row of Z has entries(a1; : : : ; an�3; an�2 � 1; 1; 0) and Zi;j = Æi;j for i 6= (n � 1). Spe
ializing at appropriatevalues of ai (e.g. an�2 2 f1; 2g, ai 2 f0; 1g for i < n � 2) we obtain all g(En�1;j(1); 0)for 1 � j � n�2. Thus, by Lemma 3.7 we have 
ompleted the indu
tion and the resultfollows. �Remark 3.9. We 
onje
ture that Prop. 3.8 is sharp.Clearly fdet(T ) : T 2 AGLn�1(Zm)g = Z�m. Sin
e det(M) = �t and det(S) =�1, the image of �m;t(LBn) 
onsists of matri
es with determinant �tk. This shows if�t;m(LBn) �= AGLn�1(Zm) then ht;�1i = Z�m. In parti
ular if Z�m is not a 
y
li
 groupor the dire
t produ
t of Z2 with a 
y
li
 group Zd then �t;m(LBn) is a proper subgroupof AGLn�1(Zm). Clearly t and (1� t) 
an both be units only if m is odd. In this 
ase,the group Z�m �= Zd � Z2 if only if m = paqb is a produ
t of at most 2 odd primes andg
d(pa � pa�1; qb � qb�1) = 2.3.2. Relationship with Drinfeld doubles. In [15℄ it is observed that a BVS (V; 
)with 
orresponding operators g1; : : : ; gn may be realized as a Yetter-Drinfeld moduleover the group G = hg1; : : : ; gni. When G is �nite, these 
an be identi�ed with obje
tsin Rep(DG) (regarded as a braided fusion 
ategory) where DG is the Drinfeld doubleof the group G.As a ve
tor spa
e DG = GC 
 C [G℄ where GC is the Hopf algebra of fun
tions on Gwith basis Æg(h) = Æg;h and C [G℄ is the (Hopf) group algebra. The Hopf algebra stru
ture



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 11onDG is well-known. For an a

ount of the asso
iated braid group representations (andfurther details) see [13℄.The irredu
ible representations of DG are labeled by pairs (g; �) where g is a 
onju-ga
y 
lass in G and � is the 
hara
ter of an irredu
ible representation of the 
entralizerof g in G: CG(g). The representation �m;t of Theorem 3.5 
an be obtained in this way.We now des
ribe this expli
itly.Let m; t be positive integers with g
d(m; t) = 1 and t 6= 1 (mod m). Let ` be theorder of t modulo m, and Zm = hri be the 
y
li
 group modulo m with generator r.The map �(r) = rt de�nes an automorphism of Zm, whi
h generates a 
y
li
 subgroupZ` of Aut(Zm). Therefore we may form the semidire
t produ
t G = Zm o Z` viasrs�1 = rtwhere hsi = Z`. Let us further assume that g
d(m; t � 1) = 1. It follows from therelations above that risr�i = ri(1�t)s for all i, and the 
onjuga
y 
lass of s is fri(1�t)s :0 � i � m � 1g. For notational 
onvenien
e, let q = r1�t so that q has order mand the 
onjuga
y 
lass of s is fqis : 0 � i � m � 1g. Then V = V(s;1) has basisfqi j 0 � i � m � 1g, a set of 
oset representatives of G=CG(s). The a
tion of theR-matrix of DG �R on V 
 V is (where P denotes the usual transposition):�R(qi 
 qj) = PR(qi 
 qj)= P (Xg2G Æg 
 g)(qi 
 qj)= P (qi 
 qi(1�t)sqj)= P (qi 
 qi(1�t)+jt)= qi(1�t)+jt 
 qi:Clearly we may identify �R with the Z-linear operator on Zm � Zm given by(i; j) 7! ((1� t)i+ tj; i):This is the transpose of the braided ve
tor spa
e des
ribed in Theorem 3.5.4. Finite dimensional quotient algebrasIn order to study 
ertain lo
al and �nite-dimensional representations � of LBn, su
has the BVS representations �
 des
ribed in x3 above, we are interested in 
ertain �nite-dimensional quotient algebras of the group algebra C [LBn ℄, namely the algebrasL�n := C [LBn ℄= ker �:



12 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3In passing to the group algebra, we linearize. Thus ker � = fx 2 C [LBn ℄ j �(x) =0g: This should be 
ontrasted with the group representation version: kerG � = fg 2LBn j �(g) = 1g: It 
an easily happen that kerG � = f1g but ker � 6= f0g. � This raisessome questions. (1): What is a good presentation of L�n for ea
h n? Can the kernel bedes
ribed in 
losed form for all n? (2): What are the irredu
ible representations of L�n?In this se
tion, we �rst use an analogy to show why the answers to these questionswill be useful. This analogy shows that the study of the quotient algebras L�n is ofintrinsi
 interest. Then we analyse these representations, and answer (2) in 
ertain
ases. All will be reasonably self-
ontained, but further ba
kground and referen
es forrelevant 
on
epts from the representation theory of Artin's braid group 
an be founde.g., in [20, 18, 24, 25, 30℄.4.1. A braid group quotient analogy. Consider the ordinary braid group Bn. Forea
h N , V = C N and q 2 C � there is a well-known BVS with 
 = 
N , where in the 
aseN = 2: 
2 = q0BB� 1 1� q�2 �q�1�q�1 0 1 1CCA = 0BB� q (q � q�1) �1�1 0 q 1CCAWe write �N for the representation �
N .For q = (q1; q2; :::) a tuple in C � de�ne �q =Qi(�1� qi) 2 C [Bn ℄. The He
ke algebrais Hn = C [Bn ℄=Iq, where Iq being the ideal generated by �(q;�q�1) = (�1�q)(�1+q�1) 2C [Bn ℄ for some q 2 C � . In the following we work with a �xed q and often omitthe q-dependen
e from the notation (as done for Hn � Hn(q)). Evidently �N fa
torsthrough Hn, but it is not linearly faithful for all n. The quotients HNn are de�ned byHNn = C [Bn ℄= ker �N :So what is a good presentation for HNn for given N? There is an element f of Hm form = N + 1 su
h that(4.1) ker �N = HnfHnfor all n (with the kernel understood to be 0 for n < m). To 
onstru
t f for a givenN , re
all that for ea
h m there is a nonzero element fm of Hm unique up to s
alarssu
h that �ifm = fm�i = (�q�1)fm for all i. For example we 
an take f2 = U1 whereUi := �i � q and f3 = U1U2U1 � U1. We may take f = fN+1 or any nonzero s
alarmultiple thereof. That is, there is a single additional relation that 
hara
terises HNn as�Note also that while group representations and group algebra representations are 
losed undertensor produ
ts, the linear kernel is not preserved in general.



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 13a quotient of Hn for all n and q, namely fN+1 = 0 [25℄. Thus H2n is the Temperley{Liebalgebra and so on.4.2. On lo
alization. Given an algebra A, let �(A) be the set of irredu
ible repre-sentations up to isomorphism. Another feature of the braid/He
ke/Temperley{Liebparadigm is lo
alization.Given an algebra A and idempotent e 2 A, then eAe is also an algebra (not asubalgebra) and the fun
tors Ge; Fe:(4.2) A�mod  ��!GeFe eAe�mod(`globalization' and `lo
alization', respe
tively) given on modules byGeN = Ae
eAe NFeM = eMare an adjoint pair. Useful 
orollaries to this in
lude the following:(LI) Let Li; Lj be distin
t simple A-modules, with eLi and eLj nonzero. Then eLi, eLjare distin
t simple eAe-modules.(LII) If Li has 
omposition multipli
ity mi in A-module M , and eLi 6= 0, then eLi hasmultipli
ity mi in eAe-module eM :(4.3) [M : Li℄ = [eM : eLi℄(LIII) The set �(A) of irredu
ible representations of A (up to isomorphism) is in bije
-tion with the disjoint union of those of eAe and those of A=AeA:(4.4) �(A) �= �(eAe) t �(A=AeA)The idea here is very general. Given an algebra A to study, we �nd an idempotentin it, then study A by studying eAe and A=AeA. In general eAe and A=AeA are alsounknown and this subdivision does not help mu
h. But for HNn we have an e su
h that(4.5) eHNn e �= HNn�N ;so we 
an 
onsider eAe to be known by an indu
tion on n. The analysis goes as follows.For HNn , in addition to the property (4.1), there is also an element e of HNn for somen (in fa
t n = N and e = fN ) su
h that the matrix �N(e) is rank=1. It follows that(4.6) �N (e) �(HNN ) �N (e) � k�N (e)Indeed we have the following (`lo
alization property'): For all n,(4.7) �N (e) �N(HNn ) �N (e) = �N (e)| {z }on V N 
 �N(HNn�N)| {z }on V n�N
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f. (4.5)).We have from (4.7) that eHNn e �= HNn�N and, sin
e e = fN , that HNn =HNn eHNn �=HN�1n . So by (4.4) the irredu
ible representations of HNn 
an be determined by aniteration on n (and N).It is sometimes possible to lift this to the loop-braid 
ase. How might the braid groupparadigm generalize? Of 
ourse every �nite-dimensional quotient of the group algebraof the braid group Bn has a lo
al relation | a polynomial relation �q = 0 obeyed byea
h braid generator. Thus we 
an start, organisationally, by �xing su
h a relation. Ifthis relation is quadrati
 then the quotient algebra is �nite dimensional for all n, inparti
ular it is the He
ke algebra. If the lo
al relation is 
ubi
 or higher order then thisquotient alone is not enough to make the quotient algebra �nite-dimensional for all n[9℄ (and also not enough to realise the lo
alisation property, as in x4.2).Below we study group-type representations of LBn in this 
ontext.4.3. Some more preparations: the BMW algebra. We de�ne the BMW algebraover C as follows. For n 2 N and r; q 2 C � with q2 6= 1, C -algebra Cn(r; q) is generatedby b1; b2; :::; bn�1 and inverses obeying the braid relations(4.8) bibi+1bi = bi+1bibi+1; bibj = bjbi (ji� jj > 1)and, de�ning(4.9) ui = 1� bi � b�1iq � q�1 = b�1iq�1 � q (bi � q)(bi + q�1);obeying the additional relations(4.10) uibi = r�1ui(4.11) uib�1i�1ui = r�1ui:Relation (4.10) is equivalent to a `
ubi
 lo
al relation'(4.12) (bi � r�1)(bi � q)(bi + q�1) = 0:Relation (4.10) also implies u2i = (1 + r � r�1q � q�1 )ui:Relation (4.11) implies uiui�1ui = ui:Of 
ourse we also have from (4.8):uiuj = ujui (ji� jj > 1):



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 15Indeed the ui's generate a Temperley{Lieb subalgebra of Cn(r; q). This subalgebra real-izes a di�erent quotient of the braid group algebra: the images of the braid generatorsare ai = 1� q0(q; r) ui, where q0 is de�ned by q0 + q0�1 = 1 + r�r�1q�q�1 with a quadrati
lo
al relation, and with the two eigenvalues depending on q and r.For us the interesting 
ase of C(r; q) is r = q, where the braid generators of the TLsubalgebra obey the symmetri
 group relations. In this 
ase, then, we have images ofboth the braid group and the symmetri
 group in Cn(q; q), as for LBn. Indeed we havethe following.Lemma 4.1. There is a map  : LBn ! Cn(q; q) given by �i 7! bi, si 7! ai = 1� ui.Proof. With r = q we have u2i = 2ui and q0 = 1 so ai = 1 � ui and a2i = 1 as alreadynoted. Relations (L1,L2) 
an be dire
tly 
he
ked.4.4. The representations �N of LBn. For ea
h N , and x 2 C , there is a well-knownlo
al representation �xN of C [Bn ℄=Ix;1;�1, with Ix;1;�1 as de�ned in se
tion 4.1 (triviallyres
alable, setting x = q2, to a representation �N of C [Bn ℄=Iq;q�1;�q�1; and that in 
aseN = 2 is also a representation of Cn(q; q)). One takes the diagonal BVS withg1 = 0BB� x 00 10 0 . . .0 0 0 11CCA ; g2 = 0BB� 1 00 x0 0 . . .0 0 0 11CCA ; :::; gN = 0BB� 1 00 10 0 . . .0 0 0 x1CCA :We abbreviate the basis element ei1
ei2
 :::
ein of V n as ji1i2:::ini, so that e1
e1
e2be
omes j112i and so on. Then(4.13) �jji1i2:::ini = � xji1i2:::ini ij = ij+1ji1i2:::ij+1ij:::ini otherwiseSpe
i�
ally for N = 2 (with basis elements of V 2 ordered j11i; j12i; j21i; j22i):�i �x27! Id2 
 Id2 
 :::
0BB� x 0 0 00 0 1 00 1 0 00 0 0 x 1CCA
 Id2 
 :::
 Id2Stri
tly speaking we need to res
ale: g1 = � q 00 1=q �; g2 = � 1=q 00 q �. So�i �27! Id2 
 Id2 
 :::
0BB� q 0 0 00 0 1=q 00 1=q 0 00 0 0 q 1CCA
 Id2 
 :::
 Id2



16 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3This gives, for example,(4.14) �i � ��1iq � q�1 �27! Id2 
 Id2 
 :::
0BB� 1 0 0 00 0 �1 00 �1 0 00 0 0 1 1CCA
 Id2 
 :::
 Id2Let us de�ne quotient C -algebraB�Nn = C [Bn ℄= ker �N :Proposition 4.2. The algebra B�Nn is semisimple.Proof. In 
ase x is real the algebra is evidently generated by hermitian (indeed realsymmetri
) matri
es. In other 
ases one 
an show that the same is true for a di�erentgenerating set. �Proposition 4.3. The map si 7! �N (�i���1iq�q�1 ) extends �N to a representation of LBn.That is to say, B�Nn is a quotient of C [LBn ℄.Proposition 4.4. The 
ase �2 fa
tors through Cn(q; q). That is bi 7! �2(�i) gives arepresentation of Cn(q; q).Given any realization of Bn, and q 2 C , we de�ne ui as in (4.9). (The image �2(ui)obeys the BMW relation (4.11), but �N(ui) for N > 2 does not.) As noted in (4.3), si 7!�N (ai = 1� ui) gives a representation of Sn for ea
h N . Indeed the �N representationof Sn 
oin
ides with the 
lassi
al 
ase, q = 1, of the �N He
ke algebra representation:(4.15) �q=1N (Ui) = �N(ui):Thus from x4.1 we have f1N := �q=1N (fN) 2 �N :Given a loop BVS one obvious question is: Do we have an analogue of (4.7) heretogether with 
orresponding strong representation theoreti
 
onsequen
es? We are par-ti
ularly interested in 
ases that do not fa
tor over SLBn. But the question is hard ingeneral and it is instru
tive to start with a `toy' su
h as the 
lass of loop BVSs above.4.5. Fixed-
harge submodules of �N . One aim is to de
ompose the representations�N into irredu
ible representations. To this end, note that the subspa
es of �N of�xed N -
olour-
harge (the 
olour-
harge is the 
omposition of n giving for ea
h i inf1; 2; :::; Ng the number of i's in a basis element ji1i2:::ini) are invariant under theC [LBn ℄ a
tion.Lemma 4.5. The SN a
tion permuting the standard ordered basis fe1; e2; :::; eNg ofV = C N 
ommutes with the LBn a
tion on V n. �



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 17We write the a
tion ofSN on the right. So ifM is an LBn-submodule of V n thenMwis an isomorphi
 submodule for any w 2 SN . This SN a
tion a
ts on the set of 
harges.Thus we 
an index 
harge-submodules (up to isomorphism) by the set �N;n of integerpartitions of n of maximum depth N . This is the same as the 
harge de
omposition ofthe He
ke algebra representation �N (where the submodules are 
alled Young modules).But the further de
omposition into irredu
ibles is not the same as in the He
ke 
ase.For an expli
it example, the basis B� for the � subspa
e in 
ase � = (2; 1) is B21 =f112; 121; 211g: We write Y� for the 
harge � submodule. Thus we have(4.16) �N;n �= M�2�N;nm�Y�where m� is the multipli
ity.If SN or a subgroup G �xes a submodule Y� then this module is itself a right G-module and an idempotent de
omposition of 1 in C [G℄ indu
es a de
omposition of Y�.For ea
h � there is aG �xing Y�, 
all itG�, a Young subgroup ofSN (possibly trivial).As usual an idempotent de
omposition of 1 in C [G℄ may be 
hara
terised by tuples ofYoung diagrams/integer partitions. For ea
h su
h label there is also a se
ondary indexrunning over the dimension of the 
orresponding irredu
ible representation of G; butidempotents with the same primary label are isomorphi
. If Y� has a non-trivial su
hde
omposition we will write Y �� for the submodule with primary label �. We 
all thesemodules Y �� harmoni
 modules. For given � write �� for the set of primary labels (theindex set for irredu
ible representations �� of G�). Thus(4.17) Y� = M�2�� dim��Y ��Note that the de
omposition of Y� into irredu
ible modules for the restri
tion to the`
lassi
al' subalgebra HN generated by the uis (the symmetri
 group a
tion) is well-known. This gives a lower bound on the size of summands of Y� as a module for thefull algebra.Lemma 4.6. A
tions of subgroup Sn and Bn on Y(1n) are identi
al up to sign. �Comparing the `
lassi
al' de
omposition of Y(1n) above with the idempotent de
om-position with G = SN = Sn in this 
ase we see that they are the same.To apply lo
alization later we will be interested, for ea
h given N , in dete
tingsubmodules M of Y� on whi
h e = f1N a
ts like 0. We 
all these e-null, or f1N -null,submodules. Any su
h submodule M de
omposes also as an Sn-submodule, and so f1Nwould have to a
t like 0 on ea
h of the submodules in this de
omposition. For examplein 
ase N = 2 only the irredu
ible Sn-module �(n) has this property at rank-n. So



18 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3here there 
an only be su
h a submodule M if �(n) is also an LBn-submodule of Y�. Abasis element for Sn-submodule �(n) in Y� is known. We takeb = Xw2Snw 111:::222where 111:::222 is the initial basis element of Y� in the lex order. Then for exampleb �=(2;1)= 2(112� 121 + 211). Note here that q�1(112� 121 + 211) = x112� 211 + 121,so �(3) is not an LB3-submodule unless x = �1.Lemma 4.7. (I) In 
ase N = 2, x 6= �1, no Y� has e-null proper submodule ex
ept in
ase � = (1; 1), where Y (12)(12) is f12 -null.(II) In 
ase N = 3 the module Y (12)(n�2;12) is f13 -null for n > 3.Proof. (I) The example above is indi
ative, ex
ept in 
ase (1; 1) where there is no xterm.(II) A basis of Y (12)(2;12) is f1123 � 1132; 1213 � 1312; 1231 � 1321; 2113 � 3112; 2131 �3121; 2311 � 3211g. One readily 
he
ks the f13 a
tion on this. The other 
ases aresimilar. �There is an inje
tive algebra mapB�Nn�N �! f1N 
B�Nn�N ,! f1NB�Nn f1N :Thus any B�Nn -module gives rise to a B�Nn�N module by �rst lo
alizing (we will writesimply F for the lo
alisation fun
tor Ff1N here), then restri
ting.Lemma 4.8. There is an isomorphism of B�Nn�N -modulesf1NY(�1;�2;:::;�N) �= � Y(�1�1;�2�1;:::;�N�1) �N > 00 �N = 0Proof. For any given N we 
an write w 2 B� asw = w1w2:::wN| {z }w� wN+1wN+2:::wn| {z }w+ = w�w+:Then(4.18) f1Nw = f1Nw�w+ = � 0 unless w� is a permutation of 12...N.12:::Nw+ w� is a perm. of 12...N.where 123 = 123 + 213 + 132 + 231+ 312+ 321 and so on. That is, f1NV n �= V n�N andf1NY� �= Y��(1N ) as ve
tor spa
es, and hen
e modules. �



LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP 19Lemma 4.9. Let � 2 � and l = l� the number of distin
t row-lengths in �, so that �in Y �� has l� distin
t 
omponents (ea
h �i a partition). Let �0 denote � with the l-th
omponent omitted. There is an isomorphism of B�Nn�N -modulesf1NY �(�1;�2;:::;�N) �= 8>>><>>>: Y �(�1�1;�2�1;:::;�N�1) �N > 1Y �0(�1�1;�2�1;:::;�N�1) �N = 1; (�l)2 = 00 �N = 1; (�l)2 > 00 �N = 0Proof. The de
omposition of Y� by the right-a
tion of the 
harge group, 
ommuteswith the left-a
tion of f1N . So, noting Lemma 4.8, it only remains to verify the �N = 1
ases. In these 
ases the �rst 
olumn of � is uniquely the longest, of length N . Thusthe 
olours involved in the last 
omponent of � are symmetrised by f1N . Any 
oloursymmetry idempotent a
ting from the right 
orresponding to �l with (�l)2 > 0 involvesan antisymmetriser in its 
onstru
tion, and hen
e annihilates f1NY�. �Lemma 4.10. For x 6= �1 the harmoni
 modules of LBn, i.e. the modules fY �� j � 2�n; � 2 ��g, are pairwise non-isomorphi
.Proof. Work by indu
tion on n. Compare Y = Y �� , Y 0 = Y �0�0 , say, with � 6= �0. Ifeither f1NY or f1NY 0 6= 0 for some N � jj�jj := �t1 then Y 6�= Y 0 by Lemma 4.9 andthe indu
tive assumption. The remaining 
ases are when one or both of Y; Y 0 are oftype-III in Lemma 4.9. These are routine to 
he
k. �How 
an we understand this proliferation of submodules? Analogous results to theabove hold for the He
ke quotients HNn . There it is very useful to use a geometri
alprin
iple to organise the indexing sets for 
anoni
al 
lasses of modules (su
h as Youngmodules; or simple modules | ex
ept that there it turns out that, roughly speaking,the same index set 
an be used for these di�erent 
lasses). One way to understand thisgeometry 
omes from the theory of weight spa
es in algebrai
 Lie theory. Here we donot have any su
h dual pi
ture, but we 
an naively bring over the same organisationalprin
iple. This tells us to 
onsider � as a ve
tor in RN , and then to draw the set of �sin RN�1 by proje
ting down the (1; 1; :::; 1) line. One merit of this is that it allows usto draw the entire N = 3 `weight spa
e' of Young module indi
es in the plane.4.6. Bran
hing rules for harmoni
 modules. We 
onsider here the natural restri
-tion from LBn to LBn�1, and 
laim Fig.1 gives the bran
hing rules for N = 3.Proposition 4.11. The bran
hing rules for Young modules 
orresponding to the naturalrestri
tion from LBn to LBn�1 are# Y� =Mi Y��ei



20 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3where the sum is over removable boxes in the Young diagram �.Proof. The lBn�1 a
tion ignores the last symbol in the 
olour-word basis for Y�. �Proposition 4.12. The dire
ted graph in Fig.1 gives the bran
hing rules for harmoni
modules for N = 3, using the geometri
 realisation.Proof. First note that well in the interior of the pi
ture the Young and harmoni
 modules
oin
ide and we 
an use Prop.4.11. Spe
i�
ally this gives all 
ases in the forward 
oneof the point (4; 2).The remaining 
ases in the forward 
one of (2; 1) may be veri�ed by using Proposi-tions (4.17) and (4.11).For the remaining `boundary' 
ases we split up into 
ases in the following subsets:(i) the (1; 0)-ray of point (3; 1); (ii) the (1; 0)-ray of point (2; 0); (iii) the (1; 1)-ray ofpoint (3; 2); (iv) the (1; 1)-ray of point (2; 2); (v) the point (2; 1); (vi) the point (1; 0);(vii) the point (1; 1); (viii) the point (0; 0).We indi
ate the proof with two representative examples. Case (ii): In the �bre over(2; 0) we have # Y (2)(6;4;4) = Y(6;4;3) � Y (2)(5;4;4)by using 4.11 and 
ommutativity of (left) restri
tion with the (right) idempotent de-
omposition.Case (vi): In the �bre over (1; 0) we have# Y ((1);(2))(2;1;1) = Y(2;1) � Y ((3))(13) � Y ((2;1))(13)Here the basis is1123 + 1132; 1213 + 1312; 1231 + 1321; 2113 + 3112; 2131 + 3121; 2311 + 3211Sin
e the restri
tion is de�ned by disregarding the last symbol in the 
olor-world basis itis 
lear that on restri
tion the 1st, 2nd and 4th give a basis of Y(2;1), while the remainderinje
ts into Y(13), and indeed into Y(13)(1 + s2). �Theorem 4.13. In 
ases N = 2; 3, x 6= �1, the harmoni
 modules are irredu
ible.Proof. We work by indu
tion on n. Consider a harmoni
 module Y at level n. ByPropositions 4.12, 4.10 and the indu
tive assumption restri
tion to n�1 is multipli
ity-free. So it is enough to show that there is a basis element b in a good basis withrespe
t to this restri
tion (a basis that de
omposes into bases for the summands of therestri
tion) su
h that Y = B�Nn b.In 
ase Y is also a Young module it is easy to see that Y = B�Nn b for any standardbasis element; and that the standard basis is a good basis for the restri
tion to Young
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(0,1)

(1,0)Figure 1. Bran
hing rules for harmoni
 modules for N = 3. All `paral-lel' edges are dire
ted in the same dire
tion.modules; and that at least one of these is a summand of the restri
tion to harmoni
modules.In 
ase Y is not a Young module (i.e. on the boundary) the modi�
ation is routineand we 
ontent ourselves here with some representative examples:(1) Re
all the restri
tion ResY (2)(2;1;1) = Y (3)(1;1;1) � Y (2;1)(1;1;1)� Y(2;1): An element lying in thelast summand is 1213 + 1312. A
ting with �3 on this we get 1231 + 1321. It is easy tosee that this generates the whole module.(2) Re
all the restri
tion ResY (2)(2;2;1) = Y (2)(2;1;1) � Y (12)(2;1;1)� Y (2)(2;2): An element lying in thelast summand is 11223+22113. A
ting with �4 on this we get 11232+22131. It is easyto see that this generates the whole module.(3) We have ResY (2)(4;2;2) = Y(4;2;1) � Y (2)(3;2;2):



22 ZOLT�AN K�AD�AR1, PAUL MARTIN1, ERIC ROWELL2, AND ZHENGHAN WANG3A good basis is f11112233+11113322; 11112323+11113232; :::; 11123213+11132312;:::; 32211113 + 23311112; :::g, where all the expli
itly written elements lie in the basisfor Y(4;2;1) in the restri
tion (the �rst word ends in 3). Now apply �7: �7(11123213 +11132312) = 11123231 + 11132321, whi
h lies in Y (2)(3;2;2). �Categori
al versions of the stru
ture for N = 2 and N = 3 also 
an be worked outexpli
itly. (But in light of Proposition 4.2 these are not as powerful a tool here as inthe 
orresponding He
ke 
ases.) We will leave them for future publi
ation.We make the obvious 
onje
ture for the generalisation to higherN : that the harmoni
modules are again a 
omplete set of irredu
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