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ABSTRACT: We present a theoretical framework for the
analysis of ultrafast X-ray scattering experiments using non-
adiabatic quantum molecular dynamics simulations of photo-
chemical dynamics. A detailed simulation of a pump−probe
experiment in ethylene is used to examine the sensitivity of
the scattering signal to simulation parameters. The results are
robust with respect to the number of wavepackets included in
the total expansion of the molecular wave function. Overall, the
calculated scattering signals correlate closely with the dynamics
of the molecule.

1. INTRODUCTION

The critical steps in photochemical reactions occur on short
time scales, with quantum effects such as nuclear motion on
multiple electronic states, nonadiabatic couplings, conical
intersections, tunneling, coherence, and interference playing
important roles.1−4 These attributes contribute to the challenge
of studying these reactions experimentally and theoretically.
However, ultrafast X-ray scattering experiments,5−7 made
possible by new X-ray free-electron lasers (XFELs),8−10 together
with other ultrafast techniques11−14 and advances in theory and
quantum simulations,15,16 stand to transform our understanding
of photochemical dynamics in molecules.
Scattering-based techniques are complementary to spectro-

scopic techniques because they probe structure and structural
dynamics in a more direct manner.17 The first successful time-
resolved X-ray scattering experiments were performed at
synchrotrons using mechanical choppers to create picosecond
X-ray pulses.17−19 XFELs are capable of delivering significantly
shorter, even less than 30 fs duration, pulses of coherent X-rays
with an intensity orders of magnitude higher than that of
synchrotrons.5−7 Importantly, the intensity is sufficient to com-
pensate for small X-ray scattering cross-sections and thus
enable time-resolved gas-phase X-ray scattering experiments,7,20

allowing direct comparison with results from other gas-phase
ultrafast techniques, as exemplified by a recent study that
combined ultrafast X-ray scattering with time-resolved photo-
electron spectroscopy.21

Theoretical and computational analysis plays an important
role in the interpretation of ultrafast experiments. However,
although reactive scattering calculations are quite sophisticated22

and complex processes such as ionization,23 dissociation,24,25 and
the competition between the two26,27 can be modeled accurately
in very small molecules, dynamics in even slightly larger mole-
cules remains difficult. Ultimately, the reason for this can be
traced to the nonlocal nature of quantum mechanics and the
exponential scaling with the number of degrees of freedom.15

The most promising methods15,16,28 involve solving the time-
dependent Schrödinger equation with potential energy surfaces
and nonadiabatic couplings calculated on-the-f ly. Such calcu-
lations compare directly with the observations in time-resolved
experiments, and are made feasible by the fairly localized nature
of the nuclear wave function at short times, reducing the size of
the phase-space.29 In contrast to classical surface-hopping,30

these methods attempt to capture the full quantum propagation
of the nonadiabatic nuclear wave function. Similar methods
have been used to simulate ultrafast electron dynamics in
intense laser fields.31,32

Progress in the understanding of photochemistry will require
close integration of theory and experiments. Accurate quantum
molecular dynamics simulations that directly predict the
experimental signal can provide a detailed interpretation of
experimental data and allow critical scrutiny of the reaction
mechanism. In this article, which presents a simulation of an
ultrafast X-ray scattering pump−probe experiment, we examine
the fundamental equations describing X-ray scattering in the
context of the ab initio multiconfigurational Ehrenfest (AI-MCE)
method15 for quantum molecular dynamics. Related methods
such as ab initio multiple spawning (AIMS)28 and variational
multiconfigurational Gaussians (v-MCG)16 share many charac-
teristics with AI-MCE, and derivations for these methods will
follow a similar path. Importantly, we also derive simplified
forms of the X-ray scattering expressions, suitable for the situa-
tion when elastic scattering is dominant, and extend the elastic
treatment to include the independent atom model with and
without rotational averaging. Computational results are shown
for the case of elastic ultrafast X-ray scattering from photo-
excited ethylene, and we investigate the sensitivity of the X-ray
scattering signal to the specifics of the quantum simulation and
the approximations made.
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2. THEORY
2.1. Quantum Molecular Dynamics. Our starting point

is quantum molecular dynamics simulations of photoexcited
dynamics. We base our representation of the nonstationary
wave function of the photoexcited molecule on the AI-MCE
method,15,33,34 which is closely related to similar methods
such as AIMS28 and v-MCG.16 Collectively, these nonadiabatic
trajectory-based methods amount to the most successful
attempt to date to treat complex photochemical dynamics in
comparatively large molecules. It should also be noted that the
results obtained here could be adapted to surface-hopping
trajectory simulations30,35,36 in a straightforward manner.
In AI-MCE, the molecular wave function at time t is

expanded as a sum of N Ehrenfest wavepackets with complex
coefficients Dk(t),

∑ ψ|Ψ ⟩ = | ⟩
=
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The wavepackets |ψk(t)⟩, also referred to as Ehrenfest con-
figurations or trajectories, form a basis set for the calculation.
Each consists of electronic and nuclear components,
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where the nuclear Gaussian wavepacket |gk(t)⟩ is shared across
Ns electronic states, |ϕk

i ⟩. The electronic wave functions are
multiplied by a complex amplitude, ak

i (t), such that |ak
i (t)|2 corre-

sponds to the population on that electronic state. This ansatz has
shortcomings, but if a sufficient number of wavepackets are
included in the expansion in eq 1, good convergence is at-
tained.34,37,38 Convergence can be improved by the inclusion of a
numerical mechanism for branching of the wavepackets when the
constituent electronic states have very different gradients.37

The time evolution of the total molecular wave function,
|Ψ(t)⟩ in eq 1, is given by the propagation of each individual
wavepacket, |ψk(t)⟩, corresponding to a semiclassical trajectory
given by phase-space coordinates Q k(t), Pk(t) (see below),
together with the time dependence of the Ehrenfest coeff-
icients, ak

i (t), and the Ehrenfest configuration amplitudes, Dk(t).
The amplitudes Dk(t) are due to the coupling between different
trajectories. The propagation uses electronic potential energies
and nonadiabatic couplings obtained from ab initio electronic
structure calculations. Readers interested in further details are
directed to refs 15, 33, and 34.
For our present purposes, the specific form of the wave-

packet in eq 2 is of interest. The nuclear wavepacket |gk⟩ =
|gk(Q̅ k(t), P̅k(t))⟩ = |g1

k(Q 1
k(t), P1

k(t))⟩...|gNat

k (Q Nat

k (t), PNat

k (t))⟩
is a product of three-dimensional Gaussian wavepackets
(coherent states) for each atom, where Nat is the number of
atoms. The labels Q α

k(t) and Pα
k(t) are the coordinates and the

momenta of a trajectory-guided 3D Gaussian coherent state
(CS) with the width γα , which is chosen individually for each
atom according to the prescription developed in ref 39.
The component for the atom with index α in coordinate
representation is then
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where Rα = (Rαx,Rαy,Rαz) are the Cartesian nuclear coordinates
in three dimensions. We use a bar in R, Q k(t), and Pk(t) to
refer to the coordinates of all atoms. The probability distri-
bution of a single nuclear wavepacket is thus given by
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It is trivial to confirm that a wavepacket is normalized such that
1 = ∫ |vk(R)|2dR, while the overlap of two nuclear wavepackets is,
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where zk̅ = γ1/2Q k+iγ
−1/2ℏ−1Pk , with analogous definition of zl̅ ,

allows for a compact representation of phase-space coordinates.40

To describe electronically nonadiabatic effects, the electronic
wave function in coordinate representation is commonly
written as parametrically dependent on nuclear coordinates so
that eq 2 becomes,
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where the electronic wave function ϕi(r;̅ R̅) depends directly
on the electronic coordinates r ̅ and parametrically on the
positions of the nuclei R̅. The overlap matrix for Ehrenfest
configurations is similar to eq 5 but must include the overlap of
the electronic components,
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where we have removed the superfluous subscripts l and k on
the electronic states |ϕi⟩. The final equality in eq 7 makes use of the
orthonormality of the electronic states ⟨ϕi(r;̅ R̅)|ϕj(r;̅ R̅)⟩r ̅ = δij.
In the next section, the identity operator for the Ehrenfest basis
will be used. The identity operator must account for the
nonorthonormality of the CS basis in which the nuclear wave
function is expressed and is given by

∑ ψ ψ= | ⟩Ω̃ ⟨ |−1
ij

i ij j
1

(8)

2.2. X-ray Scattering. We now introduce the equations
required to calculate X-ray scattering from the nonstationary
molecular wave function excited by the pump pulse. The theory
of X-ray scattering outlined here follows closely the develop-
ment by K. B. Møller and N. Henriksen.41−43 We take as a
starting point the double-differential scattering cross-section
given by the expression41
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where dΩ is the scattering angle and dωk1 is proportional to the
energy of the scattered radiation. The scattering operator L̂ in
eq 9 is defined as

∑̂ = ıL
e
m

e
2 e j

qr
2

j

(10)

where e and me are the charge and mass of an electron, and rj is
the position of electron j. Formally, the sum runs over all
charged particles, but since electrons are much lighter than
nuclei and the mass appears in the denominator, only the
electrons are included. The momentum transfer vector is
defined as q = k0−k1, where k0 and k1 are the incoming and
outgoing wave vectors for the X-rays. The Hamiltonian ĤM
in eq 9 corresponds to the material system, in our case the
photoexcited molecule. The prefactor α is

α
ω

π ω
=

ϵ ℏc
P

4
k

k
3 3

0
2

21

0 (11)

with the term P2 accounting for the polarization of the X-rays, c
the speed of light, ϵ0 the permittivity of vacuum, and ω = kc,
where k = |k|.
The electric field of the incoming X-rays in eq 9 is Ek0(t) =

Ek0ϵ(t−tp)exp(−iωk0t), with tp the delay time between the pump
and probe for a pump pulse centered at t = 0. For simplicity, we
consider a Gaussian X-ray pulse profile, ϵ(t−tp) = e(t−tp)

2/2γd
2

,
which has the full width at half-maximum intensity (fwhm)
duration τd = 2γd ln 2 . The coordinate transformation τ =
(t′+t″)/2 and δ = t″−t′, yields Ek0*(t″)Ek0(t′) = IP(τ)CP(δ),
with IP(τ) = |Ek0|

2e−(τ−tp)
2/γd

2

the X-ray pulse intensity profile

and δ δ= ϵ ıω δC e( ) ( )P
k0 the normalized X-ray pulse coher-

ence function.
Rewriting the double-differential scattering cross-section in

eq 9 using these definitions results in
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with the scattering from the material system given by τ δ( , ),

τ δ τ δ τ δ= Ψ + | ̂ ̂|Ψ −ı δ† − ̂ ℏ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠L e L( , )

2 2
H /M

(13)

2.3. X-ray Scattering and Dynamics. This section brings
together the equations for the AI-MCE wave function from
section 2.1 and the X-ray scattering from section 2.2. The
scattering signal is given by eq 12, with τ δ( , ) the key
quantity to calculate for the material system. A formal solution
can be obtained by inserting the identity operator from eq 8
into the definition of τ δ( , ) in eq 13. However, considering
the simplifying approximations we wish to make, a more
convenient ansatz is found by first rewriting τ δ( , ) using the
propagation operator, U(t,t0) = e−ıHM(t−t0), such that

τ δ τ τ= ⟨Ψ | ̂ ̂ |Ψ ⟩ı δ ı δ ı δ̂ ℏ † − ̂ ℏ ̂ ℏe L e Le( , ) ( ) ( )H H H/2 / /2M M M (14)

which translates into
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(15)

Equation 15 is given in matrix form with D the column vector
containing the wave function expansion coefficients, Dk(t) in eq 1,
and with Ω̃−1 the inverse of the wavepacket overlap matrix from
eq 7, both of which come from the AI-MCE simulations.

The actual scattering matrix elements are contained in the
matrix W on the right-hand-side of eq 15 and are given by
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where |ψl(τ)⟩ and |ψk(τ)⟩ are Ehrenfest wavepackets given
by eq 2, and the electronic states on the second line are written
as |n⟩ and |m⟩. On the basis of the different time-scales for
nuclear and electronic motion, one may proceed to simplify
these matrix elements
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where the first approximation is obtained by inserting an
electronic-state identity operator 1 = ∑i|i⟩⟨i|, introducing the
electronic scattering matrix elements Lnm = ⟨n|L̂|m⟩, and
assuming an adiabatic Born−Oppenheimer Hamiltonian such
that ĤM|n⟩ = (T̂N + Ĥel)|n⟩ ≈ T̂N +Vn= ĤN

n . The second
approximation is obtained by assuming that the time-scale for
nuclear motion is significantly slower than electronic motion.

2.3.1. Elastic Scattering Limit. The expression in eq 17 can
be simplified further if one assumes that the electronic states are
well separated, so that the oscillating phase term, exp iδ(Vn−
2Vl+Vm)/2ℏ, cancels all nondiagonal contributions to the integral
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k
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nn k
2
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The diagonal Lnn terms that remain correspond to elastic
scattering and can be rewritten using the elastic scattering form
factors, f 0(q;n,R), for each electronic state |n(r; R)⟩
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It is straightforward, for instance, by partial integration of all but
one electron coordinates in the bracket, to show that the form
factor is the Fourier transform of the electron density, ρn(r; R),

∫ ρ̅ = ̅ ıf n e dq R r R r( ; , ) ( ; )n
qr0

(20)

These molecular form factors can be calculated directly from
ab initio electronic wave functions.44 The difference in form factor,
or equivalently in electron density, between electronic states is
comparatively small.44 Neglecting these differences, the ground
state (n=0) electron density can be approximated further by a sum
over single-atom fragments

∑ρ ρ≈
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α=
=

r r( ) ( )n

N

0
1

at
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where ρα(r) is the electron density of each atom centered at its
position Rα. A Fourier transform of the approximate electron den-
sity in eq 21 yields a sum of atomic form factors, f α

0(q), multiplied
by phase-factors corresponding to the positions of the atoms46
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where Rα is the position of atom α and q the momentum transfer
vector with q = |q|. This approximation, known as the independent
atom model (IAM), affords significant computational savings since
the atomic form factors are known and tabulated.45 In many
circumstances, not the least in traditional X-ray diffraction from
thermal samples, the IAM is a very reasonable approximation,
despite that it fails to account for the distortion of the electron
density due to chemical bonding and does not distinguish between
different electronic states.44

At this point, we should point out the restrictions on the
elastic approximation when X-ray scattering at XFELs is
considered. The elastic approximation is valid when the
duration of the coherent X-ray pulses is short compared to
the time-scale for nuclear motion, yet sufficiently long that the
scattering cross-terms between different electronic states
average out.41−43 When these conditions are not fulfilled,
then the full scattering must be taken into account.47

2.4. IAM Scattering Matrix Elements. 2.4.1. Ansatz for
W IAM. The extensive use of the independent atom model and
the significant computational efficiencies it offers motivate us to
explore this model further. We can use the IAM approximation
to simplify the matrix W in eq 16. Starting with the final line
of eq 17, we set the ground state population to unity, ak

(0) = 1,
and assume that the ground state electron density is well
described by the independent atom model, such that L00 ≈
(e2/2me)f IAM, where f IAM is the form factor according to IAM.
We thus get
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with the IAM scattering matrix, W IAM, defined as
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In its square amplitude form, eq 22 becomes
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where Rαβ = Rα−Rβ is the vector between two atoms, and
indices α and β run over all atoms in the molecule. The atomic
contribution

∑= | |
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N
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in eq 25 carries no structural information. The comparatively
simple expression that results from the independent atom
model makes it possible to find near-analytical forms for the
matrix elements of W IAM.
2.4.2. Diagonal Elements of W IAM. We first consider the

diagonal elements, Wkk
IAM, of the IAM scattering matrix defined

in eq 24. These matrix elements correspond to a convolution of
|f IAM|

2 from eq 25 by the nuclear probability distribution for a
wavepacket given by eq 4, which yields
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with Q αβ
kk = Q α

k−Q β
k. The resulting expression is similar to

eq 25 with the scattering interference between pairs of atoms
depending on their separation, but with the nuclear coordinates

(R1,...,RNat
) replaced by the wavepacket coordinates (Q 1

k,...,Q Nat

k ),
and an additional damping term exp(−q2/2γαβ) proportional to
the combined coherent state widths for the two atoms, γα and
γβ (see eq 3). The new factor γαβ is defined as

γ
γ γ

γ γ
=

+αβ
α β

α β

2
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which reduces to a prefactor exp(−q2/2γ) when all {γα}
are identical. This damping is proportional to the degree of
localization of the nuclear wavepacket. In the limit of strong
localization (γ → ∞), the traditional IAM formula is recovered,
while, conversely, the scattering interference responsible for
structural information is lost when the atoms are strongly
delocalized (γ → 0).

2.4.3. Off-Diagonal Elements of W IAM. Derivation of the
off-diagonal matrix elements of Wlk

IAM(l ≠ k) is tedious but
straightforward. The result is
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where the overlap Ωlk is defined by eq 5, and Ωlk
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k⟩ is the partial overlap of particles α and β in wavepackets
l and k respectively. Furthermore,
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with the general definition of difference vectors Q αα
lk and Pαα
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Overall, eq 29 for the off-diagonal elements shares much the
same structure as eq 27 for the diagonal elements, including the
damping factor exp(−q2/2γαβ) but is weighted by the overlap
between the nuclear wavepackets, via Ωlk, and additional
damping terms proportional to the phase-space distance
between identical atoms via △α

lk. Finally, in the off-diagonal
matrix elements the interference between pairs of atoms is
given by the average of the distance between atoms in each of
the two wavepackets, via the imaginary part of ρ̅.

2.4.4. Rotational Averaging of W IAM. Rotational averaging
becomes important in the absence of rotational alignment or
orientation of the molecules and yields an isotropic signal that
only depends on the magnitude of the momentum transfer
vector q. In IAM, rotational averaging can be carried out in a
straightforward fashion since the atomic form factors, f α

0(q), are
spherically symmetric. We proceed by integrating over all
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directions of the vector q. For the IAM form factor in eq 25 this
yields the well-known formula46
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( ) 2 ( ) ( )

sin( )
at

N

IAM
2 0 0

at

(35)

where Rαβ = |Rα−Rβ| is the distance between two atoms. The
same rotational averaging for the diagonal matrix elements of
W IAM in eq 27 yields

∑⟨ ⟩ = +
β α

α β
αβ
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0 0 /22

(36)

where ⟨W IAM⟩rot denotes the rotationally averaged matrix, and
Q αβ

kk = |Q αβ
kk | = |Q α

k−Q β
k| as previously defined in eq 32. Again,

it is worthwhile noting the similarity to the original IAM
formula in eq 35.
Averaging the off-diagonal elements of W IAM is more intricate

due to the vector ρ̅ having both real and imaginary components
but amounts to the replacement of the “2cosh(ρ̅q)”-term in
eq 29 by a function Frot(ρ̅,q). This gives the rotationally averaged
off-diagonal elements as,
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with Frot( ρ̅,q) defined as

∫

∫
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where J0(x) is a Bessel function of the first kind, and the
complex vector ρ̅ = ρ̅r + i ρ̅i with ρ ρ̅ = ℜ ̅e( )r , ρ ρ̅ = ℑ ̅m( )i ,
ρr = |ρ̅r|, and ρi = |ρ̅i|, allows us to define ρri= ρr + iρi cosθri
with θri = arccos(ρ̅r ρ̅i/ρr ρi) and φ(θ) = ρiq sinθ sinθri. Note
that the integrals in eq 38 must be evaluated numerically.
2.4.5. BAT Approximation. In a recent publication, Makhov

et al. introduced a bracket-averaged Taylor expansion (BAT) as
a means of efficient calculation of matrix elements which
depend on the nuclear coordinates.37 The simplest form of
BAT calculates potential energy and nonadiabatic coupling
matrix elements, which are used to couple the wavepackets in
eq 1 and to propagate the equations for the coefficients Dk(t),
as an average of the matrix elements for individual Ehrenfest
trajectories (wavepackets). BAT economizes greatly the com-
putational cost of quantum propagation of the wave function in
eq 1 as the number of the matrix elements calculations scales as
N, the number of Ehrenfest wavepackets, instead of N2 as
would normally be required without BAT. Also, BAT allows
Ehrenfest trajectories to be calculated independently from each
other. Running trajectories on-the-f ly is the most expensive part of
the quantum propagation but can be done in parallel. Thus,
although the total CPU time for a basis of hundreds of trajectories
can be several months or even years, parallelization makes these
calculation tractable. Once the trajectories are stored on disk,
BAT makes it possible to propagate the coupled equations for the

coefficients Dk(t) without additional electronic structure
calculations, reusing potential energy and nonadiabatic coupling
matrix elements already calculated for the individual trajectories.
The BAT approach is easier to derive with the help of a

different form of the Ehrenfest configuration

∑
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in which the electronic wave function is “attached” to Q k(t),
the center of the nuclear wavepacket, instead of ϕi(r;̅ R) as in
eq 6. If the electronic wave function is smooth and does not
change much at the scale of the nuclear wavepacket, the two
approaches that rely on eqs 6 and 39 are dynamically equivalent.
This imposes certain limits on the parameter γ, which describes
the width of the wavepacket, namely, the Gaussian in eq 3 must
be sufficiently narrow and thus γ cannot be too small.
BAT has been tested in ref 37 and produces results in

quantitative agreement with the benchmark. This is not
surprising as BAT is expected to fail only in regions where
the potential energy and/or nonadiabatic coupling matrix
elements change rapidly between coupled trajectories. This may
occur near conical intersections, especially if the conical inter-
section is located between the trajectories, but is rare in practice.
BAT also simplifies the calculation of matrix elements

required in the current theory. Specifically, in the 0th order
BAT approximation the matrix elements of W IAM become

= ⟨ | ⟩ ̅ + ̅[ ]W g g f fq Q q Q
1
2

( ; ) ( ; )lk l k l k
IAM,BAT

IAM
2

IAM
2

(40)

with |f IAM(q; Q l)|
2 defined as in eq 25. The removal of the

R-dependence significantly simplifies the evaluation of the
matrix elements compared to that in eq 24. The corresponding
rotationally averaged form, ⟨WIAM,BAT⟩rot, is obtained by using
the rotationally averaged form of f IAM from eq 35:
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where Q αβ
ll = |Q αβ

ll | following the definition in eq 32. The effect
of the nuclear wavepacket when evaluating the matrix elements
using the BAT approximation amounts to a simple weighting
factor ⟨gl |gk⟩ since the smearing-out effect of nuclear averaging
is no longer included.

3. COMPUTATIONAL DETAILS
3.1. Quantum Molecular Dynamics. The nonadiabatic

photodynamics of the ethylene molecule (H2CCH2) upon
excitation by a pump laser pulse was simulated using the
AI-MCE quantum molecular dynamics method, and the non-
stationary molecular wave function thus obtained provided the
input for the calculation of the time-resolved X-ray scattering.
The simulations of the photoexcited ethylene molecule

followed the protocol developed in ref 34. The electronic
potential energies, their gradients, and the nonadiabatic
couplings were calculated on-the-f ly at the three-state-averaged
complete active space self-consistent field (SA3-CASSCF) level
using the MOLPRO quantum chemistry package.48 A small but
balanced CAS(2,2) active space was used, known to describe
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the lowest two electronic excited states semiquantitatively,28,49

with the Dunning’s cc-ppVDZ (correlation consistent, polarized
valence, double-ζ) basis set.50 The Ehrenfest trajectories were
sampled in the Franck−Condon region using a Wigner dis-
tribution,51 with the initial population completely localized on the
first excited S1 ππ*state. The dynamics was propagated for 150 fs
(1500 timesteps), with a total of 1000 Ehrenfest trajectories
calculated. The computational requirements were 12 h of CPU
time per trajectory on 2.0 GHz CPUs (Intel Xeon 5130).
3.2. X-ray Scattering. The time-resolved X-ray scattering

signal for the photoexcited ethylene was calculated using the
IAM approximation. Only elastic scattering was considered,
with the assumption that ωk1 = ωk0 (k0 = k1) and CP(δ)→ δ(0),
where δ(0) is the Dirac delta function. In this situation, the
scattering signal in eq 12 from the excited molecular wave
function, |Ψ(τ)⟩, reduces to

∫α τ τ τ=
∞

dS q t I q d( , ) ( ) ( , )p P
0 (42)

where τ q( , ) is taken from eq 15 with Ω̃ ≈ Ω and W ≈
(e2/2me)

2W IAM (or ⟨W IAM⟩rot for rotational averaging). When
calculating the scattering matrix W IAM, it is numerically
convenient to separate out the constant atomic component
Iat such that, W IAM = Ω°Iat+ W IAM,mol, where ° denotes the
element-wise Hadamard matrix product. The time tp
corresponds to the delay time between pump and probe,
for a pump pulse centered at time τ = 0.
The experimental observations are normally represented by a

“laser on” - “laser of f ” difference signal in the following form:20

γΔ =
−

dS q t
dS q t dS q

dS q
( , )

( , ) ( )

( )p
p

excit
off

off (43)

where γexcit is the fraction of excited molecules, dS(q,tp) is the
signal corresponding to the excited molecular wave function,

and dSoff(q) is the background signal from unpumped molecules.
Inelastic scattering corrections commensurate with the present
approximations7,20 have been tabulated using the Waller−
Hartree theory.45,52,53

In the calculations, 13.8 keV X-ray photons corresponding to
0 ⩽ q ⩽ 14 Å−1 were used, with an X-ray pulse duration of 25 fs
and an excitation fraction for the molecules of γexcit = 9%. The
atomic form factors f α

0(q) were taken from tables in ref 45.

4. RESULTS

4.1. Quantum Molecular Dynamics. The AI-MCE
simulations reveal that following photoexcitation into the
Franck−Condon region of the ππ* electronic S1 state, the
ethylene molecule undergoes cis−trans isomerization around
the C1C2 double bond. The molecule then decays via two
competing processes. The first is nonradiative decay through a
twisted or pyramidalized conical intersection, and the second is
H atom migration to form ethylidene (CH3CH), which then
decays through a different conical intersection. In terms of
populations, the population of S1 changes slowly for the first
30 fs after the photoexcitation. At this point, the excited mole-
cular wave function reaches a region where the gap between S1
and S0 is sufficiently small to allow for efficient population
transfer, and the population then decays exponentially with an
approximate lifetime of τ ≈ 112 fs.
The time evolution of the nuclear wave function is shown

in Figure 1 in terms of a probability density contour plot for
the twist and pyramidalization angles, which together with
the C1−C2 distance discussed below can be used to characterize
the photodynamics of ethylene. The two angles are defined
mathematically in the caption of Figure 1. The twist angle
corresponds to a twist around the C1C2 double bond,
and the pyramidalization angle reflects the degree of devia-
tion of the two carbons from sp2 hybridization. The nuclear

Figure 1. (Left) Contour plot showing the probability distribution of the C1 = C2 twist angle and the degree of pyramidalization of the carbon atoms
at times t = 10, 20, 40, and 125 fs (with t = 0 set by the pump pulse). (Right) Schematic representation of the ethylene molecule. The twist angle is
defined by twist = arccos((R12 × R34)(R 21 × R56)), and the total pyramidalization angle as pyramidalization = arccos((R12 × R34)(R14 × R13)) +
arccos((R 21 × R56)(R 26 × R 25)), with Rij = Ri − Rj and the indices corresponding to the numbering of the atoms in the figure.
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wave function initially moves ballistically along the twisting
coordinate with a period of ∼40 fs (the twisting of ethylene on
the electronic ground state S0 has a period of ∼33 fs). During
the first twisting cycle, the wave function is almost totally
located on the S1 state, but at later times, the population starts
transferring to the S0 state. This picture is consistent with the
results of ref 28 obtained using the AIMS method at the same
level of electronic structure theory. From 50 fs and onward,
the wave function becomes quite dispersed, as evidenced by the
bond angle distributions in Figure 1 and the bond-length distri-
butions in Figure 2.

A second characteristic of the ethylene photodynamics is
an early oscillation in the C1−C2 bond distance as shown in
Figure 2. The graph shows the median C1−C2 bond distance, as
well as the first and third quartile (dashed lines) which enclose
the bond distances for 50% of all the trajectories. At shorter
times, there is a coherent oscillation in the C1−C2 distance,
which leaves a distinct signature in the X-ray scattering pattern
as we will see in the next section.
4.2. X-ray Scattering. 4.2.1. Overall Characteristics. The

simulated dynamics of the photoexcited ethylene molecule
was used to calculate elastic X-ray scattering following the
procedure outlined in Section 3.2. The scattering signal is
shown as the percentage difference signal, ΔdS(q,tp), defined
in eq 43. In the following, we discuss the properties of this
signal and its dependence on factors such as the size of the
nuclear basis in the simulations and the wavepacket width
parameters.
The rotationally averaged elastic X-ray scattering difference

signal calculated from the full simulation is shown in Figure 3a
as a function of time. The signal is dominated by the two
carbon atoms, which contribute 12 out of 16 electrons in
ethylene, with comparatively minor contributions from the four
hydrogen atoms. At times t < 50 fs the coherent stretch of the
C1−C2 bond, clearly visible in Figure 2, results in a strong
signature in the scattering signal across the whole range of the
momentum transfer q. The variation in the signal in Figure 3a
becomes progressively smaller with time as the increasing
dispersion and associated delocalization of the nuclear wave
function averages out specific motions. This increase in nuclear
dispersion with time was already evident in Figures 1 and 2.

The sensitivity of the calculated scattering signal to the nuclear
basis used in the simulations, i.e., the number of Ehrenfest
trajectories included when calculating ΔdS(q,tp), can be seen
when comparing Figure 3a, which shows the signal calculated for
1000 trajectories, and Figure 3b, which shows the signal for a
randomly selected subset of 20 trajectories. Although the exact
appearance of the signal from the smaller set will depend on
which 20 trajectories are included, a subset of 20 is sufficiently
large to make these differences rather small. Interestingly, even
the small subset correctly depicts the main features of the
scattering signal. This is not entirely surprising since in a recent
analysis of ultrafast X-ray experiments,7 we demonstrated that a
judicious choice of trajectories allows an accurate representation
of the experimental signal with only a small number of
trajectories. However, the smaller subset does underestimate
the dispersion of the nuclear wavepacket at longer times, as can
be seen from the features present at long times in the small set in
Figure 3b but absent from the full set in Figure 3a.
We end this section with a comparison between the

rotationally averaged signal shown in Figure 4a and the signal

Figure 2. Median distance between atoms C1 and C2 in Å as a
function of time in fs (solid red line), calculated for 1000 trajectories.
The first (black dashed) and third quartile (black dot-dashed) are also
shown.

Figure 3. Elastic X-ray scattering difference signal, ΔdS(q,tp), in
percent, shown as a function of momentum transfer, q in Å−1, and
pump−probe delay time, tp in fs, calculated using eq 43 and rotational
averaging. The upper panel (a) shows the signal calculated for 1000
trajectories, while the lower panel (b) shows a representative signal for
a subset of 20 randomly selected trajectories.
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from perfectly aligned molecules, shown in Figure 4b. The
rotationally averaged signal is identical along all outward cuts
from the center of the scattering image, making it possible to
fully represent the scattering signal as a function of the
amplitude of the momentum transfer q, as is done in Figure 3
for instance. On the other hand, the scattering signal from
aligned molecules reveals a great deal more detail. The
scattering image is distinctly asymmetric due to the loss of
symmetry in the molecule by time tp = 25 fs (see also scattering

patterns in ref 44), but the contour lines overemphasize
somewhat the contrast between the left and the right sides of
the image. Although the fully aligned signal in Figure 4b
represents an idealized scenario that cannot be achieved
experimentally, even for partial alignment the information
content in the scattering signal would increase dramatically,
something demonstrated by a number of recent time-
independent X-ray54 and electron55 scattering experiments.
Note that the attenuation due to the X-ray polarization is not
included, which will mask parts of the image depending on the
orientation and character of the polarization.46

4.2.2. Nuclear Wave Function. We begin by examining the
effect of the width of the individual wavepackets. The widths
are determined by the factors γ of each coherent state as shown
in eq 3. In Figure 5, we compare the scattering difference signal,

ΔdS(q,tp), calculated for the default values of γ with the same
scattering signals recalculated using modified values of γ.
Specifically, the comparison is to γ/3, corresponding to a more
delocalized wavepacket, and to 3γ, corresponding to a more
localized wavepacket. The results show that the more
delocalized the wavepacket is, the weaker the signal becomes
for large values of q. Even the comparatively modest reduc-
tion to γ/3 is sufficient to eliminate the signal for q > 8 Å−1.
The trends observed in Figure 5 were anticipated from the
expressions derived earlier; see the discussion below eq 28.
The observed damping is commensurate with eq 27 in which
the strength of the damping increases with q. As discussed in
section 2.4.5, the ab initio MCE quantum dynamics approach is
robust only if sufficiently narrow Gaussians are used as a basis
for the nuclear dynamics. Therefore, complete washing out of
the signal only occurs in the small-γ regime where the ab initio
MCE method is no longer reliable.
Next, we examine the influence of the off-diagonal elements

in the W IAM and the ⟨W IAM⟩rot matrices on the X-ray scattering
signal. The inclusion of the off-diagonal elements increases
computational overheads significantly by changing the scaling
from N to N2, where N is the number of Ehrenfest trajectories

Figure 4. Comparison of the elastic scattering difference signal,
ΔdS(q,tp), at time tp = 25 fs for rotationally averaged (a) and perfectly
aligned (b) molecules. The signal is calculated for 200 trajectories
without convolution, and the contour plots are drawn to correspond to
detector images for the incoming X-ray pulse perpendicular to the
C1−C2 molecular axis and the initial plane of the molecule. The maxi-
mum radius shown corresponds to momentum transfer q = 10 Å−1.
X-ray polarization is not taken into account.

Figure 5. Percentage difference signal, ΔdS(q,tp), calculated according
to eq 43 as a function of q in Å−1 at time tp = 100 fs, using rotational
averaging and 100 trajectories. The three curves are calculated
identically except that the CS widths γ = {γC ,γH} have been
manipulated a posteriori to examine the effect of γ on the signal.
Results are shown for the original values of γ (black solid line), for
less localized wavepackets with γ/3 (red dashed line) and for more
localized wavepackets with 3γ (blue dot-dashed line).
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included in the wave function expansion. Figure 6 compares
the calculated signal, ΔdS(q,tp), at time tp = 25 fs for 100 tra-
jectories, with and without the off-diagonal elements included.
The difference is the greatest at large values of q. This is to be
expected since the interference between trajectories, mediated
by the off-diagonal elements, is strongest when the distance in
phase space between the trajectories is small. The greater the
number of trajectories and the more delocalized they are (i.e.
small γ), the greater is the effect on the signal from including
the off-diagonal elements, although the latter factor (delocaliza-
tion) will be counteracted by a corresponding increase in
damping at large q.
An important point is that if the quantum molecular

dynamics simulations are fully converged (and if the off-
diagonal elements are included), the dependence of the
scattering signal on the width of the individual wave-
packets γ would vanish since the nuclear wave function
will have the correct shape prescribed by quantum mechanics.
However, the damping of the scattering signal at large q
due to the delocalization of the nuclear wave packet would
persist.
4.2.3. BAT Approximation. Having examined the effect of

the nuclear wave function on X-ray scattering, it is appropriate
to compare the calculations so far to the far simpler BAT
approximation discussed in section 2.4.5. The BAT approx-
imation is computationally faster by strongly reducing the
dependence of the matrix elements on the nuclear coordinates.
To a degree, the BAT approximation emphasizes the classical
aspect of each trajectory by removing the nuclear wavepacket
from the matrix elements. As the comparison in Figure 7 shows,
this changes the scattering signal for large values of q signifi-
cantly, with a marked difference between the BAT approx-
imation and the conventional calculation for q > 4 Å−1. This is
unsurprising since for large values of q, the spatial resolution in
the scattering is sufficient to detect the comparatively fine
differences in the nuclear wave function as described in the
conventional propagation versus the BAT approximation.
However, for small values of q the BAT approximation agrees

well with the signal, which supports previous work using the
diagonal BAT approximation to interpret ultrafast X-ray scat-
tering experimental data.7 In that case, the maximum q detected

in the experiment was approximately 4.3 Å−1, comfortably
within the validity range of the approximation.

5. CONCLUSIONS
In this article, we have constructed a theoretical and compu-
tational framework for the analysis of ultrafast X-ray scattering
experiments using nonadiabatic quantum molecular dynamics
simulations. The fundamental expressions for X-ray scattering
have been put in a form suitable for state-of-the-art on-the-f ly
quantum molecular dynamics methods. Particular attention has
been given to the development of a hierarchy of approaches for
the prediction of elastic X-ray scattering, some of which have
already been used for the analysis of recent experiments.7

At one extreme, the BAT approximation combined with IAM
form factors and a comparatively small number of trajectories is
sufficient to produce good results for relatively small values of
the momentum transfer. This can be improved upon sys-
tematically by the inclusion of the full dependence of the wave
function on nuclear coordinates and also by the replacement of
the IAM form factors by ab initio molecular form factors.44,56,57

In recognition of the potential importance of molecular
alignment in scattering experiments,54 the equations in this
article are given both in a rotationally averaged form and in a
general form more appropriate for full or partial alignment.
Although the presented theoretical framework allows for

the calculation of inelastic effects in the scattering of coherent
X-rays, the focus of the present calculations has been on elastic
scattering. A detailed simulation of a pump−probe experiment
in ethylene has been used to examine the sensitivity of the
predicted scattering to the parameters of the simulation.
We have found that the results are robust with respect to the
number of wavepackets included in the total expansion of the
molecular wave function. The results are, however, quite

Figure 6. Comparison of ΔdS(q,tp) calculated using the full matrix
⟨W IAM⟩rot (solid red line) versus only the diagonal elements of the
same matrix (dashed blue line) as a function of q in Å−1 at time tp = 25
fs. The rotationally averaged signal was calculated using eq 43 using
100 trajectories.

Figure 7. Contour plot of the absolute difference between the
scattering signals, ΔdS(q,tp), calculated using the standard method (see
Figure 3) and the BAT approximation, shown as a function of q in Å−1

and tp in fs. The difference between the two calculations is negligible
for q < 4 but becomes significant for q > 4.
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sensitive to the degree of delocalization of the wavepackets.
The damping of the scattering signal with q implies that there
might be limited rewards for measuring signals at large values of
q in time-resolved scattering experiments. On the upside,
scattering should provide a sensitive probe of the actual shape
and dispersion of the nuclear wave function.
Ultrafast X-ray scattering has been long anticipated58 and is

now in a period of rapid development. The first experimental
results have appeared in the literature,5−7 and with the ongoing
construction of new XFEL facilities, we expect intense inter-
actions between experiments and theory over the coming years.
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C. H.; Starodub, D.; Struüder, L.; Thøgersen, J.; Vrakking, M. J. J.;
Weidenspointner, G.; White, T. A.; Wunderer, C.; Meijer, G.; Ullrich,
J.; Stapelfeldt, H.; Rolles, D.; Chapman, H. N. Phys. Rev. Lett. 2014,
112, 083002.
(55) Hensley, C. J.; Yang, J.; Centurion, M. Phys. Rev. Lett. 2012, 109,
133202.
(56) Kirrander, A. J. Chem. Phys. 2012, 137, 154310.
(57) Suominen, H. J.; Kirrander, A. Phys. Rev. Lett. 2014, 112,
043002.
(58) Bergsma, J. P.; Coladonato, M. H.; Edelsten, P. M.; Kahn, J. D.;
Wilson, K. R.; Fredkin, D. R. J. Chem. Phys. 1986, 84, 6151.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b01042
J. Chem. Theory Comput. 2016, 12, 957−967

967

http://dx.doi.org/10.1021/acs.jctc.5b01042

