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Abstract 

A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport 

chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially 

relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters 

(COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are 

evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT 

targets. A model is presented here for such temporal regulation that is based on the synchrony between the basal oscillatory pattern of SPL7 

and its targets, such as COPT2. Conversely, Cu feeds back to coordinate intracellular Cu availability on the SPL7-dependent regulation of 

further Cu acquisition. This occurs via regulation at COPT transporters. Moreover, exogenous Cu affects several circadian-clock 

components, such as the timing of GIGANTEA transcript abundance. Together we propose that there is a dynamic response to Cu that is 

integrated over diurnal time to maximize metabolic efficiency under challenging conditions. 
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TEXT 

Plasma membrane COPTs and copper transport 

Temporal ordering of biological processes and stress responses confer fitness advantages to plants.1, 2 Response to the day-night cycle 

requires a coupled system of light perception and the circadian clock. Together this creates an environmentally set, endogenous timekeeper 

that appropriately schedules daily activities, including nutrient transport.3, 4 Transition metals, such as copper (Cu), while being essential 

nutrients whose requirements vary along the day, are also potentially toxic during intracellular trafficking, owing to their ability to cause 

oxidative stress.5, 6 Both features, essentiality and toxicity, require fine-tuned and narrow homeostatic mechanisms that, in the case of Cu, 

are evolutionary conserved.7 

High affinity Cu transporters (COPTs, CTRs in organisms other than plants) are key components of the major pathway for cellular high-

affinity Cu uptake. Three out of the six Arabidopsis thaliana COPT family members (COPT1, COPT2 and COPT6) are located at the 

plasma membrane.7 Under Cu deficiency, increase in transcript levels of these three Cu transporters is driven by the SQUAMOSA 

PROMOTER BINDING PROTEIN-LIKE7 (SPL7) transcription factor.8 Among them, COPT2 is the most highly expressed in young and 

adult tissues.9 

Cu uptake depends on both its availability in the apoplast and the density of Cu transporter proteins at the plasma membrane.10 Under 

deficiency, the predominant strategy for Cu acquisition consists in a mechanism of reduction of Cu2+ to Cu+ and subsequent Cu+ uptake.11, 

12 Cu entrance is mostly dependent on the quantity of high affinity Cu transporters. Variations in external Cu concentrations in the 

deficiency range (below 0.5 M13) have little effect on Cu influx. This is because the Km for the COPT2 transporter may be around 0.1 

M, assuming a Cu affinity similar to that for the Chlamydomonas transporters.14 Thus, under Michaelis-Menten kinetics (Jin = Jmax x 

[Cu]/Km + [Cu]), the effect of doubling the external Cu concentration in the apoplast (from 0.2 to 0.4 M Cu, J0.4Cu/J0.2Cu) at a constant 

COPT2 level would result in only a marginal 1.1 fold increase of the unidirectional Cu influx through the membrane. However, considering 

that the influx linearly responds to the number of transporters, the effect of doubling the presence of the COPT2 transporter at the plasma 

membrane (J2xCOPT2/J1xCOPT2) at a fixed external Cu concentration would result in a two-fold increase. Thus, Cu influx is dependent 

on the number of specific high affinity Cu+ transporters. The relevance of the COPT level in Cu uptake has been demonstrated in transgenic 

plants where COPT1 expression has been altered from overexpressing to complete loss.10 We conclude from these studies that the 

regulation of the expression of the COPT transporters has a strong effect on the Cu concentrations inside cells. 
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Plasma membrane high affinity copper transport is under light and circadian control 

The circadian clock participates in the regulation of nutrient transport3 and stress responses1, 2 and light affects the magnitude of the Cu-

deficiency responses.15 Transcriptional regulation of the encoded plasma-membrane high-affinity Cu transporter COPT2 is subjected to 

both light and circadian control.15 Thereby, basal COPT2 expression oscillates under day/night cycles with a period of around 24 h, that is 

maintained even in the absence of environmental cycles (Figure 1). More specifically, COPT2 expression peaks around 0 h (dawn), which 

coincides with rapid increase in Cu demand of the chloroplasts.15 COPT1 has also been shown to exhibit a daily oscillation regulated by the 

circadian clock.3 According to the DIURNAL database,16 COPT1 expression peaks at 21.5 h, which is only several hours before the 

subsequent dawn. Furthermore, analysis of the COPT1, COPT2 and COPT6 promoter regions reveals multiple putative light and circadian 

cis-regulatory elements.9, 17, 18 Some of these motifs are involved in phytochrome regulation of gene expression,19 which corroborates the 

reduction of COPT2 transcript in the phy mutants.15 Such cis-responsive elements could also participate in the regulation of the 

transcriptional factor SPL7, as they are found in its promoter (Figure 1). SPL7 expression cycles under continuous conditions and this 

oscillation is almost lost in the phyB mutant.16 

The presence of GTAC boxes, the cis-element recognized by the SPL7 transcription factor,8 does not correlate with gene induction under Cu 

deficiency.13 In addition to positional effects in promoter occupancy and other overlapping cis-regulatory elements, temporal factors could 

also affect dynamic changes in gene expression. In order to understand how such different spatiotemporal phenomena become integrated in 

the regulation of high-affinity Cu-uptake, a model was proposed for expression activation in response to Cu deficiency, when basal 

expression of both activator (i.e. SPL7) and target genes (e.g. COPT2) is subjected to circadian regulation.7 A high number of SPL7-

dependent Cu-deficiency responsive genes13 show cyclic expression16, peaking around 22 h with an expression phase only slightly behind 

the SPL7 oscillation (Figure 1). Oscillatory synchronization with the SPL7 activator appears to be one of the requirements for robust COPT2 

regulation under Cu deficiency. 

We propose that a temporal phase synchrony for rhythmic Cu responses leads to a “constructive interference”, in analogy to the physical 

concept for wave interactions.7 In Cu sufficient media, COPT2 displays a basal level of periodic expression probably mediated by light and 

circadian clock rhythms. In response to Cu deficiency, COPT2 expression is not only induced (around 10 times) by SPL7-dependent 

transcriptional activation, but the amplitude of the oscillation also increases 10 fold without changes in phase or period. Thus, Cu deficiency 

responses of genes with a basal cyclic expression pattern, such as COPT2, are modulated according to their phase timing, such that they are 
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more potentiated the more their phase coincide with that of the SPL7 activator15 (Figure 1). Since COPT2 expression is 10-fold higher at its 

maximum than at its minimum, the Cu influx rate (J10xCOPT2/J1xCOPT2) would be also 10-fold higher around dawn than at dusk, 

assuming a concomitant effect on COPT2 membrane transporter density and unaltered external Cu concentration. 

Copper content regulates SPL7 function and affects the expression of circadian clock components 

In addition to Cu control, light and circadian regulation, COPT transporters affect, in turn, the function and expression of their own 

regulators by means of the substrate (Cu) they transport. In this sense, Cu sufficiency inhibiting SPL7 function8 forms a negative 

autoregulatory feedback loop that has been proposed to produce an oscillation in COPT2 expression, and subsequently, in intracellular Cu 

levels with an approximate circadian period20. 

Cu content has been shown to affect the expression of some central components of the circadian clock,15, 21 such as the single Myb domain 

transcription factors CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) (for review,2) and the 

protein GIGANTEA (GI), known to modulate other circadian clock components (for review,22). LHY and GI include, respectively, three and 

two GTAC boxes in their promoter regions, respectively, which suggests a direct involvement of SPL7 in their increased abundance under 

Cu deficiency (Figure 1). In addition to a phase difference with the oscillating SPL7 expression, multiple reciprocal and indirect effects that 

GI may have on other circadian clock and light signaling components, complicates a straightforward prediction of the effects of Cu on the 

expression of various signaling factors. 

Disturbance from Cu homeostasis affects circadian-clock outputs, which suggests the existence of a reciprocal influence between Cu 

transport and circadian rhythms.15, 21 Light signaling and Cu homeostasis pathways are coordinated through the interaction of the 

transcription factors SPL715 and ELONGATED HYPOCOTYL5 (HY5).23 This mutual dependence of Cu transport, circadian clock, and 

light signaling pathways would lead to the synchronization of inextricably linked outputs from these intertwined and cyclic processes. 

Moreover, this could explain adaptive advantages based on both increased clock robustness and an optimal scheduling of other cellular 

cycles according to their Cu dependence.20 
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Figure 1 Model illustrating the integration of circadian clock and light components in the SPL7-regulated Cu deficiency responses. 

The promoters of the Cu homeostasis transcription factor SPL7 and its target, the Cu transporter COPT2, contain conserved elements for 

circadian clock and light signaling (C/L) regulation. Their basal expressions are subjected to circadian and light regulation with almost 

coincidental phases (22 h for SPL7 and 0 h for COPT2). Involvement of light on COPT2 expression is evidenced by a drastic reduction of 

the oscillations amplitude as observed under continuous darkness (discontinuous lines in COPT2 panel). When the regulator (SPL7) is 

activated by an input (Cu deficiency), synchronous oscillations lead to constructive interference and thereby potentiating target gene 

expression (COPT2). Intracellular Cu levels, modulated by COPT2 transporter activity, not only regulate SPL7 function and therefore 

expression of its own transporter, but also affect the expression of circadian clock elements, such as GI, which is down-regulated by Cu. 

Oscillating luciferase activity driven by promoters regions of GI and COPT2 in pGI:LUC and pCOPT2:LUC transgenic plants, respectively, 

is shown under constant light conditions and after 12 h light/12 h dark cycle entrainment (subjective night period is shaded grey on the X 

axis). SPL7 expression, obtained by RT-PCR quantification, is shown from WT plants grown in light/dark cycles (night period is indicated in 

grey bars). Cu modulations are shown in blue and circadian/light influences in orange. Positive and negative effects are indicated as pointed 

and blunt arrows, respectively. 
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