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A One-step Approach to Computing a Polytopic Robust

Positively Invariant Set

Paul Trodden, Member, IEEE

Abstract—A procedure and theoretical results are presented for the

problem of determining a minimal robust positively invariant (RPI) set for

a linear discrete-time system subject to unknown, bounded disturbances.

The procedure computes, via the solving of a single LP, a polytopic RPI

set that is minimal with respect to the family of RPI sets generated from

a finite number of inequalities with pre-defined normal vectors.

Index Terms—Linear systems; Uncertain systems; Computational

methods; Optimization; Invariant sets

I. INTRODUCTION

We consider the problem of finding, for the discrete-time, linear

time-invariant system,

x+ = Ax+ w, (1)

a robust positively invariant (RPI) set. That is, a set R ⊂ R
n with

the property

Ax+ w ∈ R, ∀x ∈ R, w ∈ W. (2)

In this problem, x ∈ R
n is the current state and x+ its successor.

The disturbance w ∈ R
n is unknown but lies in a polytopic (compact

and convex) set W that contains the origin in its interior.

Robust or disturbance invariant sets are important in control, and

their theory and computation have attracted significant attention; see,

for example, [1]–[4] and references therein. One set that is of particular

interest is the minimal RPI (mRPI) set—that is, the RPI set that is

smallest in volume among all the RPI sets for a system—which is

also the set of states reachable from the origin in the presence of a

bounded disturbance. This set is an essential ingredient in many robust

control algorithms. For example, in tube-based robust model predictive

control (MPC) [5], an RPI set is used to guarantee robust stability and

feasibility in the presence of bounded uncertainty; moreover, since the

constraints in the MPC optimization problem are tightened according

to the size of the RPI set, then the smallest RPI set (i.e., the mRPI

set) is desirable. However, computing an exact representation of the

mRPI is generally impossible (except for special instances of A, as

identified later), and instead an approximation is usually sought. A

seminal contribution in this regard is [3], which proposes a method

for computing an abitrarily close outer-approximation to the mRPI

set, which is itself RPI.

The essence of the problem of computing exactly the mRPI set

is that this set is, in general, not finitely determined. Methods for

computing approximations to the mRPI set, including [3], rely on

finding finite representations of the set. Recently, in the context of tube-

based MPC, [6] introduced and studied the notion of a polytopic RPI

set defined by a finite number, r, of a-priori selected linear inequalities.

For a non-autonomous system x+ = Ax+Bu+ w controlled by a

continuous positively homogeneous control law, u = κ(x), the authors

showed that the RPI set dynamic condition (2) has an equivalent

representation as r functional inequalities. It was established that a

fixed-point solution to the functional equation corresponds to an RPI

set that is minimal, in volume, with respect to the entire family of

RPI sets defined by the pre-selected inequalities, and is an invariant

outer-approximation to the mRPI set. To compute this set, the authors

of [6] give an iterative procedure, based on solving a sequence of

LPs, for which convergence is guaranteed.

P. A. Trodden is with the Department of Automatic Control & Systems
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
(e-mail: p.trodden@shef.ac.uk).

In this note, we adopt the notions of [6] and specialize their results

to the case of the linear autonomous system (1) (alternatively, the

linear non-autonomous system with linear state feedback control law)

in order to develop a one-step approach, based on solving a single LP,

to the computation of the smallest RPI set defined by a pre-selected

system of inequalities. Though simple, to the author’s knowledge this

has not appeared in the literature, although there are related results;

for example, it is known that checking the invariance of an existing

polytope is an LP [2]. On the other hand, the ability to synthesize

a near-minimal RPI set by solving a single LP potentially paves

the way for robust control methods that re-compute the disturbance

invariant sets on-line, as done in, for example, the recently developed

“plug-and-play” approach to distributed MPC [7].

The proposed approach differs to the one of [3] in one important

assumption: the number and normal vectors of the inequalities that

represent the RPI set are, as in [6], defined a priori, while in [3]

both are unknown until termination of the algorithm. This a-priori

definition, first proposed and studied by [6], has two consequences:

firstly, the RPI set obtained is not necessarily the mRPI set, or even

an abitrarily close outer-approximation (as it is in [3]); however, it is

the smallest RPI set that can be represented by the finite number, r,

of chosen inequalities with normal vectors {P⊤
i : i = 1 . . . r} [6]. To

make a clear distinction, in this note we term this the (P, r)-mRPI set

when the number of chosen inequalities is r and the matrix of normal

vectors (the left-hand side of the defining system of inequalities) is P .

Secondly, the method of [3] involves solving a sequence of LPs and

then computing a Minkowski summation, but here only the solving

of a single LP is required. The development of the procedure here

comprises two steps, the enumeration of which also serves to clarify

the contribution of this note with respect to [6]: first, we show that,

for the studied linear autonomous system (1), the fixed-point solution

to the functional equation, which [6] showed is guaranteed to exist,

is in fact unique. Secondly, we show that the corresponding RPI

set—which [6] proved to be minimal with respect to the family of

RPI sets represented by (P, r)—can be computed via a single linear

program (LP), as an alternative the iterative sequence of LPs proposed

by [6].

Another method that uses a single LP to compute a disturbance

invariant set is the optimized robust control invariance approach of [4],

applicable to the linear non-autonomous system x+ = Ax+Bu+w.

Because a robust control invariant (RCI) set—and the associated

control policy—is obtained, then this subsumes the robust positive

invariance (where a fixed control law is assumed) considered here.

However, that approach optimizes over only those control policies

that guarantee a finitely determined set, achieved by employing a

relaxed variation of the assumption, for (1), that Ak
W ⊆ αW for

some α ∈ [0, 1) and finite integer k. In this note, the assumption that

A has eigenvalues inside the unit circle is required, which is different

to the assumption used for finite determination of RCI sets in [4], but

weaker than the assumption required for finite determination of the

mRPI set for (1).

The organization of this note is as follows. First, in Section II, it

is shown that for the system (1), the fixed-point solution is, under

suitable assumptions, unique. Subsequently, in Section III, it is shown

that the (P, r)-mRPI set for (1) may be computed via a single LP.

Finally, examples are given in Section IV to illustrate the practicality

of the proposed approach, before conclusions are made in Section V.

Notation: The sets of non-negative and positive reals are, respec-

tively, R0+ and R+. For a, b ∈ R
n, a ≤ b applies element by element.

A matrix M is non-negative, denoted M ≥ 0, if Mij ≥ 0 for all i and

j. λX is the scaling of a set X by λ ∈ R, defined as {λx : x ∈ X}.

AX denotes the image of a set X ⊂ R
n under the linear map

A : Rn 7→ R
p, and is given by {Ax : x ∈ X}. The support function
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of a set X is h(X , v) , sup{v⊤x : x ∈ X}. A polyhedron is the

convex intersection of a finite number of halfspaces, and a polytope

is a closed and bounded (hence compact) polyhedron.

II. EXISTENCE AND UNIQUENESS OF A (P, r)-MRPI SET

For the system (1), we consider the case of a polytopic disturbance

set

W ,
{

w ∈ R
n : Fw ≤ g

}

, (3)

where F ∈ R
p×n, g ∈ R

p
0+, and make the following two standing

assumptions.

Assumption 1: The set W contains the origin in its interior.

Assumption 2: The eigenvalues of A are strictly within the unit

circle.

The former assumption requires that g ∈ R
p
+. The latter assumption

implies, as shown in [1], that for a given compact disturbance set W

there exists a compact RPI set, R, for the system (1), satisfying (2).

Assumption 3: The RPI set R is a polytope that contains the origin

in its interior.

Note that Assumptions 1 and 3 imply that the support functions to

W and R, respectively, are positive—a key technical property that

will be used in this note to establish the existence and uniqueness of

the RPI set that we aim to compute.

In this note, following [6], we consider the RPI set constructed from

a finite number, r, of inequalities with pre-defined normal vectors.

That is, R , R(q), defined as

R(q) ,
{

z ∈ R
n : Pz ≤ q

}

, (4)

where P ∈ R
r×n,

{

P⊤
i : i ∈ {1, . . . , r}

}

spans Rn, Pi is the ith row

of matrix P , and q ∈ R
r
0+. The left-hand side of the inequalities—the

matrix P—is to be chosen a priori by the designer. The following

result, which is an application of Farkas’ Lemma, establishes basic

conditions on the matrices A, P and F for the existence of an RPI

set for the system (1) given the disturbance polytope (3).

Theorem 1 (Adapted from Hennet and Castellan [8]): Suppose

Assumptions 1–3 hold. Then the set R(q) with some q = q̄ is robust

positive invariant for the system (1) if and only if there exist non-

negative matrices H ∈ R
r×r and M ∈ R

r×p such that

HP = PA (5a)

MF = P (5b)

Hq̄ +Mg ≤ q̄ (5c)

We will assume that P is chosen so that an RPI set exists:

Assumption 4: For the chosen P , and the system (A,W), there

exists a q̄ ∈ R
r
+ such that (2) holds for all x ∈ R(q̄).

Remark 1: While Assumption 4 may appear strong, it is needed

to narrow the class of matrices that we consider to those that admit

an RPI set. However, the procedure presented in the next section

includes a easy certification of existence of an RPI set for a chosen

P : if an RPI set exists, the (P, r)-mRPI set is returned. If no RPI set

exists, the optimization problem is unbounded.

The authors of [6] show—in the more general setting of a linear

non-autonomous system controlled by a positively homogeneous state-

feedback control law—that RPI condition (2) is equivalent to the

functional inequality

c(q) + d ≤ b(q), (6)

where, for i = 1 . . . r, bi(q) , h(R(q), P⊤
i ), ci(q) ,

h(AR(q), P⊤
i ), di , h(W, P⊤

i ). That is, the set inclusion require-

ment is replaced by support function inequalities, which is a standard

technique [9]. Note that b(q) may be different to q; for example, in

the case of redundant inequalities defining R(q). The topological

properties of these functions described in the following two lemmas

are essential to establishing existence and uniqueness of the fixed-point

solution to (6).

Lemma 1 (Adapted from Proposition 1 of [6]): Suppose that

Assumptions 1–3 hold. Then the functions b : Rr
0+ 7→ R

r
0+, c : Rr

0+ 7→
R

r
0+ are continuous and monotonically non-decreasing; that is,

b(a1) ≤ b(a2) for a1 ≤ a2. Also, d ∈ R
r
+.

Lemma 2 (Positive homegeneity of b, c): Suppose Assumptions 2

and 3 hold. Then the functions b(·) and c(·) are positively homoge-

neous; that is b(λa) = λb(a) for λ ≥ 0, with a similar expression

for c(·).

Proof: Consider bi(λa) = h (R(λa), Pi) for some a ∈ R
r
0+,

λ ≥ 0 and i ∈ {1, . . . , r}. By definition of R(·), R(λa) = λR(a).
Thus, h (R(λa), Pi) = h (λR(a), Pi) = λh (R(a), Pi), for λ ≥ 0,

where the latter equality follows directly from the definition of the

support function [9]. Hence, bi(λa) = λbi(a), therefore b(λa) =
λb(a). Positive homogeneity of c(·) may be established by the same

arguments.

The next result, which concerns the existence of a fixed-point

solution to (6), was established by [6] in the setting of a linear

non-autonomous system controlled by positively homogeneous state-

feedback control law, and hence immediately applies to the more

specialized case considered in this note.

Theorem 2 (Theorem 1 of [6]): Suppose Assumptions 1–3 hold.

Let Q ,
{

q ∈ R
r
0+ : 0 ≤ q ≤ q̄

}

. Then, (i) for all q ∈ Q,

c(q) + d ∈ Q and (ii) there exists at least one q∗ ∈ Q satisfying

c(q∗) + d = b(q∗) = q∗ if and only if Assumption 4 holds.

Remark 2: The necessity and sufficiency of Assumption 4 follows

by definition. In particular, if Assumption 4 does not hold, then there

does not exist an RPI set for the system (A,W) with the chosen P .

Remark 3: Note that, in view of the assumptions on g and the

properties of b(·), c(·), and d, a fixed-point solution q∗ must be strictly

positive.

With respect to computing a fixed-point solution, the sequence

generated by the iterative procedure q[p+1] = c(q[p])+d, with q[0] = 0,

converges to the fixed-point solution q∗ with the smallest 1-norm value,

‖q∗‖1 [6, Theorem 2]. As the following result states, the corresponding

set R(q∗) is RPI, and, in fact, is the minimal (smallest volume) RPI

set over the family of RPI sets defined by the r inequalities with

left-hand side P .

Lemma 3 (Corollary 1 of [6]): R(q∗) =
⋂

X∈S X where

S , {R(q) : q ∈ H} , and H , {q ∈ R
r
0+ : c(q) + d ≤ b(q)}

For convenience, we define this set R(q∗) as the (P, r)-mRPI set.

Definition 1 ((P, r)-mRPI set): The (P, r)-mRPI set for system (1)

is R(q∗) where q∗ = b(q∗) = c(q∗) + d.

In this note, we propose an alernative to the iterative procedure

of [6]. To this end, the next result shows that the fixed-point solution

to (6) is, in fact, unique. This result is then exploited in Section III,

wherein the problem of finding the fixed-point solution is cast as an

LP.

Theorem 3 (Uniqueness of fixed-point solution): Suppose Assump-

tions 1–4 hold. Then there exists a unique q∗ ∈ R
r
+ satisfying

c(q∗) + d = b(q∗) = q∗.

Proof: Existence is established by Theorem 2, so it remains to

show that q∗ is unique. Let l(q) = c(q) + d − b(q) and f(q) =
b(q) − q. Finding the fixed-point solution c(q∗) + d = b(q∗) = q∗

is equivalent to finding q∗ such that l(q∗) = f(q∗) = 0. Suppose

there exist q1 ∈ R
r
+ and q2 ∈ R

r
+ such that l(q1) = f(q1) = 0,

l(q2) = f(q2) = 0, and q2 6= q1, i.e., q2 − q1 6= 0. There are two

possibilities:

(i) q2i > q1i for at least one i ∈ {1, . . . , r}, with q2j ≤ q1j otherwise;

(ii) q2 ≤ q1, with q2i < q1i for at least one i ∈ {1, . . . , r}.
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Consider case (i). Let

α = min
i=1...r

{

q1i
q2i

}

=
q1p
q2p

> 0

Strict positivity follows from the discussion in Remark 3. Since

q2i > q1i for at least one i, then α < 1. Let s = αq2 < q2. It follows,

from positive homogeneity of b(·) and the fact that b(q2)− q2 = 0,

that f(s) = b(s) − s = b(αq2) − αq2 = α
(

b(q2) − q2)
)

= 0.

Similarly,

l(s) = c(s) + d− b(s)

= c(αq2) + d− b(αq2)

= αc(q2) + d− αb(q2)

= α
(

c(q2)− b(q2)
)

+ d

> 0

where the second line follows from the positive homegeneity of c(·)
and b(·), and the strict inquality with zero follows from c(q2) −
b(q2) = −d, α < 1 and d > 0. Now, by definition of α, and

since α < 1, then s ≤ q1 with sp = q1p. For the same p, we

have fp(q
1) = bp(q

1) − q1p = 0, fp(s) = bp(s) − sp = 0, and,

since s ≤ q1, then bp(s) ≤ bp(q
1). In fact, bp(s) = bp(q

1), as we

have already shown that bp(s) = sp = q1p. We also have lp(q
1) =

cp(q
1) + dp − bp(q

1) and lp(s) = cp(s) + dp − bp(s). Because

bp(q
1) = bp(s) and cp(s) ≤ cp(q

1), it follows that lp(s) ≤ lp(q
1).

But then 0 = lp(q
1) ≥ lp(s) > 0, and we have a contradiction:

therefore, we conclude that case (i) cannot hold, and either case (ii)

holds or q2 = q1. Now consider case (ii), and its equivalent statement:

q1i > q2i for at least one i ∈ {1, . . . , r}, with q1j ≥ q2j otherwise.

Following the same set of arguments, starting with the opposite

definitions of α = mini=1...r

{

q2i /q
1
i

}

and s = αq1, we find that

that case (ii) cannot hold either. Therefore, q1 = q2 = q∗, and the

solution is unique.

III. COMPUTING THE (P, r)-MRPI SET VIA A SINGLE LP

The problem of computing the (P, r)-mRPI set is that of finding

the q that satisfies the functional inequality (RPI condition) (6) while

attaining the smallest value of ‖q‖1. The results in the previous section

show that this q in fact satisfies (6) with equality; it is the fixed-point

solution q∗. Therefore, the problem of finding q∗ is

q∗ = argmin
q

{

‖q‖1 : c(q) + d ≤ b(q)
}

(7)

This is not tractable, as, by the definitions of b(·) and c(·), the

constraints are maximization problems involving the optimization

variable:

max {PiAx : Px ≤ q}+max {Piw : Fw ≤ g}

≤ max {Pix : Px ≤ q}

for i = 1 . . . r. However, by noting that the fixed-point solution is

unique, we may replace the problem of (7) with the maximization

problem

q∗ = argmax
q

{

‖q‖1 : c(q) + d = b(q)
}

This problem then easily converts to a linear program, as shown by the

following. Introduce auxiliary variables ξi ∈ R
n and ωi ∈ R

n for each

RPI inequality i ∈ {1, . . . , r}. Then, noting that q = b(q) = c(q)+d
at the desired fixed-point solution, eliminate q and b(q), leading to

the problem

P : q∗ = c∗+d∗, where (c∗, d∗) = arg max
{ci,di,ξ

i,ωi}
∀i∈{1,...,r}

r
∑

i=1

ci+di (8)

subject to, for all i ∈ {1, . . . , r},

ci ≤ PiAξi, (9a)

Pξi ≤ c+ d, (9b)

di ≤ Piω
i, (9c)

Fωi ≤ g. (9d)

In this problem, maximizing each ci subject to constraints (9a)

and (9b) represents finding the vector of support functions to AR.

Constraint (9b) represents Px ≤ b(q), with the condition c(q) + d =
b(q) enforced. Constraints (9c) and (9d) represent finding d, the vector

of support functions to W.

Remark 4: Note that, by definition, di = h(W, P⊤
i ) is constant and

does not depend on q. Therefore, d could be computed prior to solving

P, by solving a sequence of LPs, before entering the optimization as

a parameter. However, our aim is to formulate a single LP (a one-step

procedure) that computes, simultaneously, d, c and hence q.

Note that each di and ωi is bounded, via (9c) and (9d) and the

assumptions on W. Further note that this problem always has a

feasible solution, since one can choose, for example, ci = di = 0 and

ξi = ωi = 0. The question, then, is whether an optimal solution exists,

or the problem is unbounded. To this end, we require the following

result, which specializes Theorem 1 to the fixed-point solution.

Proposition 1: Suppose Assumptions 1–4 hold. A vector q∗ satisfies

the fixed-point relation c(q∗) + d = b(q∗) = q∗ if and only if there

exist non-negative matrices H ∈ R
r×r and M ∈ R

r×p such that

HP = PA (10a)

MF = P (10b)

Hq∗ +Mg = q∗ (10c)

Proof: Consider the ith element of each of c(q∗), d and b(q∗),
defined by the (primal) LPs

ci(q
∗) = max

{

PiAx : Px ≤ q∗
}

(11a)

di = max
{

Piw : Fw ≤ g
}

(11b)

bi(q
∗) = max

{

Pix : Px ≤ q∗
}

(11c)

If Assumptions 1–4 hold, then by the previous results there exists a

q∗ satisfying the fixed-point equation. Moreover, each of the terms

in (11) is well defined, which is the case if and only if each LP is

feasible and attains an finite optimum. Therefore, by weak duality,

the dual of each LP

ci(q
∗) : min

{

h⊤
i q

∗ : h⊤
i P = PiA, hi ≥ 0

}

,

di : min
{

m⊤
i g : m⊤

i F = Pi,mi ≥ 0
}

,

bi(q
∗) : min

{

y⊤
i q∗ : y⊤

i P = Pi, yi ≥ 0
}

,

is feasible. Examining these dual problems, dual feasible solutions

exist if and only if there exist non-negative hi ∈ R
r , mi ∈ R

p,

yi ∈ R
r such that

h⊤
i P = PiA,

m⊤
i F = Pi,

y⊤
i P = Pi.

Applying strong duality, which holds in view of the previous

arguments, to each of the three LPs

ci(q
∗) = h⊤

i q
∗,

di = m⊤
i g,

bi(q
∗) = y⊤

i q∗.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 4

Collecting all rows i = 1 . . . r,

c(q∗) = Hq∗

d = Mg,

b(q∗) = Y q∗,

where HP = PA, MF = P , Y P = P . Therefore, it follows that if

the fixed-point equation

c(q∗) + d = b(q∗) = q∗

is satisfied, then so are the conditions (10); conversely, if (10) are

satisfied, then so is the fixed-point equation.

Then the main result of this section follows.

Theorem 4: Suppose Assumptions 1–3 hold. If P satisfies Assump-

tion 4, then problem P admits an optimal solution corresponding to

the fixed-point solution q∗. Otherwise, P is unbounded above.

Proof: We use duality to prove the theorem. Our goal is to prove

that the optimal solution to P satisfies the conditions (10), for some

non-negative H and M , if and only if Assumption 4 holds, and that P

is otherwise unbounded. Since the primal LP problem P is known to

be feasible, it suffices to show that the dual problem is feasible—and

the solution is as claimed—if and only if P satisfies Assumption 4;

on the other hand, if the dual is infeasible, then by weak duality the

primal problem P is unbounded.

The dual problem is

D : min
{λi,νi,µ

i,ηi}
∀i∈{1,...,r}

r
∑

k=1

(ηk)⊤g (12)

subject to, for all i ∈ {1, . . . , r},

λ−

r
∑

k=1

µk = 1, (13a)

ν −

r
∑

k=1

µk = 1, (13b)

P⊤µi −A⊤P⊤
i λi = 0, (13c)

F⊤ηi − P⊤
i νi = 0, (13d)

λi, νi ≥ 0 (13e)

µi, ηi ≥ 0 (13f)

where λi ∈ R, µi ∈ R
r , νi ∈ R, ηi ∈ R

p are the dual variables

associated with constraints (9a)–(9d) respectively.

We first suppose the dual problem D is feasible. From (13a)

and (13b), λi = νi = 1 +
∑r

k=1 µ
k
i , for all i = 1, . . . , r, where

µk
i is the ith element of µk ∈ R

r . From this and (13c), (13d), it

follows that

PiA =
(µi)⊤

1 +
∑r

k=1 µ
k
i

P,

Pi =
(ηi)⊤

1 +
∑r

k=1 µ
k
i

F,

where the division is permitted since
∑r

k=1 µ
k
i ≥ 0. Collecting

all rows i = 1 . . . r of P , it follows that a feasible solution to

D satisfies (10a) and (10b) with Hij = µi
j/(1 +

∑r

k=1 µ
k
i ) ≥ 0,

j = 1 . . . r, Mij = ηi
j/(1 +

∑r

k=1 µ
k
i ) ≥ 0, j = 1 . . . p; therefore,

H and M are non-negative matrices.

Now we study the optimal solution to D. Since the primal problem

P is known to be feasible, and we assumed D to be feasible, then

by strong duality (which holds regardless of the feasibility of D) the

optimal solutions to P and D are attained and equal in objective value.

So, applying complementary slackness to (9a) and (9c),

r
∑

i=1

λ∗
i (c

∗
i − PiAξi∗) = 0

r
∑

i=1

ν∗
i (d

∗
i − Piω

i∗) = 0.

where ∗ denotes a variable in the optimal solution. Since each term

in these sums is non-positive,

λ∗
i (c

∗
i − PiAξi∗) = 0,

ν∗
i (d

∗
i − Piω

i∗) = 0,

for i = 1, . . . , r. Morever, because (by (13a) and (13b)) λ∗
i > 0 and

ν∗
i > 0, then, at the optimum,

c∗i = PiAξi∗,

d∗i = Piω
i∗.

Hence,

c∗i + d∗i = PiAξi∗ + Piω
i∗

=
(µi∗)⊤

1 +
∑r

k=1 µ
k∗
i

Pξi∗ +
(ηi∗)⊤

1 +
∑r

k=1 µ
k∗
i

Fωi∗

=
1

1 +
∑r

k=1 µ
k∗
i

(

r
∑

j=1

µi∗
j Pjξ

i∗ +

p
∑

j=1

ηi∗
j Fjω

i∗

)

.

(14)

Now consider the inequality (9d). Suppose Fωi∗ < g for some

i ∈ {1, . . . , r} (i.e., Fjω
i∗ < gj for all j = 1 . . . p). Complementary

slackness implies that ηi∗ = 0 which in turn implies (from (13d),

assuming that Pi is not trivially all zeros) that ν∗
i = 0; but ν∗

i ≥ 1
by (13b), which is a contradiction. Hence, there must exist a subset

K ⊂ {1, . . . , p} of active constraints for which Fkω
i∗ = gk for

k ∈ K. But for any j /∈ K, ηi∗
j = 0.

Similarly, consider the inequality (9b). By complementary slackness,

if Pξi∗ < c∗ + d∗ then µi∗ = 0. By (13c), this implies that

A⊤P⊤
i λ∗

i = 0. There are two cases to consider: (i) if any elements

of PiA are non-zero then λ∗
i = 0; (ii) if PiA = 0 then λ∗

i > 0
is permitted. We leave case (ii) for now and consider (i) first.

λ∗
i = 0 contradicts (13a), which requires λ∗

i ≥ 1. Hence, there

must exist a subset J ⊂ {1, . . . , r} of active constraints for which

Pjξ
i∗ = c∗j + d∗j for j ∈ J . But for any k /∈ J , µi∗

k = 0. As a

consequence of the preceding arguments, (14) may be re-written as

c∗i + d∗i =
1

1 +
∑r

k=1 µ
k∗
i

(

∑

j∈J

µi∗
j Pjξ

i∗ +
∑

k∈K

ηi∗
k Fkω

i∗

)

= Hi(c
∗ + d∗) +Mig

where Hi is the ith row of H and Mi is the ith row of M . The

second line follows because Hij = 0 for j /∈ J and Mik = 0 for

k /∈ K, while Pjξ
i∗ = c∗j + d∗j for j ∈ J and Fkω

i∗ = gk for

k ∈ K.

Now case (ii). If PiA = 0 then c∗i = 0. Moreover, λ∗
i ≥ 1 is

permitted, so the same contradiction is not constructed. Then, however,

either Pξi∗ < d∗, hence µi∗ = 0, or Pξ∗ij = d∗j , with µi∗
j ≥ 0, for

j ∈ J ⊂ {1, . . . , r}, and µi∗
k = 0 for all k /∈ J . Either way,

c∗i + d∗i = Hi(c
∗ + d∗) +Mig

as before.

Finally, collecting all rows i = 1 . . . r,

H(c∗ + d∗) +Mg = c∗ + d∗
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which is the third condition in (10). This establishes that the solution

to P, if it is attainable, satisfies the conditions (10) for it to be the

fixed-point solution. It is attainable if and only if the dual problem D

is feasible. Therefore, it remains to show that the D is feasible if and

only if Assumption 4 holds.

First, necessity of Assumption 4. Suppose Assumption 4 is not

satisfied, but the dual D is feasible. By definition, if Assumption 4

is not satisfied then for the chosen P and system (A,W) there does

not exist a q satisfying the functional inequality (6). Therefore, there

exists no q∗ satisfying the functional equation and, by Proposition 1,

the conditions (10). However, the attainable optimal solution to P

and D satisfies (10) with non-negative H and M , as has been shown.

Therefore, we have a contradiction, and conclude the optimal solution

is attainable, and D is feasible, only if Assumption 4 holds.

Second, sufficiency of Assumption 4. Writing the primal con-

straints (9) in the form Ax ≤ b, where x is the vector of primal

decision variables, it follows that the dual constraints (13) may be

written in the form A⊤y = c, y ≥ 0, where y is the vector of dual

variables and c is the coefficients vector in the vectorized form, c⊤x,

of the objective function (8). By Farkas’ Lemma, a feasible solution

to A⊤y = c, y ≥ 0 exists if and only if Ax ≥ 0 =⇒ c⊤x ≥ 0.

Hence, we aim to show that, if Assumption 4 holds, then for all x

satisfying Ax ≥ 0 we also have c⊤x ≥ 0. The system Ax ≥ 0 may

be written in terms of the primal variables as

ci ≥ PiAξi

Pξi ≥ c+ d

di ≥ Piω
i

Fωi ≥ 0

for i = 1 . . . r. If Assumption 4 holds, then HiP = PiA and MiF =
Pi for some non-negative Hi and Mi. Substituting into the system

Ax ≥ 0,

ci ≥ HiPξi

Pξi ≥ c+ d

di ≥ MiFωi

Fωi ≥ 0,

from which it follows that di ≥ 0 and ci ≥ Hi(c+d), hence c ≥ Hc.

But we also have that, if Assumption (4) holds, then there exists some

q ∈ R
r
+ for which 0 ≤ Hq ≤ Hq +Mg ≤ q. Applying recursively,

0 ≤ Hnq ≤ Hq ≤ q, Hn ≥ 0 because H ≥ 0, and therefore

limn→∞ Hn ≥ 0, if the limit exists. In fact, because HP = PA, the

nullspace of P is A-invariant and P has rank n, then the eigenvalues

of H are are subset of the eigenvalues of A; hence, limn→∞ Hn = 0
because ρ(A) < 1. Then c ≥ Hc ≥ limn→∞ Hnc = 0.

Consequently, c⊤x =
∑r

i=1 ci + di ≥ 0. Therefore, D is feasible if

Assumption 4 holds.

IV. EXAMPLES

We consider the non-autonomous system

x+ =

[

1 1
0 1

]

x+

[

0.5
1

]

u+ w, (15)

with w ∈ W = {w ∈ R
2 : ‖w‖∞ ≤ 0.1}. This is converted to the

linear autonomous system (1) by use of a state feedback control law

u = Kx.

A. Computation of (P, r)-mRPI from selected inequalities

First, we use the feedback matrix K = [−0.4345,−1.0285],
corresponding to the infinite-horizon LQR solution with cost matrices

−0.5 −0.25 0 0.25 0.5

−0.2

0

0.2

x1

x
2

r = 6

r = 20

r = 48

ǫ-mRPI

(a) K = [−0.4345,−1.0285]

−2 −1 0 1 2

−0.4

−0.2

0

0.2

0.4

x1

x
2

r = 20

r = 60

r = 172

ǫ-mRPI

(b) K = [−0.0796,−0.4068]

Fig. 1. Comparison of (P, r)-mRPI and ǫ-mRPI sets for the system (15) with
different feedback matrices K.

Q = I and R = 1. Note that in this example the mRPI set is not

finitely determined, and therefore an approximation is required.

Figure 1(a) shows the (P, r)-mRPI sets generated from r = 6, 20
and 48 inequalities, wherein the ith row of P is designed as

Pi =
[

sin
(

2π(i−1)
r

)

cos
(

2π(i−1)
r

)]

, (16)

i.e., so that Px ≤ 1 is the r-sided regular polygon. Also shown is

the outer approximation to the mRPI, which is itself RPI, computed

using the algorithm of [3] and a tolerance ǫ = 10−4. This set, termed

the ǫ-mRPI set, is defined by 48 non-redundant inequalities.

Figure 1(b) shows a similar comparison using K = [−0.0796,
−0.4068], obtained as the LQR solution with Q = I and R =
100. Now the ǫ-mRPI (ǫ = 10−4) comprises 172 non-redundant

inequalities, while the (P, r)-mRPI sets computed using the proposed

method are shown for r = 20, 60 and 172, again using (16) for P .

Table I compares the computation times and number of operations

for computing the (P, r)-mRPI with those for obtaining the ǫ-outer

approximation using the algorithm of [3]. For the latter, the Multi-

Parametric Toolbox v3.0 [10] was used for set operations, with CPLEX

12.6 as the LP solver for support function calculations. For the (P, r)-
mRPI set computations (i.e., solving the LP), CPLEX 12.6 was used

as the LP solver. The platform was a 64-bit Intel Core i7-2600 at
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3.40 GHz with 8 GB RAM. Times are reported as the mean elapsed

time over 100 runs.

Comparison was also made with the iterative procedure of [6] for

computing the (P, r)-mRPI. The iterative procedure is

qk+1 = c(qk) + d with q0 = 0

for which qk → q∗ as k → ∞. This was implemented in MATLAB

using the MPT v3.0 [10] for support function calculations (with

CPLEX 12.6 as underlying LP solver). The function c(·) was

evaluated element by element at each iteration; that is, as r separate

support function calculations. For the simplest case considered of

K = [−0.4345,−1.0285] and r = 6 (the first row of Table I), the

number of iterations to convergence (of |qk+1−qk| to within a chosen

tolerance of 10−6) was 34, which included the solving of 238 LPs and

took a mean total time of 1.7 seconds. At the other end of the scale,

for the most difficult problem considered (K = [−0.0796,−0.4068]
and r = 172), the iterative procedure required 70 iterations, the

solving of over 12000 LPs, and took, on average, 90 seconds. While

these times can, of course, be shortened by using optimized code, the

intention here is merely to report the times obtained using standard

computational tools.

B. Re-computing the (P, r)-mRPI set given P

An interesting use of the method is when an RPI set for the system

is available, but is desired to be re-computed or modified; for example,

if the disturbance set changes. Potential applications of this include

“plug-and-play” tube-based approaches to distributed MPC, wherein

a dynamic subsystems’ disturbance set evolves over time as other

subsystems are added to and removed from the system of coupled

subsystems [7]; in such situations, one needs a new RPI set that takes

into account the latest disturbance set. One could re-compute from

scratch a new RPI set, but it may be advantageous, in the interests

of computation time, to modify an existing RPI set instead. In the

context of the approach proposed here, the P matrix of the known

RPI set may be used as a basis for computing the new RPI set.

For the system (15) with K = [−0.4345,−1.0285] and W =
{w ∈ R

2 : |w|∞ ≤ 0.1}, the P matrix is obtained as that of the ǫ-
mRPI set. For ǫ = 10−4, this comprises 48 inequalities. Now suppose

the disturbance set enlarges to

W =

{

w ∈ R
2 :

[

−0.3
−0.4

]

≤ w ≤

[

0.1
0.2

]}

Figure 2 shows the (P, r)-mRPI and ǫ-mRPI sets based on the

new disturbance set, using for the former the P matrix from the

old ǫ-mRPI set. The (P, r)-mRPI set, computed in 0.03 s using the

proposed method, is visually indistinguishable from the new ǫ-mRPI

set.

TABLE I
COMPARISON OF COMPUTATION TIMES AND OPERATIONS FOR (P, r)-MRPI

AND ǫ-MRPI SETS.

LPs solved Minkowski sums Mean time (s)

K = [−0.4345,−1.0285]
r = 6 1 0 0.005
r = 20 1 0 0.007
r = 48 1 0 0.019
ǫ-mRPI [3] (r = 48) 369 11 2.9

K = [−0.0796,−0.4068]
r = 20 1 0 0.008
r = 60 1 0 0.036
r = 172 1 0 0.30
ǫ-mRPI [3] (r = 172) 3250 42 25

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.5

0

0.5

x1

x
2

New r-mRPI

New ǫ-mRPI

Original ǫ-mRPI

Fig. 2. Comparison of (P, r)-mRPI and ǫ-mRPI sets for the system (15) with
K = [−0.4345,−1.0285] and different disturbance sets.

V. CONCLUSIONS

A procedure for computing a polytopic robust positively invariant

set for a linear uncertain system has been presented. The method,

which requires the solution of a single LP, obtains the an RPI set that

is the smallest among those represented by a finite number inequalities

with pre-defined normal vectors, and offers an alternative method of

computation to the iterative procedure of [6]. Existence and uniqueness

of a solution has been established. The practicality of the approach

has been demonstrated via examples.
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