
This is a repository copy of Does Automated Unit Test Generation Really Help Software
Testers? A Controlled Empirical Study.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96274/

Version: Submitted Version

Article:

Fraser, G., Staats, M., McMinn, P. et al. (2 more authors) (2015) Does Automated Unit Test
Generation Really Help Software Testers? A Controlled Empirical Study. ACM Transactions
on Software Engineering and Methodology, 24 (4). 23. ISSN 1049-331X

https://doi.org/10.1145/2699688

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A

Does Automated Unit Test Generation Really Help Software Testers?
A Controlled Empirical Study

Gordon Fraser, Department of Computer Science, University of Sheffield,

Regent Court, 211 Portobello

S1 4DP, Sheffield, UK

Gordon.Fraser@sheffield.ac.uk

Matt Staats, SnT Centre for Security, Reliability and Trust, University of Luxembourg,

4 rue Alphonse Weicker

L-2721 Luxembourg, Luxembourg,

matthew.staats@uni.lu

Phil McMinn, Department of Computer Science, University of Sheffield,

Regent Court, 211 Portobello

S1 4DP, Sheffield, UK

p.mcminn@sheffield.ac.uk

Andrea Arcuri, Certus Software V&V Center at Simula Research Laboratory,

P.O. Box 134, Lysaker, Norway

arcuri@simula.no

Frank Padberg, Karlsruhe Institute of Technology,

Karlsruhe, Germany

frank.padberg@kit.edu

Work on automated test generation has produced several tools capable of generating test data which achieves
high structural coverage over a program. In the absence of a specification, developers are expected to manually
construct or verify the test oracle for each test input. Nevertheless, it is assumed that these generated tests
ease the task of testing for the developer, as testing is reduced to checking the results of tests. While this
assumption has persisted for decades, there has been no conclusive evidence to date confirming it. However,
the limited adoption in industry indicates this assumption may not be correct, and calls into question the
practical value of test generation tools. To investigate this issue, we performed two controlled experiments
comparing a total of 97 subjects split between writing tests manually and writing tests with the aid of an
automated unit test generation tool, EVOSUITE. We found that, on one hand, tool support leads to clear
improvements in commonly applied quality metrics such as code coverage (up to 300% increase). However, on
the other hand, there was no measurable improvement in the number of bugs actually found by developers.
Our results not only cast some doubt on how the research community evaluates test generation tools, but
also point to improvements and future work necessary before automated test generation tools will be widely
adopted by practitioners.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Algorithms, Experimentation, Reliability, Theory

This work is supported by a Google Focused Research Award on “Test Amplification”; the National Research
Fund, Luxembourg (with grant FNR/P10/03); EPSRC grant EP/I010386/1, “RE-COST: REducing the Cost of
Oracles in Software Testing”; and the Norwegian Research Council.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2

Additional Key Words and Phrases: Unit testing, automated test generation, branch coverage, empirical
software engineering

1. INTRODUCTION

Controlled empirical studies involving human subjects are not common in software
engineering. A recent survey by Sjoberg et al. [Sjoberg et al. 2005] showed that out of
5,453 analyzed software engineering articles, only 1.9% included a controlled study with
human subjects. Buse et al., in their survey of 3,110 software engineering articles [Buse
et al. 2011], highlight that specifically papers categorized as related to testing and
debugging only rarely have user evaluations. Indeed, for software testing, several
novel techniques and tools have been developed to automate and solve different kinds of
problems and tasks. However, they have, in general, only been evaluated using surrogate
measures (e.g., code coverage), and not with human testers—leaving unanswered the
more directly relevant question:

Does technique X really help software testers?

This paper addresses this question in the context of automated white-box test gen-
eration, a research area that has received much attention of late (e.g., [Fraser and
Arcuri 2013; Harman and McMinn. 2010; McMinn 2004; Tillmann and de Halleux 2008;
Tonella 2004]). When using white-box test generation, a developer does not need to
manually write the entire test suite, and can instead automatically generate a set of test
inputs that systematically exercise a program (for example, by covering all branches),
and only need check that the outputs for the test inputs match those expected. Although
the benefits for the developer seem obvious, there is little evidence that it is effective for
practical software development. Manual test generation is still dominant in industry,
and research tools are commonly evaluated in terms of code coverage achieved and
other automatically measurable metrics that can be applied without the involvement of
actual end-users.

In order to determine if automated test generation is really helpful for software
testing in a scenario without automated oracles, we previously performed a controlled
experiment involving 49 human subjects and three classes [Fraser et al. 2013]. This
work extends this study with another, considerably larger controlled experiment includ-
ing 48 human subjects and four classes. In each study, subjects were given one or two
Java classes containing seeded faults and were asked to construct a JUnit test suite
for each class either manually, or with the assistance of the automated white-box test
generation tool EVOSUITE [Fraser and Arcuri 2013]. EVOSUITE automatically produces
JUnit test suites that target branch coverage, and these unit tests contain assertions
that reflect the current behaviour of the class [Fraser and Zeller 2012]. Consequently, if
the current behaviour is faulty, the assertions reflecting the incorrect behaviour must be
corrected. The performance of the subjects was measured in terms of coverage, seeded
faults found, mutation score, and erroneous tests produced. In total across both studies,
145 combinations of subjects and Java classes were used.

Our studies yield three key results:

(1) The experiment results confirm that tools for automated test generation are effective
at what they are designed to do— producing test suites with high code coverage—
when compared with those constructed by humans.

(2) The study does not confirm that using automated tools designed for high coverage
actually helps in finding faults. In our experiments, subjects using EVOSUITE found
the same number of faults as manual testers, and during subsequent mutation
analysis, test suites did not always have higher mutation scores.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

(3) Investigating how test suites evolve over the course of a testing session revealed
that there is a need to re-think test generation tools: developers seem to spend most
of their time analyzing what the tool produces. If the tool produces a poor initial test
suite, this is clearly detrimental for testing.

These results, as well as qualitative feedback from the study participants, point
out important issues that need to be addressed in order to produce tools that make
automated test generation without specifications practicably useful for testing.

The rest of this paper is organized as follows. Section 2 introduces the common setup
shared by the two empirical studies. In Sections 3 and 4, we present the results of each
study. The initial study is presented first in Section 3, and the results of the larger study
second in Section 4. In Section 5, we discuss the “why” of these results—particularly
those from the second study, as it presents a larger pool of data—presenting selected
additional analysis as needed. Section 6 goes into the details of the background and exit
surveys completed by the subjects . Section 7 discusses the implications of our results on
future work. Our study is then put into context with related work in Section 8. Finally,
Section 9 concludes the paper.

2. STUDY DESIGN

The purpose of these studies was to investigate how the use of an automatic test gener-
ation tool, when used by testers, impacts the testing process compared to traditional
manual testing. Our studies were designed around a testing scenario in which a Java
class has been developed and a test suite needs to be constructed, both to reveal faults
in the newly created class and for later use in regression testing. We therefore designed
our studies around the following research questions (RQs):

How does the use of an automated testing tool impact . . .

RQ1 The structural code coverage achieved during testing?
RQ2 The ability of testers to detect faults in the class under test?
RQ3 The number of tests mismatching the intended behaviour of the class?
RQ4 The ability of produced test suites to detect regression faults?

The goal of the second study was to replicate the results found in the initial study,
in order to improve our confidence in the results. Accordingly, the design and imple-
mentation of both studies are largely the same. Nevertheless, based on the results of
the first study, we introduced small changes to improve the quality of the second study.
Furthermore, to increase the number of data points available for analysis in the second
study, participants were asked to perform both manual testing and tool-supported
testing, and additional objects were used.

Below, we outline the study designs for both studies. In cases where the experimental
design differs, we explicitly highlight such differences.

2.1. The Automated Testing Tool: EvoSuite

The automated testing tool used in our studies is EVOSUITE [Fraser and Arcuri 2013],
which automatically produces JUnit test suites for a given Java class. As input it re-
quires the Java bytecode of the class under test, along with its dependencies. EVOSUITE

supports different coverage criteria, where the default criterion is branch coverage over
the Java bytecode. Internally, it uses a genetic algorithm to evolve candidate test suites
according to the chosen coverage criterion, using a fitness function [Fraser and Arcuri
2013]. When EVOSUITE has achieved 100% coverage or hits another stopping condition
(e.g., a timeout), the best individual in the search population is post-processed to (1)
reduce the size of the test suite while maintaining coverage achieved and (2) add JUnit
assertions to the test cases.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4

Fig. 1: The EVOSUITE Eclipse plugin, generating test cases for a
class—as used by subjects in the study.

As EVOSUITE assumes no specification, these assertions reflect the observed be-
haviour rather than the intended behaviour. The selection is based on mutation anal-
ysis, and the assertions of the final test suite are minimized with respect to the set
of mutants they can expose [Fraser and Zeller 2012]. The purpose of the assertions is
to indicate to the testers what aspects of the program state are, for each test input,
capable of detecting faults. They therefore act as guidelines for testers, from which
correct assertions can (hopefully) be derived.

There exist several active paradigms for automatic test case generation. These ap-
proaches typically differ in how the test oracle is constructed, and include: automatically
inferring program invariants [Staats et al. 2012b; Wei et al. 2011]; automatically infer-
ring parametrized test input assertions [Tillmann and Halleux 2008]; automatically
producing concrete test input assertions (as is done by EVOSUITE) [Fraser and Arcuri
2011; Staats et al. 2012a]. Currently, there is no scientific consensus which approach is
preferable, and in practice all of these approaches appear to be used infrequently by
industry.

From these approaches, we have selected EVOSUITE as a representative example of a
modern approach for test case generation based on generating concrete test input asser-
tions. Our results may not generalize to other paradigms of automated test generation
(e.g., those based on parametrized test inputs or program invariants). Nevertheless,
we note that all of these approaches require the user to correct generated test oracles,
and we therefore believe that our results will generalize at least somewhat to other
approaches.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:5

For large scale experimentation, EVOSUITE can be used as a command-line tool.
However, for our experiment, the Eclipse plugin was used (shown in Figure 1), with
which the user can produce a test suite for a class by right-clicking its name in the
project explorer. The Eclipse plugin usually only exposes two of EVOSUITE’s many
available configuration properties. However, in our experiments these were fixed: the
time for test generation was set to one minute (this does not include time spent for
minimization or assertion generation), and assertion generation was enabled.

2.2. Study Subject and Object Selection

Running an empirical study involving human subjects leads to several challenges and
possible pitfalls. Guidelines exist in the literature to help researchers to carry out such
type of studies (e.g., see [Kitchenham et al. 2002; Seaman 1999]). A common problem
with controlled empirical studies is that, due to their cost and complexity, they are
often limited in size. This reduces the power of the statistical analyses. For example,
the studies surveyed by Sjoberg et al. [Sjoberg et al. 2005] involved between 4 and 266
participants (49 on average). Of these participants, 87% were students. Furthermore,
in 75% of the cases, the applications used in the experiments were constructed for the
sole purpose of running those experiments.

2.2.1. Object Selection: Initial Study . We restricted our experiment to three Java classes
to increase the likelihood of observing statistically significant effects in our initial study.
The classes were chosen manually, based on the following criteria:

(1) EVOSUITE should be able to generate test suites with high coverage, as addressing
cases where test generation struggles [Fraser and Arcuri 2012b] is an ongoing
research area. This excludes all classes with I/O dependencies and classes using
Java Generics.

(2) The source code documentation needs to be sufficient to serve as a specification. In
particular, we required JavaDoc comments for all methods of the class.

(3) The classes should be non-trivial, yet feasible to reasonably test within an hour.
The classes should not require the subjects to learn and understand complicated
algorithms. In particular, we considered classes with fewer than 50 lines of code
or classes without conditional expressions as too easy. Furthermore, each class file
should only involve one class definition (i.e., the class should not involve member
classes).

(4) The classes should be understandable without extensively examining other classes
in the same library. Notably, there should be neither many dependencies nor complex
inheritance hierarchies.

(5) The classes should represent different types of applications and testing scenarios.
In particular, we aimed to include one numeric class and one class dependent on
string inputs.

We investigated the libraries used in our earlier experiments [Fraser and Arcuri
2013; Lakhotia et al. 2010], and identified a set of 25 candidate classes largely matching
our criteria from the NanoXML, Commons CLI, Commons Math, Commons Collections,
java.util, JDom, Joda Time and XOM libraries. We then identified several candidate
classes of appropriate difficulty by first writing test suites for them ourselves, and
ran a pilot study with volunteer subjects (who were not included later in the main
experiment) on Commons CLI Option, Commons Math Fraction, and XOM Attribute.
Seeing that even seasoned programmers required significantly longer than an hour for
Fraction and Attribute, we replaced these classes with the similar but simpler Rational
from the Math4J library and DocType from XOM.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6

Table I: Study objects for first empirical study

“NCSS” refers to the number of non-commenting source statements reported by JavaNCSS
(http://www.kclee.de/clemens/java/javancss), “Branches” is the number of branches reported by EVOSUITE, while
“Mutants” is the number of mutants created by the MAJOR tool [Just et al. 2011].

Project Class NCSS Methods Branches Mutants

XOM DocType 296 26 242 186
Commons CLI Option 155 42 96 140
Math4J Rational 61 19 36 112

Details of the classes used in the experiment can be found in Table I. XOM is a
tree-based API for processing XML documents (http://www.xom.nu), with DocType
representing an XML document type declaration, which appears at the header of
an XML file (e.g., “<!DOCTYPE html>”), potentially giving further details regarding a
DTD. Option is part of the Apache Commons CLI API (http://commons.apache.org/cli)
for parsing common line options passed to programs. The class represents a single
command-line option (e.g., “-a”, “--all”, “--param <value>”, etc.), including its short name,
long name, whether a parameter is mandatory, and a short accompanying descriptor.
Finally, Rational, from the Math4J project (http://math4j.sourceforge.net), represents
a rational number.

Andrews et al. [Andrews et al. 2005] argue that mutation faults can be representative
of real faults, and that hand-seeded faults present validity issues for studies that
investigate fault detection. For this reason, we applied mutation analysis to obtain a
series of faults to use throughout our experiments; as have other authors, for example
Do and Rothermel [Do and Rothermel 2006] in their study of test case prioritization for
regression faults. Each Java class was injected with five faults prior to the experiment
using the MAJOR [Just et al. 2011] mutation analysis tool. In order to ensure a range
of different types of mutants, we used the following procedure to select injected faults:
For each of the classes, we used EVOSUITE to produce 1,000 random test cases with
assertions. We then calculated the number of test cases killing each mutant produced by
MAJOR (i.e., an assertion generated by EVOSUITE fails), thus estimating the difficulty
of killing the mutant. Next, we partitioned all killed mutants into five equally sized
buckets of increasing difficulty of being killed. From each of these buckets, we randomly
selected one mutant, while prohibiting the selection of multiple mutants in the same
method. All five selected mutants were applied to the class, producing the faulty version
given to the subjects. See Appendix A for details of the actual faults.

2.2.2. Object Selection: Replication Study . As noted previously, for the second study par-
ticipants were asked to conduct two study sessions, one with manual testing and one
with tool-assisted testing. (This is described further in Section 2.2.4.) This increase
in the number of study sessions allowed us to add another object, for a total of four.
However, as the second study was designed primarily as a replication study, we elected
to maintain largely the same set of objects.

We used four classes in the replicated experiment. We reused the Commons CLI
Option and Commons Math Fraction classes, as is, from the first experiment. We also
reused the XOM DocType class, with changes made to correct a classpath issue found in
the initial study. (This issue is outlined later in Section 3.) Finally, we added a new class,
which was selected using the same selection procedure as for the original experiment.

We selected ArrayIntList from the Commons Primitives open source library, as con-
tainer classes are very commonly found in experimentation in the software engineering
literature. The class represents a list implemented with an array, which unlike the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:7

Table II: Study objects for replicated empirical study

“NCSS” refers to the number of non-commenting source statements reported by JavaNCSS
(http://www.kclee.de/clemens/java/javancss), “Branches” is the number of branches reported by EVOSUITE, while
“Mutants” is the number of mutants created by the MAJOR tool [Just et al. 2011].

Project Class NCSS Methods Branches Mutants

Commons Primitives ArrayIntList 65 12 28 112
XOM DocType 296 26 242 186
Commons CLI Option 155 42 96 140
Math4J Rational 61 19 36 112

array list implementation in the Java standard library uses primitive int values rather
than objects. We made one modification to this class: in Java, serialization behavior of
classes can be modified by providing methods readObject and writeObject. However,
these are private methods, and cannot be called directly; instead, one needs to pass the
objects to an object stream where native code calls these methods. As this may not be
standard knowledge and the methods would be trivially covered, we removed these two
methods from the class. Mutants of this class were created using the same procedure as
for the original set of classes (see Appendix A for details of the chosen mutants).

2.2.3. Subject Selection and Assignment: Initial Study. In our initial study, email invitations
to participate were sent to industrial contacts, as well as students and post-doctoral re-
search assistants in the Department of Computer Science at the University of Sheffield.
Due to physical laboratory space restrictions, only the first 50 people who responded
were allowed to participate. One person failed to attend the experiment, leaving a total
of 49, of which five were industrial practitioners and 44 from the Computer Science
department. Of the five industrial developers, one was a Java programmer while the
other four were web developers from a local software company. Of the 44 subjects from
the Computer Science department, two were post-doctoral research assistants, eight
were PhD students and the rest were second year or higher undergraduate students.
Each subject had prior experience with Java and testing using JUnit (or similar, i.e.,
xUnit for a different programming language).

Before starting the experiment, we produced a fixed assignment of subject ID to class
and technique, so that we had roughly the same number of subjects for each class and
technique pairing. We assigned successive subject IDs to the computers in the lab, so
that any two neighbouring subjects would be working on different classes with different
techniques. Subjects freely chose their computers before any details of the study were
revealed. Each subject was paid 15 GBP for their time and involvement.

2.2.4. Subject Selection and Assignment: Replication Study. To ensure that a sufficient num-
ber of data points were produced we arranged three sessions of the study, each with
16 different participants for a total of 48 participants. The participants were selected
from the pool of students in the Department of Computer Science at the University of
Sheffield, excluding all students that already participated in the first study. Students
were invited by email, and invitations were given on a first-come-first-serve basis.

Selection and assignment of subjects was performed similarly in the second study,
with one key difference. To further increase the number of data points collected in our
second study, each participant performed two experiments—one with EVOSUITE and
one without, on different classes—rather than just one, to produce 96 data points in this
study (for a total of 145 data points across both studies). To account for the increased
effort required from each participant, we doubled the remuneration per participant

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8

to 30 GBP. This also had the benefit that the students’ willingness to participate was
increased from the first study.

As with the initial study, the classes and treatments were assigned to work places be-
fore the experiment, and participants were free to choose their computer. Experiments
were started by the participants by clicking on desktop icons labeled “Tutorial”, “Ex-
periment 1”, and “Experiment 2”, and all printed experimental material was contained
in unlabeled folders on these workplaces to prevent participants from choosing their
laptop based on the treatment. We assigned treatments such that no two neighboring
participants would be using the same treatment, i.e., every participant using EVOSUITE

would have two neighbors doing manual testing. We also made sure that no two neigh-
bors would be testing the same class at the same time. Furthermore, the assignment
made sure that we would get the same number of data points for all classes/treatments.

To avoid learning effects we also carefully selected all variations of the order in which
treatments are applied. Specifically, for each pair of classes X and Y , we aimed to
have the same number of participants first testing class X with EVOSUITE followed
by class Y with manual testing; class X with manual testing followed by class Y with
EVOSUITE; class Y with EVOSUITE followed by class X with manual testing; and class
Y with manual testing followed by class X with EVOSUITE. This assignment was done
manually.

2.3. Experiment Process

In both studies, each subject received an experiment pack, consisting of their subject
ID, a statement of consent, a background questionnaire, instructions to launch the ex-
periment, and an exit survey. In the initial study, the pack contained a sheet describing
their target Java class and whether the subject was asked to test manually or using
EVOSUITE. For those testing with EVOSUITE, the pack included further instructions
on launching the EVOSUITE plugin. In the second study, small changes reflecting differ-
ences in the study designs were made. For example, sheets describing both Java classes
were used, the exit survey was updated to reflect that both treatments were done by
each participant, etc.

Before commencing the experiment, each subject was required to fill in the question-
naire based on their background and programming experience, such that we would
receive responses about the background knowledge that are not influenced by the
following tutorial session.

In both studies, subjects were presented with a short tutorial of approximately 15
minutes, which provided a refresher of JUnit annotation syntax, along with the different
assertion types available, and their various parameters. The tutorial further included
screencasts demonstrating the use of Eclipse and the EVOSUITE tool. The slides of the
presentation were made available as individual crib sheets for reference during the
study.

Subjects were given a short warm-up exercise to reacquaint themselves with Eclipse
and JUnit, and to become familiar with the EVOSUITE plugin. The exercise consisted
of an artificial ATM example class, including an intentional bug highlighted with code
comments. Subjects were asked to write and run JUnit test cases, and to produce
test suites with the EVOSUITE plugin. During this exercise, we interacted with the
subjects to ensure that everybody had sufficient understanding of the involved tools
and techniques.

After a short break the study commenced. To initiate the experiment, each subject
entered their subject ID on a web page, which displayed a customized command to
be copied to a terminal to automatically set up the experiment infrastructure (this
process was also used for the tutorial example). In the initial study, the experimental
infrastructure consisted of:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:9

— Sun JDK 1.6.0-32
— Eclipse Indigo (3.7.2)
— The EVOSUITE Eclipse plugin
— An Eclipse workspace consisting of only the target project, with the class under test

opened in the editor. The workspace for subjects performing manual testing was
opened with an empty skeleton test suite for the target class.

All subjects used machines of roughly the same hardware configuration, booting
Ubuntu Linux. As such, the technical setting for each individual subject was identical.

The replication of the experiment was performed in the “iLab” of the Information
School at the University of Sheffield, a laboratory dedicated to usability testing and
experiments. The lab offers 16 identical modern laptop computers running Windows
7. The setup of these machines was similar to the setup in the original experiment,
although we used updated versions of software:

— Oracle Java SE Development Kit 7u45
— Eclipse Kepler (4.3.1)
— An updated version of the EVOSUITE Eclipse plugin

The version of EVOSUITE in the second study differed only in terms of bugfixes; no
new features compared to the version of the initial study were activated.

The stated goal was to test the target class as thoroughly as possible using the
time available, referring to its project JavaDoc documentation for a description of
its intended behaviour. Subjects were not given a code coverage tool to measure the
coverage achieved, as we desired a natural code testing process. We felt the addition
of code coverage tooling might encourage testers to achieve higher code coverage than
they typically would during testing. Furthermore, not all subjects might be familiar
with the use of code coverage tools, which would potentially bias the results further.

We did not reveal the number of faults in a class to the subjects, but instructed
subjects that test cases which reveal a fault in the class under test should fail. Subjects
were told not to fix any of the code, unless the changes were trivial and eased the
discovery of further faults.

When using EVOSUITE, subjects were asked to start by producing a test suite using
the plugin, and to edit the test cases so that they would fail if they revealed a fault on
the class. They were also instructed to delete tests they did not understand or like, and
to add new tests as they saw fit. As EVOSUITE uses a randomized search, each subject
using it began with a different starting test suite. Furthermore, subjects working with
EVOSUITE had to spend some of their time waiting for its results.

We modified Eclipse so that each time the test suite was run (initiated by a button-
click), a copy of the test suite was saved for later analysis (presented in the following
sections).

In each study session, subjects were given one hour to complete the assignment, and
we asked them to remain seated even if they finished their task before the time limit.
To be considered “finished”, we required them to be certain that their test cases would
a) cover all the code and b) reveal all faults. All subjects continued to refine their test
suite until within 10 minutes of the end of study, as evidenced by the recorded test suite
executions. In the second study, a short break was given between study sessions.

Including tutorial and break, the duration of the experiment was two hours for the
initial study, and three hours for the second study. The task was completed under “exam
conditions”, i.e., subjects were not allowed to communicate with others, or consult with
other sources to avoid introducing biases into the experimental findings. Following the
study, subjects were required to fill in an exit survey.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10

2.4. Analysis of Results

Each study session resulted in a sequence of test suites, with each new test suite saved
whenever the subject executed it via Eclipse. These sequences are used to conduct our
analysis, with the final test suite produced by each subject being of particular interest.
For each test suite produced, we computed several metrics, specifically: statement,
branch, and method coverage (using Cobertura1); the number of tests which fail on the
original, correct system; the number of faults detected; the mutation score; and number
of (non-assertion) statements and assertions present in each test.

These statistics form the base from which subsequent statistical analysis is done
and our research questions are addressed. Statistical analysis was performed using the
scipy and numpy Python frameworks and the R statistical toolset.

To determine which of the five individual study faults were detected by the test suites,
for each class, each corresponding fault was used to a create a separate version of that
class. This results in a total of six versions of each class for the analysis (five incorrect
and one correct). In the subsequent analysis we refer to the correct version as the
original version of the class. We then determined, for each faulty version of a class, if
there exists a test which passes on the correct class, but fails on the faulty version.

The mutation score was computed by running the test suite using the MAJOR
mutation framework, which automates the construction of many single-fault mutants
and computes the resulting mutation score, i.e., the percentage of mutants detected
by the test suites [Just et al. 2011]. Tests which fail on the correct system are ignored
and do not count towards the mutation score. (This was facilitated by modifications to
MAJOR performed by the tool’s author.) Note that these failing tests are still included
when calculating coverage.

Finally, the number of statements and assertions was computed using automation
constructed on top of the Eclipse Java compiler.

2.5. Threats to Validity

External: Many of our subjects are strictly students, and do not have professional
development experience. However, analysis of the results indicated subjects did not
appear to vary in effectiveness according to programmer experience or student/profes-
sional status. Furthermore, we see no reason why automatic test generation should be
useful only to developers with many years of experience.

The classes used in our study were not developed by the subjects and may have
been unfamiliar. However, in practice developers must often test the code of others,
and as previously discussed, the classes chosen were deemed simple enough to be
understood and tested within the time allotted through pilot studies. This is confirmed
in the survey, where we asked subjects if they felt they had been given enough time
for the experiment. In the initial study, only three subjects strongly disagreed about
having enough time, whereas 33 subjects stated to have had enough time; there was no
significant difference between EVOSUITE users and manual testers on this question,
indicating there was sufficient time for both groups. Additionally, the classes selected
were relatively simple Java classes. It is possible more complex classes may yield
different results. As no previous human studies have been done in this area, we believe
beginning with small scale studies (and using the results to expand to larger studies) is
prudent. Nevertheless, we acknowledge that our results may not perfectly generalize to
scenarios where developers are also testers, and we hope to explore the impact of code
ownership on testing in the future.

1Note that Cobertura only counts conditional statements for branch coverage, whereas the data given in
Table I lists branches in the traditional sense, i.e., edges of the control flow graph. See [Li et al. 2013] for a
discussion of the perks of bytecode-based coverage measurement.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:11

Our study uses EVOSUITE for automatic test generation. It is possible that using
different automatic test generation tools may yield different results. Nevertheless, EVO-
SUITE is a modern test generation tool, and its output (both in format and structural test
coverage achieved) is similar to the output produced by other modern test generation
tools, such as Randoop [Pacheco and Ernst 2007], eToc [Tonella 2004], TestFul [Baresi
et al. 2010], Java PathFinder [Pasareanu and Rungta 2010], Dsc [Islam and Csallner
2010], Pex [Tillmann and de Halleux 2008], JCrasher [Csallner and Smaragdakis 2004],
and others.

Internal: Extensive automation is used to prepare the study and process the results,
including automatic mutation tools, tools for automatically determining the faults
detected over time, tools measuring the coverage achieved by each test suite, etc. It is
possible that faults in this automation could lead to incorrect conclusions.

To avoid a bias in the assignment of subjects to objects we used a randomized
assignment. Subjects without sufficient knowledge of Java and JUnit may affect the
results; to avoid this problem we only accepted subjects with past experience (e.g., all
undergraduates at the University of Sheffield learn about JUnit and Java in the first
year), as confirmed by the background questionnaire, and we provided the tutorial
before the experiment. In addition, the background questionnaire included a quiz
question showing five JUnit assertions, asking for each whether it would evaluate to
true or to false. On average, 79% of the answers were correct, which strengthens our
belief that the existing knowledge was sufficient for the experiment. As participants
had to fill in the background survey before the experiment, there is the threat that
identifying demographic information prior to a task and conducting that task in the
presence of other people can impact performance [Inzlicht and Ben-Zeev 2000]. However,
as the tutorial we gave to participants would potentially influence the answers given
we wanted to have unbiased responses to the questionnaire. A further threat to internal
validity may result if the experiment objectives were unclear to subjects; to counter this
threat we thoroughly revised all our material, tested it on a pilot study, and interacted
with the subjects during the tutorial exercise to ensure they understood the objectives.
As each subject only tested one class with one technique, there are no learning effects
that would influence our results in the first experiment; in the replication each subject
tested two different classes with different treatments to avoid or minimize possible
learning effects.

Construct: We used automatically seeded faults to measure the fault detection
ability of constructed test suites. While evidence supports that the detection of the class
and distribution of faults used correlates with the detection of real world faults [Andrews
et al. 2005], it is possible the use of faults created by developers may yield different
results.

Conclusion: We conducted our initial study using 49 subjects and three Java classes.
Thus for each combination of testing approach (EVOSUITE and manual) and Java class,
six to nine subjects performed the study. The second study consisted of 48 subjects and
four Java classes. This is a relatively small number of subjects, but yields sufficient
statistical power to show an effect between testing approaches. Furthermore, the total
number of test suites created over the course of the study is quite high (over 1000), easily
sufficient for analysis examining the correlations between test suite characteristics and
fault detection effectiveness.

3. RESULTS: INITIAL STUDY

In answering our original research questions, we use only the final test suite produced
by each subject, as this represents the end product of both the manual and tool-assisted
testing processes. We explore how the use of automated test generation impacts the
evolution of the test suite in Section 5.1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12

Table III: Results of the first study

For each property, we report several statistics on the obtained results, like minimum values, median, average, standard

deviation, maximum and kurtosis. For some properties (i.e., median and average), we calculated confidence intervals (CI)

using bootstrapping at 95% significance level. For each property, we calculated the Â12 effect size of EVOSUITE (EvoS.)

compared to Manual (Man.). We also report the p-values of a Wilcoxon-Mann-Whitney U-tests. Statistically significant

effect sizes are shown in bold.

(a) Option

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 3 7.50 [3.00, 12.00] 8.50 [4.75, 11.75] 5.48 20 3.53 0.97 0.001
Man. 0 1 [0.00, 2.00] 1.22 [0.33, 2.00] 1.30 4 3.28

of found bugs EvoS. 0 0.00 [-1.00, 0.00] 0.38 [-0.12, 0.75] 0.74 2 3.86 0.31 0.165
Man. 0 1 [1.00, 2.00] 0.89 [0.22, 1.44] 0.93 3 4.12

Mutation score EvoS. 44.44 51.69 [48.31, 54.37] 51.46 [49.13, 54.01] 3.78 55.66 2.45 0.65 0.321
Man. 0.00 37.50 [12.93, 56.82] 37.82 [24.97, 51.23] 21.75 64.10 2.00

% Statement coverage EvoS. 86.36 91.82 [91.82, 95.45] 90.68 [89.43, 92.27] 2.21 92.73 2.79 1.00 0.001
Man. 15.45 41.82 [31.82, 58.18] 37.98 [29.70, 46.36] 13.80 60.00 2.18

% Branch coverage EvoS. 80.00 85.71 [82.86, 88.57] 85.36 [83.57, 87.32] 2.93 88.57 2.40 1.00 0.001
Man. 4.29 21.43 [12.86, 32.86] 20.95 [15.08, 27.14] 9.95 35.71 2.13

% Method coverage EvoS. 90.48 94.05 [92.86, 95.24] 93.75 [92.56, 94.94] 1.77 95.24 2.26 1.00 0.001
Man. 9.52 40.48 [16.67, 57.14] 42.06 [29.37, 54.76] 20.62 73.81 2.03

NCSS EvoS. 369 418.50 [401.00, 457.50] 409.25 [390.38, 428.38] 29.08 444 1.46 1.00 < 0.001
Man. 17 72 [30.00, 110.00] 67.56 [43.22, 90.11] 38.58 134 2.09

of tests EvoS. 45 47.50 [47.00, 49.00] 47.12 [46.25, 48.00] 1.36 49 1.82 1.00 0.001
Man. 4 8 [-13.00, 11.00] 14.56 [7.33, 20.89] 11.13 35 2.26

(b) Rational

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 1 5 [2.00, 9.00] 5.14 [2.29, 7.71] 3.98 12 2.25 0.70 0.289
Man. 0 2 [-4.00, 4.00] 2.80 [0.00, 5.20] 3.35 8 2.13

of found bugs EvoS. 0 2 [0.00, 3.00] 2.29 [1.29, 3.29] 1.50 4 1.85 0.43 0.738
Man. 0 3 [2.00, 6.00] 2.60 [1.40, 4.00] 1.67 4 2.13

Mutation score EvoS. 5.56 66.35 [53.06, 77.14] 60.62 [45.94, 80.72] 26.19 85.19 4.01 0.37 0.530
Man. 64.29 75.49 [73.10, 86.69] 73.71 [70.40, 78.65] 5.47 77.88 2.89

% Statement coverage EvoS. 94.59 100.00 [100.00, 105.41] 98.07 [96.53, 100.00] 2.57 100.00 1.55 0.79 0.109
Man. 72.97 97.30 [97.30, 121.62] 91.35 [85.41, 101.08] 10.54 97.30 2.99

% Branch coverage EvoS. 80.00 90.00 [90.00, 95.00] 87.14 [85.00, 90.00] 3.93 90.00 2.36 0.64 0.431
Man. 70.00 85.00 [80.00, 100.00] 83.00 [77.00, 90.00] 8.37 90.00 2.13

% Method coverage EvoS. 94.74 100.00 [100.00, 105.26] 98.50 [96.99, 100.75] 2.57 100.00 1.90 0.91 0.014
Man. 57.89 94.74 [94.74, 131.58] 85.26 [75.79, 100.00] 15.96 94.74 2.82

NCSS EvoS. 68 105.00 [96.00, 117.00] 109.75 [84.50, 128.25] 34.33 187 4.55 0.52 0.948
Man. 63 103.50 [72.50, 137.50] 102.50 [79.50, 124.17] 31.13 147 1.79

of tests EvoS. 11 16.50 [12.00, 19.00] 18.25 [13.25, 22.00] 6.96 34 4.49 0.39 0.517
Man. 14 18.50 [13.00, 22.50] 19.00 [15.83, 22.17] 4.34 25 1.65

(c) DocType

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 0 2.00 [0.00, 2.00] 2.50 [1.50, 3.50] 1.51 5 2.61 0.83 0.026
Man. 0 0.00 [-1.00, 0.00] 0.75 [-0.25, 1.38] 1.39 4 4.97

of found bugs EvoS. 1 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 0.00 1 NaN 0.50 < 0.001
Man. 0 1.00 [0.00, 2.00] 1.00 [0.50, 1.50] 0.76 2 2.00

Mutation score EvoS. 30.00 45.31 [36.66, 52.16] 46.65 [38.46, 53.81] 11.96 70.13 3.11 0.22 0.065
Man. 41.67 55.95 [44.68, 63.66] 56.50 [50.86, 62.37] 8.87 67.69 2.17

% Statement coverage EvoS. 21.93 32.09 [25.13, 36.90] 32.75 [27.94, 37.30] 7.15 44.39 2.18 0.37 0.399
Man. 25.13 37.97 [35.83, 48.66] 36.16 [31.68, 40.91] 7.07 46.52 2.17

% Branch coverage EvoS. 6.92 12.69 [3.85, 18.46] 14.90 [9.90, 19.52] 7.47 27.69 1.99 0.19 0.040
Man. 16.15 21.92 [15.38, 26.15] 23.94 [18.37, 28.27] 7.82 40.77 3.76

% Method coverage EvoS. 57.69 76.92 [73.08, 92.21] 75.00 [68.27, 82.21] 11.07 92.31 2.33 0.70 0.178
Man. 57.69 73.08 [69.23, 88.27] 70.19 [65.87, 75.96] 7.90 76.92 2.24

NCSS EvoS. 73 101 [82.00, 114.00] 103.71 [88.71, 117.86] 21.40 136 1.98 0.60 0.562
Man. 40 81.50 [25.00, 117.50] 88.00 [59.38, 116.25] 43.63 147 1.45

of tests EvoS. 12 17 [13.00, 20.00] 17.57 [14.71, 20.43] 4.16 23 1.51 0.62 0.449
Man. 9 13.50 [2.00, 16.00] 16.12 [11.38, 20.25] 6.90 28 2.16

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

20

40

60

80

100

S
ta

tm
e
n
t
C

o
ve

ra
g
e

(%
)

Option Rational DocType

(a) Statement Coverage

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

20

40

60

80

B
ra

n
c
h

C
o
ve

ra
g
e

(%
)

Option Rational DocType

(b) Branch Coverage

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

20

40

60

80

100

M
e
th

o
d

C
o
ve

ra
g
e

(%
)

Option Rational DocType

(c) Method Coverage

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

5

10

15

20

#
o
f
T
e
s
ts

F
a
ili

n
g

o
n

O
ri

g
in

a
l

Option Rational DocType

(d) # of Tests Failing on Correct System

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

20

40

60

80

M
u
ta

ti
o
n

S
c
o
re

(%
)

Option Rational DocType

(e) % Generated Mutants Killed

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

1

2

3

4

#
o
f
S

tu
d
y

M
u
ta

n
ts

K
ill

e
d

(0
-5

)

Option Rational DocType

(f) # of Faults Detected

Fig. 2: Test suite properties, comparing EVOSUITE against manual
testing (boxes spans from 1st to 3rd quartile, middle lines mark the
median, whiskers extend up to 1.5× the inter-quartile range, while
plus symbols represent outliers and stars signify the mean).

The results for our initial study are summarized in the form of boxplots in Figure 2,
and detailed statistical analysis is presented in Table III(a) for Option, Table III(b) for
Rational, and finally Table III(c) for DocType. The Mann-Whitney U-test was used to
check for statistical difference among the stochastic rankings of these two groups for
each variable, and the Vargha-Delaney Â12 statistic was used to calculate standardized
effect sizes. We also computed common statistics, such as minimum, maximum, mean,
median, standard deviation, and kurtosis. There is disagreement in the literature
concerning which statistical tests should be used and how to interpret their results; in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14

this paper, we follow the guidelines presented by Arcuri and Briand [Arcuri and Briand
2014].

The data for three subjects was discarded, as one subject produced no test suites (for
DocType), and two subjects ignored study instructions and modified the class interface
(for Rational). As these modifications were not captured by the EVOSUITE plugin, we
could not analyze the resulting test suite automatically.

After conducting the study, the analysis indicated unexpected results for DocType.
Although per our class selection criterion, we expected EVOSUITE would achieve high
coverage with DocType, the coverage values achieved by participants using EVOSUITE

were very low (as seen in Figure 2), no greater than 44%. Upon investigation, we identi-
fied a configuration problem in EVOSUITE related to how the Eclipse plugin constructed
the classpath when launching EVOSUITE during test generation; specifically, EVO-
SUITE could not load the nu.xom.Verifier class. As it is possible to instantiate DocType
even without Verifier, EVOSUITE silently ignored this problem. However, many of the
methods of DocType indirectly depend on Verifier, and calling such a method leads
to a NoClassDefFoundError. Consequently, EVOSUITE produced many test cases for
DocType similar to the following:

String string0 = ...;
DocType docType0 = ...;
try {
docType0.setInternalDTDSubset(string0);
fail("Expecting exception: NoClassDefFoundError");

} catch(NoClassDefFoundError e) {
// Could not initialize class nu.xom.Verifier

}

This explains the simultaneous high method coverage and low statement/branch cover-
age achieved over this class. This configuration problem only affected EVOSUITE, not
Eclipse itself, and consequently these test cases would fail when executed in Eclipse, as
the NoClassDefFoundError would not occur.

Interestingly, none of the subjects noted this issue, and the experiment was conducted
as planned. The results on DocType therefore do not represent the standard behaviour
of EVOSUITE. However, they do represent an interesting case: what happens if the test
generation tool produces bad or misleading test cases? We therefore decided to keep the
data set.

3.1. RQ1: Structural Code Coverage Achieved

As seen in Figure 2(a–c), for both Option and Rational, the use of EVOSUITE improves
code coverage for every structural coverage criterion used. The relative increases in
median coverage range from 9.4% in the case of branch coverage for Rational, to 300%—
a threefold increase—for branch coverage for Option. Indeed, the improvement in
coverage when testing Option with the aid of EVOSUITE is particularly substantial: the
minimum coverage achieved with EVOSUITE derived test suites is 80.0% and 90.48%
for branch and method coverage, while the maximum coverage achieved by any subject
working without EVOSUITE is 35.71% and 73.81%, indicating nearly all the coverage
achieved during testing is likely due to automatically generated tests.

Considering the standardized effect sizes and the corresponding p-values for coverage
in Table III(a), results for Option are as strong as possible (Â12 = 1 and p-value close to
0.0). For Rational, there are strong effect sizes (from 0.69 to 0.94), but sample sizes were
not large enough to obtain high confidence in statistical difference for branch coverage
(p-value equal to 0.247).

For Option, where the difference in coverage is largest, this increase comes at the
price of an increased number of tests: EVOSUITE produces 47.12 tests on average,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:15

whereas manual testing results in only 14.56 tests on average. For Rational and
DocType, however, the numbers of tests generate manually and automatically are quite
comparable: For Rational manual testing leads to slightly more tests (18.25 generated
by EVOSUITE vs. 19.00 written manually), even though EVOSUITE’s tests have higher
coverage on average. For DocTypeEVOSUITE produces slightly more tests with slightly
lower coverage. Thus, although more tests generally means higher coverage, this is not
the only deciding factor.

The results for Option and Rational matched our expectations: the development of
automatic test generation tools has long focused on achieving high structural coverage,
and the high coverage achieved here mirrors results found in previous work on a number
of similar tools. For DocType, however, the use of EVOSUITE results in considerably
lower branch coverage, with a relative change in the median branch coverage of -42.12%
(though method coverage tends to be slightly higher). As discussed above, this is due
to a configuration error; given that EVOSUITE typically achieves around 80% branch
coverage within one minute over DocType, we expect that the behavior observed over the
Rational and Option classes would also apply on DocType under normal circumstances.

Nevertheless, we conclude that in scenarios suited to automated test generation,
generated test suites do achieve higher structural coverage than those created by
manual testers.

RQ1: Automatically generated test suites achieve higher structural
coverage than manually created test suites.

3.2. RQ2: Faults Detected

For all three classes, there is no case in which the ability of subjects to detect faults
improves by using EVOSUITE, and in fact detection often slightly decreases. For exam-
ple, from Figure 2(f) we see Option shows a slight benefit when using manual testing,
with average fault detection of 0.89 compared to 0.38 (effect size 0.31). For Rational the
data show that manually created test suites detect 2.33 faults versus the 2.12 detected
with test suites derived with EVOSUITE (effect size 0.46). However, test suites created
for DocType find on average the exact same number of faults, 1.0 (effect size 0.5). In
no case are the differences in fault detection statistically significant at α = 0.05, as the
lowest p-value is equal to 0.165 (for Option). A larger sample size (i.e., more subjects)
would be needed to obtain more confidence to claim that EVOSUITE actually is worse
than manual testing.

RQ2: Using automatically generated test suites
does not lead to detection of more faults.

Of the results found, this is perhaps the most surprising. Automated test generation
tools generate large numbers of tests, freeing testers from this laborious process, but
also forcing them to examine each test for correctness. Our expectation was that either
testers would be overwhelmed by the need to examine and verify the correctness of each
test, and thus be largely unable to make the necessary changes to the test to detect
faults, or, that testers would be relatively effective in this task, and, free from the need
to create their own test inputs, could detect faults more efficiently.

To determine if this behavior stems from the generation of poor tests suites by
EVOSUITE, we examined how many faults subjects could have found using generated
tests given the right changes to the test assertions. To estimate this, we looked at the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16

0 10 20 30 40 50 60

Time (Minutes)

1

2

3

4

5

6

7

#
o
f
F

a
ili

n
g

T
e
s
ts

Fig. 3: Average number of test cases failing on the original, correct
version of the class. EVOSUITE users are shown with dark gray solid
lines, manual testers with light gray dashed lines.

initial test suites generated by EVOSUITE. We assume that a test suite can potentially
reveal a fault if there exists a test which passes on the class with the fault, and fails on
the original, correct class (i.e., there is a test where an assertion, if corrected, would
reveal the fault). On average, test suites for Option could reveal 3.0 faults, test suites
for Rational 2.86 faults, and test suites for DocType 2.6. Consequently, it would have
been possible for subjects using EVOSUITE to find more faults than manual testers
if they had identified and fixed all incorrect assertions. We take a closer look at the
influence of assertions and how they vary when using EVOSUITE in Section 5.2.

3.3. RQ3: Tests Mismatching the Intended Program Behavior

For all three classes, the number of tests failing on the original version (i.e., the version
of the class without the seeded faults) is larger when EVOSUITE is used (cf. Figure 2(d)).
Each failing test represents a misunderstanding in how the class should operate,
manifested as an incorrect assertion. For Option, the number increases from 1.22 on
average for manually written tests to 8.5 for participants using EVOSUITE; for Rational
the number increases from 2.8 to 5.14; and for DocType the number increases from
0.75 to 2.5. The increase is statistically significant for Option (p = 0.001) and DocType
(p = 0.026), whereas Rational (p = 0.289) would need a larger sample size to achieve
significance.

Naturally, we expect several failing tests in the initial test suite when using EVO-
SUITE: assertions produced by EVOSUITE reflect the behaviour of the class they are
generated from, which in the study is faulty. Over time, as the test suite evolves, we
expected these failing tests to be corrected. However, Figure 3 shows that this is not the
case; the number of incorrect tests remains fairly constant for both EVOSUITE users
and manual testers, and even slightly increases for EVOSUITE users (due to Option).

The persistent number of failing tests may occur because testers struggle to under-
stand the generated tests, or because in general testers struggle to correct failing tests,
and the generation process merely exacerbates this. In any case, the existence of failing
tests represents a potential drain on time, as these tests may fail to catch faults in the
program or may signal the existence of a fault where none exists, both undesirable
outcomes.

RQ3: Automatically generated test cases have a negative effect on the
ability to capture intended class behaviour.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:17

3.4. RQ4: Regression Fault Detection

We estimate the ability of subjects’ test suites to find regression faults by examining
the mutation score achieved. In contrast to the results for RQ2, the results for RQ4
are mixed: the ability of subjects to construct test suites capable of detecting faults
later introduced in the class under test is impacted by the use of EVOSUITE, but
only for one class. As shown in Figure 2(e), when performing regression testing over
Option, test suites derived from EVOSUITE detect, on average, 51.46% of mutants as
compared to 37.82% detected by manual testing alone. This indicates that the much
higher structural coverage achieved over this class, while apparently not beneficial
at detecting existing faults in it, nevertheless does help improve the ability to detect
mutants later introduced.

However, for the other two classes, Rational and DocType, test suites constructed
with EVOSUITE seem to perform worse. For Rational, manually created test suites
killed on average 72.92% of generated mutants, a rather consistent improvement over
the 60.56% of mutants found by the EVOSUITE derived test suites. For DocType, 56.50%
and 46.65% of mutants were killed by manually created and EVOSUITE generated test
suites, respectively. In both cases, however, the most effective test suite was created by
a subject using EVOSUITE (note the outliers in Figure 2(e)). Only for DocType there is
enough evidence to claim results can be statistically significant (p-value equal to 0.065),
though this is influenced by the configuration problem discussed earlier.

We hypothesize that to some extent this difference among classes is due to the
difference in method coverage achieved over Option: as noted previously, we selected
independent faults to be part of each class, and some methods do not contain faults.
During mutation testing, these methods are mutated, and the tests generated by
EVOSUITE targeting these methods—which are correct, as the methods themselves
are correct—will detect these mutants. As manually created test suites may not cover
these methods, they cannot detect these mutants. In contrast, for both Rational and
DocType, test suites manually created or derived using EVOSUITE achieved similar
levels of method coverage, and this behavior is thus absent. Our results for RQ4 thus
reflect previous empirical studies relating structural coverage and mutation scores—
higher structural coverage roughly corresponds to higher levels of mutation detection
ability [Namin and J.H.Andrews 2009].

On the whole, these results indicate that the use of automatic test generation tools
may offer improvements in regression testing in scenarios where testers struggle
to manually generate sufficient tests to cover a system. However, the relationship
between coverage and mutation score is clearly not as strong as found in previous
studies (where correlations above 0.9 were common) highlighting the impact of the
tester in constructing effective regression test suites [Namin and J.H.Andrews 2009].
For example, although on Rational the coverage values are higher for EVOSUITE, its
mutation score is lower.

We provide two possible conjectures why manual testers achieved higher mutation
scores with similar coverage. First, consider again the results from RQ2 and RQ3:
users of EVOSUITE produced more tests failing on the original version of a class than
manual testers. Although a failing test still contributes towards code coverage, it cannot
detect any mutants by definition (mutation analysis assumes that the tests pass on
the original version of the class). Consequently, the mutation score is based on only
the passing subset of the produced test cases. It is therefore likely that if users had
managed to correct more assertions, the mutation score of the EVOSUITE tests would
have been significantly higher.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18

Second, it is possible that the assertions generated by EVOSUITE are weaker than
those written by manual testers. Both conjectures imply that assertion generation is in
strong need of further research.

RQ4: Automated test generation does not
guarantee higher mutation scores.

4. RESULTS: REPLICATION STUDY

Recall from Section 3 that our second study differs only in two main respects: the
systems used in the study and the subjects. Therefore, we wish to not only answer
our research questions, but also highlight differences in the results with our previous
study’s results. Such differences—or lack of differences—indicate how well our initial
results generalize to both other systems, i.e., those not used in the initial work, and to
the larger body of testers.

As before, we examine our results in the context of each research question, and apply
the same analyses to answer each question. Our analyses are done using the final
test suites produced by the testing processes, with analyses examining intermediate
test suites shown and discussed in Section 5.1 (jointly with the analyses for the initial
study). In Figure 4, we summarize the results as box plots, and in Tables IV(a)-IV(a) we
list the outcome of statistical tests. Two statistical tests were used: the Mann-Whitney
U-test was used to check for statistical differences between manually and tool-assisted
generated test suites, and the Vargha-Delaney Â12 statistic was used to compute the
standardized effect sizes.

In contrast to our previous study, no data was discarded; all subjects wrote test
suites and no modifications to the classes’ interfaces were performed. Also recall that
DocType’s EVOSUITE configuration in this study was corrected, and does not contain
the classpath issue found in the initial study. Thus the results when using EVOSUITE

for DocType represent a testing scenario not explored in the previous study.

4.1. RQ1: Structural Code Coverage Achieved

As seen in Figure 4, without fail the use of EVOSUITE results in equal or better
structural coverage for all combinations of classes and structural coverage criteria.
This is perhaps most pronounced for method coverage, where we can see relative
improvements in average coverage of 17.7% to 117.2% when using EVOSUITE generated
test suites over manually created test suites. Indeed, for method coverage, the lowest
average coverage for EVOSUITE generated test suites is 95% (for Option). Similar
results are found for statement and branch coverage, with relative improvements when
using EVOSUITE generated test suites of 6.6%-156.3% and 1.5%-329.2% for statement
and branch coverage, respectively.

Examining Tables IV(a)-IV(a) (rows for percentage “%” of statement, branch and
method coverage), we see these results reflected in the statistical analysis: standardized
effect sizes are consistently high, typically higher than 0.8, with p-values typically below
the traditional statistical significance mark of 0.05. The effect is strongest for method
coverage, with statistically significant results for every class; however, only in one case
— branch coverage over Rational, with a p-value of 0.84 — there is no strong effect on
coverage found with respect to generation strategy.

In all cases except Rational, the number of tests generated automatically is again
higher than that written manually. For Rational, the number of automatically generated
tests is again lower (18.58 on average) than the number of manually written tests (23.42
on average). Thus, although within a short time an automated tool generates more tests

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:19

Table IV: Results of replicated empirical study.

(Refer to Table III for descriptions of column headings)

(a) Option.

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 2 8.50 [4.50, 9.00] 10.50 [7.17, 13.42] 5.89 25 4.25 0.97 < 0.001
Man. 0 1.50 [0.50, 2.50] 1.58 [0.83, 2.25] 1.31 4 2.06

of found bugs EvoS. 0 0.00 [-1.00, 0.00] 0.33 [0.083, 0.58] 0.49 1 1.50 0.40 0.368
Man. 0 0.50 [0.00, 1.00] 0.58 [0.25, 0.92] 0.67 2 2.42

Mutation score EvoS. 14.68 42.35 [36.40, 48.89] 41.27 [35.20, 47.98] 11.73 61.67 3.69 0.56 0.644
Man. 8.57 35.47 [14.09, 47.74] 37.85 [28.30, 48.10] 18.17 59.62 1.63

% Statement coverage EvoS. 83.64 92.73 [90.45, 95.00] 92.05 [90.23, 94.09] 3.60 95.45 3.40 1.00 < 0.001
Man. 18.18 38.18 [35.00, 45.00] 35.91 [31.89, 40.53] 8.19 45.45 2.87

% Branch coverage EvoS. 61.43 83.57 [80.71, 87.14] 82.26 [78.69, 86.90] 7.67 91.43 5.74 1.00 < 0.001
Man. 7.14 20.71 [16.43, 29.29] 19.17 [14.64, 23.57] 8.25 32.86 1.98

% Method coverage EvoS. 83.33 97.62 [97.62, 101.19] 95.24 [93.06, 98.02] 4.54 100.00 4.98 1.00 < 0.001
Man. 16.67 46.43 [39.29, 57.14] 43.85 [37.10, 51.19] 12.82 59.52 2.59

NCSS EvoS. 171 244.00 [224.50, 252.00] 244.25 [229.83, 261.00] 29.12 281 4.42 1.00 < 0.001
Man. 15 76.50 [48.50, 104.00] 75.75 [56.67, 95.42] 35.67 126 1.85

of tests EvoS. 28 36.50 [33.50, 38.00] 36.33 [33.92, 39.00] 4.68 44 2.81 0.97 < 0.001
Man. 2 19.00 [12.00, 26.50] 18.50 [13.67, 23.67] 9.33 31 1.80

(b) Rational.

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 1 4.50 [2.00, 6.00] 5.08 [3.17, 6.83] 3.37 13 3.60 0.35 0.234
Man. 0 9.50 [2.50, 17.00] 9.50 [5.42, 13.58] 7.56 19 1.39

of found bugs EvoS. 0 2.00 [1.00, 3.50] 1.92 [1.08, 2.75] 1.51 4 1.62 0.65 0.223
Man. 0 1.00 [0.00, 2.00] 1.17 [0.42, 1.83] 1.34 4 2.67

Mutation score EvoS. 15.74 52.32 [31.96, 63.44] 53.70 [42.66, 65.60] 21.30 82.41 2.11 0.61 0.371
Man. 0.00 49.95 [30.87, 87.84] 41.98 [24.63, 59.37] 31.91 81.48 1.38

% Statement coverage EvoS. 91.89 97.30 [94.59, 97.30] 97.75 [96.62, 99.10] 2.26 100.00 4.89 0.73 0.050
Man. 75.68 95.95 [94.59, 106.76] 91.67 [87.39, 96.62] 8.66 100.00 2.17

% Branch coverage EvoS. 75.00 85.00 [85.00, 90.00] 83.33 [80.83, 85.83] 4.92 90.00 2.34 0.53 0.835
Man. 70.00 82.50 [75.00, 87.50] 82.08 [78.33, 86.25] 7.53 90.00 1.89

% Method coverage EvoS. 89.47 100.00 [100.00, 100.00] 99.12 [98.25, 100.88] 3.04 100.00 10.09 0.84 0.002
Man. 52.63 92.11 [86.84, 113.16] 84.21 [75.44, 94.30] 17.24 100.00 2.13

NCSS EvoS. 64 90.50 [73.50, 100.00] 94.08 [82.67, 105.00] 20.72 138 2.77 0.44 0.665
Man. 63 94.00 [75.50, 105.00] 100.67 [85.42, 114.25] 27.04 166 3.93

of tests EvoS. 11 19.00 [16.50, 22.50] 18.58 [16.17, 21.17] 4.64 26 2.18 0.27 0.064
Man. 17 22.00 [17.00, 25.00] 23.42 [20.42, 26.25] 5.42 35 2.61

(c) DocType.

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 1 3.00 [2.00, 4.00] 3.17 [2.33, 3.92] 1.47 6 2.28 0.69 0.113
Man. 0 2.00 [1.00, 3.00] 2.08 [1.17, 2.92] 1.56 5 2.15

of found bugs EvoS. 0 1.00 [1.00, 1.50] 0.83 [0.50, 1.17] 0.58 2 2.95 0.47 0.823
Man. 0 1.00 [0.50, 2.00] 1.00 [0.42, 1.50] 0.95 3 2.64

Mutation score EvoS. 0.00 65.50 [60.84, 72.67] 60.62 [51.95, 73.18] 20.49 79.67 7.72 0.70 0.101
Man. 39.06 54.87 [45.10, 60.10] 56.51 [49.91, 62.56] 11.67 78.50 2.33

% Statement coverage EvoS. 71.66 89.04 [87.17, 95.99] 86.36 [82.40, 90.95] 7.84 95.19 2.37 1.00 < 0.001
Man. 28.88 38.24 [35.03, 41.98] 39.35 [34.09, 43.45] 8.73 63.10 5.76

% Branch coverage EvoS. 59.23 84.62 [81.54, 92.31] 81.41 [76.35, 87.50] 10.38 92.31 2.93 1.00 < 0.001
Man. 18.46 23.46 [20.00, 25.77] 26.54 [19.68, 31.09] 10.87 58.46 7.48

% Method coverage EvoS. 84.62 100.00 [100.00, 101.92] 98.08 [96.15, 100.96] 4.49 100.00 8.04 0.99 < 0.001
Man. 61.54 80.77 [80.77, 88.46] 78.85 [74.36, 83.33] 8.44 92.31 3.10

NCSS EvoS. 132 172.50 [161.50, 188.00] 170.33 [159.67, 181.67] 20.29 201 2.34 0.99 < 0.001
Man. 50 83.50 [73.50, 103.00] 82.67 [68.50, 95.42] 24.59 139 3.52

of tests EvoS. 29 35.50 [31.50, 38.00] 36.33 [33.67, 39.00] 4.96 45 2.22 0.99 < 0.001
Man. 9 18.00 [13.50, 20.50] 19.00 [15.33, 22.33] 6.44 32 2.78

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20

Table IV: Results of replicated empirical study (continued).

(Refer to Table III for descriptions of column headings)

(a) ArrayIntList.

Variable Method Min Median CI Avg. CI SD Max Kurt. Â12 p-value

failing tests on original EvoS. 1 2.00 [0.50, 3.00] 2.50 [1.58, 3.25] 1.57 6 2.98 0.64 0.237
Man. 0 1.50 [0.50, 2.50] 1.75 [0.83, 2.58] 1.60 5 2.54

of found bugs EvoS. 0 0.00 [-1.50, 0.00] 0.75 [0.083, 1.33] 1.22 3 2.56 0.64 0.122
Man. 0 0.00 [0.00, 0.00] 0.083 [-0.083, 0.17] 0.29 1 10.09

Mutation score EvoS. 10.47 30.20 [24.94, 43.55] 26.56 [21.33, 32.22] 10.02 37.21 1.40 0.40 0.436
Man. 5.56 33.06 [25.45, 44.57] 31.10 [24.12, 38.73] 13.46 51.40 2.34

% Statement coverage EvoS. 71.43 76.79 [65.18, 78.57] 80.21 [76.04, 84.08] 7.59 92.86 1.74 0.73 0.056
Man. 17.86 71.43 [60.71, 95.54] 63.99 [52.23, 76.93] 22.98 94.64 2.35

% Branch coverage EvoS. 66.67 77.78 [72.22, 80.56] 78.70 [75.00, 82.41] 6.63 88.89 2.41 0.85 0.003
Man. 5.56 50.00 [33.33, 66.67] 50.46 [37.50, 63.43] 23.62 88.89 2.49

% Method coverage EvoS. 91.67 100.00 [100.00, 108.33] 96.53 [94.44, 98.61] 4.29 100.00 1.11 0.91 0.001
Man. 25.00 83.33 [79.17, 91.67] 77.78 [69.44, 88.89] 18.91 100.00 6.27

NCSS EvoS. 75 87.50 [62.00, 91.50] 97.08 [86.83, 106.83] 18.51 133 2.06 0.77 0.026
Man. 21 57.00 [22.50, 88.00] 60.42 [40.59, 79.50] 36.17 121 1.71

of tests EvoS. 14 16.00 [13.50, 17.00] 16.50 [15.42, 17.58] 2.02 20 1.91 0.71 0.087
Man. 1 9.50 [1.00, 14.00] 11.83 [7.00, 16.25] 8.55 28 2.15

than a human tester, it seems that, if given sufficient time, manual testing will converge
at a number of tests no less than automated test generation. In fact, considering that
EVOSUITE not only optimises for code coverage, but as a secondary criterion also
optimises the test suite size, it is likely that manual testing will in practice result in
more tests for the same level of coverage.

These results match our expectations — depending on the structural coverage cri-
teria considered, achieving high coverage is, at worst, made no more difficult by the
introduction of tools for automatic test generation. Indeed, in every case except branch
coverage over the Rational class, the use of EVOSUITE results in improvements in
coverage, up to 329.2%, with high statistical confidence. We therefore conclude that, as
in our previous study, generated test suites do achieve higher structural coverage than
those constructed manually.

RQ1: The replication confirms that automatically generated test suites
achieve higher coverage than manually created test suites.

4.2. RQ2: Faults Detected

Of the four classes used in our study, test suites generated using EVOSUITE outperform
those manually constructed for only two classes, Rational and ArrayIntList, by 64.3%
and 800% on average, respectively (Figure 4(f)). In both cases this represents an
improvement of roughly one fault detected more on average. Test suites constructed
for Option and DocType are slightly more effective when manually constructed, by
75% and 20%, respectively. As shown in Tables IV(a)-IV(a) however, the differences in
fault detection are not strong enough within any class to be considered statistically
significant. Even for ArrayIntList, the class for which the difference in faults detected
is most visible, the standardized effect size is only 0.64 and the p-value is 0.122, short of
the traditional α = 0.05 mark.

These results are comparable to those in Section 3.2 with regards to the effectiveness
of EVOSUITE derived test suites. As before, in most cases both sets of test suites are
typically of roughly equal fault detection power. Indeed, even for DocType, which was

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

20

40

60

80

100

S
ta

tm
e
n
t
C

o
ve

ra
g
e

(%
)

Option Rational DocType ArrayIntList

(a) Statement Coverage

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

20

40

60

80

100

B
ra

n
c
h

C
o
ve

ra
g
e

(%
)

Option Rational DocType ArrayIntList

(b) Branch Coverage

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

20

40

60

80

100

M
e
th

o
d

C
o
ve

ra
g
e

(%
)

Option Rational DocType ArrayIntList

(c) Method Coverage

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

5

10

15

20

25

#
o
f
T
e
s
ts

F
a
ili

n
g

o
n

O
ri

g
in

a
l

Option Rational DocType ArrayIntList

(d) # of Tests Failing on Correct System

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

20

40

60

80

M
u
ta

ti
o
n

S
c
o
re

(%
)

Option Rational DocType ArrayIntList

(e) % Generated Mutants Killed

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

1

2

3

4

#
o
f
S

tu
d
y

M
u
ta

n
ts

K
ill

e
d

(0
-5

)

Option Rational DocType ArrayIntList

(f) # of Faults Detected

Fig. 4: Test suite properties, comparing EVOSUITE against manual
testing (boxes spans from 1st to 3rd quartile, middle lines mark the
median, whiskers extend up to 1.5× the inter-quartile range, while
plus symbols represent outliers and stars signify the mean).

misconfigured in the previous study, both sets of subjects again detected on average
roughly one fault. (Though new to this study, some variation in fault detection was
observed for those subjects using EVOSUITE.) On the whole, automatic test generation
failed to improve the ability of subjects to detect more faults in the given classes.

Despite the lack of a statistically significant effect, the results indicate that EVOSUITE

is most useful when applied to ArrayIntList, for reasons that were not immediately
obvious to us. Examining the version of the class of ArrayIntList used in our study, we
found that the five faults added to the class resulted in a clearly incorrect class. For

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22

0 10 20 30 40 50 60

0

5

10

15

20

25

#
o
f
F

a
ili

n
g

T
e
s
ts

(a) Option

0 10 20 30 40 50 60

0

5

10

15

20

#
o
f
F

a
ili

n
g

T
e
s
ts

(b) Rational

0 10 20 30 40 50 60

0

2

4

6

8

10

12

#
o
f
F

a
ili

n
g

T
e
s
ts

(c) DocType

0 10 20 30 40 50 60

0

1

2

3

4

5

6

#
o
f
F

a
ili

n
g

T
e
s
ts

(d) ArrayIntList

Fig. 5: Average number of test cases failing on the original, correct
version of the class. EVOSUITE users are shown with dark gray solid
lines, manual testers with light gray dashed lines.

example, attempting to add an element to the list immediately causes an exception
to be thrown. Our initial expectation was this class would be easier to test relative to
the other classes used, as the class exhibits the seeded faults with even basic testing.
However, given that most subjects could not detect any faults in the class, it appears
that in practice the class’s very incorrect behavior makes traditional manual unit testing
difficult. In contrast, EVOSUITE, generates high coverage test suites over ArrayIntList
(on average, 78.7% branch coverage as compared to 50.5% for manually constructed
suites) despite the system’s faulty behavior, resulting in stronger test suites. A possible
conjecture is that manual testers struggled to find ways to make use of this broken
class, whereas EVOSUITE has no expectations based on past experience of similar data
structures and simply generates test inputs covering the code, possibly in ways not
conceived by manual testers.

RQ2: The replication provides no new evidence that using automatically
generated test suites would lead to detection of more faults.

4.3. RQ3: Tests Mismatching the Intended Program Behavior

For three of the four classes, the number of tests failing on the original class in the final
test suite is higher for subjects using EVOSUITE than those manually constructing test
suites, by 42.9%-563% on average (Figure 4(d)). Each test which fails on the original
class represents a failure to capture the class’s intended behavior. Thus, as before, we
can see that manual testing seems to have an edge with respect to producing tests
which, while not necessarily effective, do not erroneously flag faults during testing.
As noted previously, we expect that the initial test suites produced by EVOSUITE will

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:23

contain several tests which fail on the correct system, as such suites are designed to
pass on the original system. We nevertheless expected failing tests to be corrected as
the test suite evolves, an expectation unmet in our initial study.

However, in contrast to the results from our initial study, for two of these classes —
DocType and ArrayIntList— the difference is quite small, with the averages for both
within one failing test, and p-values are relatively high, over 0.1. Additionally, for one
class, Rational, testers manually testing the system typically produced test suites with
roughly twice as many tests which fail against the original class (9.5 tests versus 5.1
tests), though the results yield a non-statistically significant p-value, 0.234.

Thus we can see that, in this respect, the results from our previous study are not
supported by these new results. While the initial test suites generated by EVOSUITE

do indeed frequently fail on the original class, it seems that (1) several subjects using
EVOSUITE do manage to lower the number of failures, and (2) several subjects manually
constructing test suites construct many tests which fail over the original system. As a
result, at the end of the study the average number of failing tests in each test suite is
comparable for DocType and ArrayIntList, and actually higher for Rational.

We illustrate this behavior in Figure 5, plotting the number of failing tests for each
tester over time. As shown here, we can see that in most cases, subjects using EVOSUITE

start with a number of failing tests and achieve varying levels of success in correcting
them. However, we see that the final number of failing tests is typically comparable
to the starting number of failing tests, though naturally some subjects are better or
worse than others. In contrast, subjects manually testing the system naturally begin
with no failing tests, but typically produce a number of failing tests, such that after
one hour the number of failing tests is comparable for both sets of subjects. The chief
exceptions to this are the Option class and (arguably) the Rational class. For Option,
we can see, unlike the other classes, the initial number of failing tests starts quite
high when using EVOSUITE— 5-15, typically, as compared to no more than 8 for the
other classes. Furthermore, the number of failing tests either remains almost constant
or drops some during testing. Thus while subjects testing Option manually do create
erroneous tests (up to five), it is intuitively harder for them to create as many failing
tests as EVOSUITE produces, as compared to when testing other classes.

We were surprised by the results for the Rational class: here, unlike the other classes
in this study and all the classes in the previous study — including Rational— subjects
not using EVOSUITE actually produced, on average, four more failing test than those
subjects using EVOSUITE. It is unclear why most subjects manually testing struggled
relative to EVOSUITE-enabled subjects for this specific class, particularly since this
was not observed in the previous study. Additionally, we can see in Figure 5 that some
subjects performing manual testing over Rational did produce test suites comparable
to EVOSUITE-derived test suites. This variation in subjects performing manual testing
results in the high p-value of 0.234, and the relatively low standardized effect size of 0.35
(Table IV(b)). Given the results from the previous study, we cannot conclude whether
there is any real trend here, or rather noise in any of the two studies.

In any case, these results temper the conclusions made in Section 3.3 — while in
some cases the use of automatic test generation can lead to an increase in tests which
fail to capture intended class behavior, in other cases automatic test generation can
result in a manageable level of failing tests.

RQ3: In the replication automatically generated tests did not always
have a negative effect on the ability to capture intended class behaviour.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24

4.4. RQ4: Regression Fault Detection

We estimate the regression fault detection ability by examining the mutation score
achieved by the final test suite. As before, the results are inconclusive: for three of the
four classes used, the average mutant score is higher when using EVOSUITE, 7.3%-
27.9%, while for ArrayIntList the average fault detection rate is higher for manually
constructed test suites (17.1% greater). For each class tested, the difference in average
mutation score is not particularly high, no greater than 27.9%; typically, the variation
between subjects within a testing strategy is greater than the difference in average
mutation score. This is reflected in the high p-values and low standardized effect
scores seen for mutation score in Tables IV(a)-IV(a): no p-value less than 0.101 and no
standardized effect score greater than 0.7 was observed (both for DocType). Figure 4(e)
also illustrates this behavior, with differences in median and average fault finding
overshadowed by large, overlapping boxplots. Of particular note are results for Option—
in contrast to the previous study, improvements in mutation generation are not clearly
seen when moving from manual to EVOSUITE-driven testing. Note that statistically
significant differences in mutation score observed for DocType in the previous study
were not observed in this study, indicating that the configuration error in the previous
study was the likely cause.

Like in the previous study, large, statistically significant increases in structural
coverage were observed for most classes. Nevertheless, these gains are reflected only
weakly by the mutation scores observed here. For example, test suites for Option
and DocType have much higher branch coverage when they are generated through
EVOSUITE; the improvements in mutation score are neither statistically significant
(minimum p-value of 0.101) nor are the improvements relatively high (maximum 9%).
To some extent this difference can be attributed to the nature of mutation analysis:
Mutation typically leads to large numbers of trivial or similar mutants, such that
one would not expect an increase proportional to the coverage increase. Nevertheless,
these results indicate that while automatic test generation may offer improvements in
regression testing, these gains appear to be limited.

In the Section 3.4, we provided two hypotheses concerning this unexpectedly weak
relationship between coverage and mutation scores. First, we suggested that the higher
number of failing tests when using EVOSUITE, which increase the coverage of the
system without increasing the mutation score, may be to blame. Second, we proposed
that the assertions generated by EVOSUITE are weaker than those written by manual
testers. Given the results from Section 4.3, it appears that the first hypothesis relating
to failing tests is not well supported. As discussed, only in the case of Option do
tests generated with EVOSUITE contain a significantly higher number of failing tests.
Test suites for the other three classes exhibit comparable levels of failing tests, yet —
despite the higher structural coverage for suites generated with EVOSUITE— there
is no significant difference in mutation score. The second hypothesis relating to weak
generated assertions thus seems more plausible.

RQ4: The replication shows gains in mutation scores, but suggests that
assertion generation needs to be improved.

5. DISCUSSION

Our results for both studies indicate that while the use of automated test generation
tools consistently improves structural coverage over manual testing, this is not reflected
in the ability of testers to detect current or future regression faults. These results
highlight the need to improve automated test generation tools to be capable of achieving

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:25

0 10 20 30 40 50 60 70

Time (Minutes)

20

40

60

80

%
B

ra
n
c
h

C
o
ve

ra
g
e

(a) Branch Coverage

0 10 20 30 40 50 60 70

Time (Minutes)

0

1

2

3

4

#
o
f
S

tu
d
y

M
u
ta

n
ts

K
ill

e
d

(0
-5

)

(b) Fault Finding

0 10 20 30 40 50 60 70

Time (Minutes)

0

2

4

6

8

10

12

14

#
o
f
E

vo
S

u
it
e

D
e
ri

ve
d

T
e
s
ts

(c) # of EvoSuite Derived Tests

0 10 20 30 40 50 60 70

Time (Minutes)

0

5

10

15

20

25

#
o
f
U

s
e
r

C
re

a
te

d
T
e
s
ts

(d) # of Tester Created Tests

Fig. 6: Test suite evolution for Rational, first study. EVOSUITE users
shown in light gray solid lines, manual testers dark gray dashed lines.

not just higher structural coverage, but also better fault finding when actually used
by testers. To accomplish this, we require a better understanding of how the testing
process is influenced by the use of automated testing tools. Based on the observations
made in Section 3 and 4, we further explore how the use of automated test generation
impacts testing effectiveness and discuss implications for future work in automated
test generation.

5.1. Evolution of a Test Suite

As shown previously, subjects kept using those test suites produced by EVOSUITE at
the beginning of testing, even when it gives tests which were largely the same and
unhelpful. In this latter case, the final, resulting test suites have considerably less
coverage (though surprisingly, similar fault detection effectiveness) than manually
produced test suites.

This highlights that beginning the testing process with an automated testing tool is
not a simple boost, a pure benefit with no downsides. Instead, the use of these tools
results in the creation of a different starting point for testing from that of traditional
manual testing, one which changes the tasks the tester must perform and thus influ-
ences how the test suite is developed. Understanding the differences in how a test suite
evolves during testing with respect to the starting point may suggest how automated
testing tools can better serve testers.

Towards this, in Figures 6 and 7, we illustrate how test suites change over time for the
Rational and DocType classes in the first study. (Other classes in both studies exhibit
behavior similar to Rational here; DocType in the first study is a special counterpoint.)
These figures illustrate the branch coverage achieved, the number of EVOSUITE-derived
tests, the number of user-created tests, and the number of study faults detected. Each
line represents a single subject’s test suite over time; dark gray dashed lines represent

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26

0 10 20 30 40 50 60 70 80

Time (Minutes)

0

10

20

30

40

%
B

ra
n
c
h

C
o
ve

ra
g
e

(a) Branch Coverage

0 10 20 30 40 50 60 70 80

Time (Minutes)

0.0

0.5

1.0

1.5

2.0

#
o
f
S

tu
d
y

M
u
ta

n
ts

K
ill

e
d

(0
-5

)

(b) Fault Finding

0 10 20 30 40 50 60 70 80

Time (Minutes)

0

5

10

15

20

#
o
f
E

vo
S

u
it
e

D
e
ri

ve
d

T
e
s
ts

(c) Number of EvoSuite Derived Tests

0 10 20 30 40 50 60 70 80

Time (Minutes)

0

5

10

15

20

25

#
o
f
U

s
e
r

C
re

a
te

d
T
e
s
ts

(d) Number of Tester Created Tests

Fig. 7: Test suite evolution for DocType, first study. EVOSUITE users
shown in light gray solid lines, manual testers dark gray dashed lines.

manually constructed test suites, while lighter solid lines represent EVOSUITE derived
test suites.

First, consider the data related to Rational (Figure 6). EVOSUITE assisted subjects
begin with a test suite achieving high coverage, which they then must begin to manually
verify and understand. We see after 20–30 minutes these testers begin testing in
earnest—having spent roughly three minutes per generated test understanding their
starting point—with resulting fluctuations in branch coverage, a decrease in EVOSUITE

derived tests2 (though most of these tests are retained) and a corresponding uptick in
the number of added tests to around five, though two testers create even more tests
than some of those manually testing the system.

In contrast, subjects working without EVOSUITE have no need to understand or
modify any generated tests. These testers exhibit an immediate, linear increase in the
number of tests created. The resulting rapid increase in branch coverage approaches—
but does not quite achieve—that of EVOSUITE derived test suites within 40 minutes.
Thus while in the end, all subjects produced final test suites performing well in terms of
coverage and fault detection, the path to these effective test suites varies considerably
depending on the process used.

To quantify this dichotomy, we computed the Spearman correlation of the number of
user and EVOSUITE created tests against fault detection (see Table V). For EVOSUITE

derived test suites, we found that the size of the final (i.e., manually processed) test suite
has a moderate, positive correlation with fault detection (0.45). However, the number
of user created tests has a stronger relationship with fault detection (0.72), while the
number of unmodified EVOSUITE derived tests has a moderate negative correlation
(-0.50), highlighting the need to evolve the test suite. Branch coverage, surprisingly, has

2We use the method names of tests originally produced by EVOSUITE to determine whether a test case has
been added or deleted.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:27

a weak relationship with fault detection (-0.21). With manual testing, however, both
branch coverage and test suite size have a strong relationship with bug detection (0.79),
as previous work suggests [Namin and J.H.Andrews 2009].

Now consider the data related to DocType from the first experiment (Figure 7). Despite
the issues with this class discussed in Section 3, the behavior here is similar. Subjects
using EVOSUITE tend to delete tests much earlier than testers for Rational, dropping
5-10 tests within the first 10 minutes, but are on the whole unwilling to scrap the entire
test suite. Again, after about 30–40 minutes, changes in the number of EVOSUITE

derived tests, the number of user created tests, and branch coverage occur, though
as with Rational, for most subjects the coverage increases only slightly (or decreases)
and few new tests are created. Manual testers again start immediately, and after 30
minutes they have created 5–15 tests, achieving greater coverage than most subjects
using EVOSUITE achieve during the entire experiment (though all subjects struggle to
achieve high coverage).

The problem here is that, unlike Rational, the starting point offered by EVOSUITE

is terrible in terms of both coverage and test quality, but users nevertheless appear to
invest the majority of their effort into making use of this test suite. While both groups
of subjects ultimately achieve similar levels of fault finding (one fault detected), we
believe this is more a consequence of the relative difficulty of testing DocType. Note
that, as shown in Figure 2, the mutation score for manual test suites in the first study
is roughly 10% greater than those for EVOSUITE derived test suites.

Based on this, we can clearly see that when using automatic test generation tools,
the starting point given to testers in the form of the test suite generated, is where they
tend to stay. Even very bad test suites require time for testers to understand before
they can begin to repair them, and they are loath to replace them completely. This
stickiness, which naturally does not exist during manual test suite construction, is
cause for concern. Strong evidence exists that, in many, perhaps most cases, automatic
test generation performs poorly in terms of coverage [Fraser and Arcuri 2012b; Lakhotia
et al. 2010]. If testers struggle to improve and correct poor generated test suites, the
use of automatic generation tools may be a drag on the testing process.

5.2. Influence of Assertions

In Sections 3.2 and 4.2, we noted that EVOSUITE generated tests would have been
capable of detecting faults, if subjects could understand and correct the assertions. One
possible explanation why subjects failed to correct these assertions is a problem in the
generated test cases. According to the exit survey, subjects were happy about the length
and readability of the test cases, and they agreed that confirming the correctness of an
assertion is easier than writing an assertion for a generated test case. However, while
they thought that EVOSUITE chose good assertions, they often stated that it chose too
many assertions.

To understand how EVOSUITE generated assertions differed from those of manual
testers, we examined the number of assertions per test for both sets of subjects, and
computed the Spearman correlation of the number of assertions constructed and the
fault finding effectiveness. These results are listed in Table V and Figure 8.

We can see from Figure 8 that subjects performing manual testing do in fact tend
to construct fewer assertions, producing an average of 1.44 to 1.68 assertions per test,
versus the 1.41 to 4.9 assertions per test present in test suites derived from EVOSUITE.
In the case of Option and Rational (for both studies), testers examining EVOSUITE tests
must inspect up to 2–3 times more generated assertions than they typically chose to
construct, a potentially large increase in effort. However, in some cases the difference is
not present, notably DocType and ArrayIntList in the second study, where no significant
difference in the number of assertions generated was found.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28

Table V: Correlation of Test Suite Properties with Fault Detection,
Using Subjects’ Final Test Suites

“MA” is the mean number of assertions, “NS” is the number of statements, “NT” is the number of tests. “GMK” is the number
of generated mutants that were killed, “SFD” is the number of study faults detected. Correlations statistically significant
at α = 0.05 are formatted with bold fonts.

EVOSUITE Testing Manual Testing
SFD GMK SFD GMK

Study #1

Option MA -0.06 0.19 0.26 0.10
Rational MA -0.65 -0.73 0.30 0.35
DocType MA -0.12 0.05 0.17 0.17

Option NT 0.0 -0.05 0.0 0.31
Rational NT 0.54 0.72 0.97 0.7
DocType NT 0.0 0.74 0.15 0.28

Study #2

Option MA 0.50 -0.10 0.02 -0.15
Rational MA -0.52 -0.61 0.46 0.51
DocType MA -0.42 0.10 0.02 -0.22

ArrayIntList MA 0.42 0.21 0.05 0.28

Option NT -0.25 0.62 0.71 0.83
Rational NT 0.14 0.37 0.54 0.57
DocType NT 0.10 0.74 -0.4 0.19

ArrayIntList NT 0.26 0.27 -0.31 0.23

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

5

10

15

20

25

#
o
f
A

s
s
e
rt

io
n
s

in
T
e
s
ts

Option Rational DocType

(a) Study #1

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

Evo
Sui

te

M
an

ua
l

0

2

4

6

8

#
o
f
A

s
s
e
rt

io
n
s

in
T
e
s
ts

Option Rational DocType ArrayIntList

(b) Study #2

Fig. 8: Number of assertions per test (each box spans from 1st to 3rd
quartile, middle line marks the median, whiskers extend up to 1.5×
the inter-quartile range, while plus symbols represent outliers and
stars signify the mean).

Furthermore, from Table V we see that when manually testing Rational (in either
study) the mean number of assertions per test suite has a positive (albeit low/moderate)
correlation with mutation score and bug detection (0.30/0.46 and 0.35/0.51 respectively).
However, when using EVOSUITE to test Rational, the mean number of assertions has a
moderate, negative correlation with effectiveness (-0.65/-0.52 and -0.73/-0.61). Thus as
EVOSUITE derived test suites evolve to become more effective, extraneous tests/asser-
tions are dropped and replaced with tests using a smaller number of assertions. This
indicates that it may be possible to replace the relatively large number of generated
assertions with a smaller number of more targeted assertions, with no decrease in fault
detection effectiveness. However, this behavior appears limited to Rational; results for
other classes vary depending on the study and are often not statistically significant.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:29

@Test
public void testAddAtEmptyValidIndex() {

ArrayIntList list = new ArrayIntList();
list.add(0,10);
assertEquals(10, list.get(0));

}

Fig. 9: Assertions on getters with parameters are only found in manu-
ally written tests.

@Test
public void test12() {

String rootElementName = "abc";
String publicID = "123";
String systemID = "abc123";
DocType d = new DocType(rootElementName, publicID, systemID);
DocType d2 = new DocType(d);
assertEquals(d.getSystemID(),d2.getSystemID());

}

Fig. 10: Assertion using two getters.

Manual inspection of the test cases revealed several patterns of assertions present in
manually written test cases, but not produced by EVOSUITE. In general, EVOSUITE

produces its assertion from traces of return values, of results of object comparisons,
and of results of calls to inspector values on the class under test and its mutants.
Assertions are added where the traces produced on mutants differ from the traces of
the un-mutated class under test, and these assertions follow a fixed set of patterns.

As an example of an assertion pattern that is not captured by EVOSUITE’s process,
Figure 9 shows a manually written test case for the ArrayIntList class, with an assertion
using a call to the get method. Although EVOSUITE uses purity analysis to identify
inspector methods, assertion generation only considers methods without parameters
as inspectors (e.g., size(), isEmpty()). Thus, to produce an assertion like in Figure 9,
EVOSUITE would first need to add the call to get with a parameter of 0 to the test case,
and could only then add an assertion on the return value of that call. However, branch
coverage does not provide any guidance towards this specific call, and so EVOSUITE is
unlikely to produce this specific assertion.

Another related pattern found in manually written tests but not in EVOSUITE’s
tests is the use of more than one call to an inspector method in the same assertion.
For example, Figure 10 shows a manually written test case performing a comparison
of two DocType instances in terms of their getters. For EVOSUITE to reproduce this
assertion, both calls would need to be contained in the test case, such that an assertion
comparing the two return values could be generated. However, the optimization for
branch coverage offers no incentive to do so: After the first call to getSystemID() the
method is fully covered, and calling it again represents no coverage improvement.

Figure 11 shows an interesting case demonstrating the limits of automated assertion
generation: The Rational class implements no equals method, which in Java means
that it inherits the equals method from Object, and this version of equals only returns
true when the two compared references point to the identical instance. That means that
to compare whether two instances of Rational represent the same rational number, one
needs to do this by calling inspector methods (e.g., doubleValue()) or by accessing the
public fields numerator and denominator. EVOSUITE currently only compares objects
by calling equals, it does not compare the public members individually. This severely

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30

public boolean equals(Rational r1, Rational r2) {
if(r1.numerator == r2.numerator && r1.denominator == r2.denominator) {

return true;
} else {

return false;
}

}

@Test
public void testPow(){

Rational r = new Rational(3,2);
Rational pow = r.pow(2);
Rational expected = new Rational(9,4);
assertTrue(equals(pow,expected));

}

Fig. 11: The class Rational implements no custom equals method,
making comparisons and assertion generation more difficult. Manual
testers were able to circumvent this problem by defining a custom
helper method they used in the tests.

@Test
public void testGcf() {

assertEquals(1,Rational.gcf(1, 1));
assertEquals(2,Rational.gcf(6, 4));
assertEquals(3,Rational.gcf(33, 102));
assertEquals(11,Rational.gcf(33, 88));
assertEquals(5, Rational.gcf(10, -15));

}

Fig. 12: Manually written “shotgun” test; if the method under test is
easy to call and takes numeric parameters, manual testers play with
variations even if it does not contribute to coverage.

restricts the possible assertions EVOSUITE can generate for Rational. Some of the
manual testers were able to conveniently circumvent this problem by providing a
custom equals method, as shown in Figure 11. Even though subjects using EVOSUITE

could in theory add such a method manually as well, they had no option of making
EVOSUITE use it.

Although manually written tests have fewer assertions on average, there are some
exceptions. In particular, methods that can be called without needing to instantiate
and configure many complex parameter objects are sometimes called repeatedly in a
“shotgun” style as shown in Figure 12. EVOSUITE will not produce such tests, as it
would aim to cover each branch in the method gcf independently, and once it is covered
there will be no further tests for the same behaviour.

These differences in the generated assertions compared to manually written asser-
tions may also make identifying the correct value more difficult. For example, Fig-
ure 13(b) shows a manually written test case where a specific string is stored in variable
rootElementName, then used in a setter (setRootElementName), and then used again in
the assertion to check whether the getter returns the correct value. It is easy to see
that the value returned by this getter should be the same as the one for the setter.
Figure 13(a) shows a test case for the same method (setRootElementName) generated
by EVOSUITE. First, we notice that EVOSUITE uses the method toString rather than
getRootElementName in the assertion. From the point of view of EVOSUITE this method
is preferable as it detects the same mutants as getRootElementName (the root element

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:31

@Test
public void test11() throws Throwable {

DocType docType0 = new DocType("MGRFCXLD", "MGRFCXLD", "MGRFCXLD");
docType0.setRootElementName("MGRFCXLD");
assertEquals("[nu.xom.DocType: MGRFCXLD]", docType0.toString());

}

(a) Generated test for method setRootElementName

@Test
public void testSetRootElementName0() {

DocType docType = new DocType(testPublicID, testSystemID);
docType.setRootElementName(testRootElemName);
assertEquals(testRootElemName, docType.getRootElementName());

}

(b) Manually written test for method setRootElementName:
Strings are stored in a fixture.

Fig. 13: Example test cases illustrating the effects of randomly gener-
ated strings.

name is contained in the result of toString, yet toString will also detect other mutants
that getRootElementName will not detect). However, from the point of view of under-
standing the test case, toString seems like the wrong choice. Second, the assertion
generated by EVOSUITE uses a hard coded string, rather than refering to a variable.
This means that to correct the assertion, the user first needs to make the connection
between this concrete string and earlier inputs.

Figure 13 reveals another problem with automatically generated tests: EVOSUITE

uses the string MGRFCXLD as input, and deciding on the correctness given an assertion
on such a randomly generated string is potentially more difficult than using a “realistic”
string, as used in manually written tests. This is a well known problem, and there are
experimental techniques to improve the “readability” of generated strings (e.g., [Afshan
et al. 2013]). However, EVOSUITE currently does not implement these, and thus strings
are based on either random characters, or constants found in the bytecode of the class
under test. The classes DocType and Option both are dependent on string inputs, and
so this problem holds in both cases. Interestingly, however, these strings have only little
influence on the control flow, such that the use of unrealistic strings only seems to be
a problem for determining correctness of assertions, not for covering code. In the few
cases where there are some constraints on strings, EVOSUITE was able to evolve the
strings accordingly.

Note another possibility exists concerning why subjects failed to correct assertions: a
problem in understanding the class under test and its specification. Indeed, the subjects
using EVOSUITE consistently felt that the difficulty in understanding generated unit
tests depended more on the complexity of the class, not the actual tests. Only for
Rational, a relatively smaller class, did subjects using EVOSUITE feel testing was easier
than subjects manually testing. (ArrayIntList is comparably small, but as noted in
Section 4 this class was challenging to test for other reasons.) Considering that subjects
were more effective at fixing assertions for Rational than other classes, it seems that
the more difficult a class is to understand, the more difficult it becomes to successfully
apply an automated test generation tool. Developing methods of selecting assertions
to mitigate this issue seems key to producing generated test suites which testers feel
comfortable using.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32

6. BACKGROUND AND EXIT QUESTIONNAIRES

Before starting the experiments, each participant received a background questionnaire
to fill in, in order to collect information that might explain our results. At the end of
the experiment, participants had to complete an exit questionnaire, in which they had
the chance to provide feedback on their experiences. In this section, we analyze their
responses.

6.1. Background Questionnaire

The background questionnaire consisted of the following 15 questions:

Q1: Your name?
Q2: What is your birth year?
Q3: Gender?
Q4: What is your current education level?
Q5: What is your course?
Q6: Do you have industrial work experience in a Computer Science related field?
Q7: How much programming experience do you have?
Q8: How much programming experience do you have in Java?
Q9: How many programming languages do you know?
Q10: Have you used JUnit (or similar testing frameworks) before?
Q11: Have you used Eclipse before?
Q12: Do you have any prior experience with automated test generation?
Q13: How well do you understand the concept and usage of code coverage?
Q14: How often do you write unit tests when programming?
Q15: For each JUnit assertion, state whether you think it would evaluate to true or
false:

(1) assertEquals(20, 4*5)
(2) assertTrue(new ArrayList<String>().isEmpty())
(3) assertNull(null)
(4) assertEquals(2.0, Math.sqrt(4.0), 0.1)
(5) assertSame(new Object(), new Object())

Figure 14 plots the demographics of participants on the basis of responses to initial
questions in the background questionnaire, and Table VI shows the raw data. Most
participants were undergraduate students in the Department of Computer Science at
the University of Sheffield (as seen in parts (a) and (b) of the figure), a predominantly
male environment.

Although some participants were drawn from industry for the first iteration of
the study, participants in general had little industrial experience (part (c)), yet were
generally well-trained for the task that was asked of them. Most had at least two, if
not several years of programming experience (parts (d) and (e)), and all but one had
experience in Java, while part (f) shows a general competence in several languages.
Table VII shows that only a small minority had never used Eclipse (question 11), many
had prior experience with automation in testing (question 12). Although answers were
mixed with respect to the level of understanding of code coverage (question 13), a
negative response here did not represent a barrier to participating in the experiment,
since the onus was on fault finding rather than coverage. Answers were similarly
mixed regarding the habit of writing unit tests in practice (question 14), as answers
to the next question—question 15—showed a good level of understanding of JUnit
assertions. Considering the influence of the answers to question 13 and 14 on the
achieved branch coverage, Table VII shows less variations for users of EVOSUITE

compared to manual testers. This seems to suggest that automated test generation tools

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:33

Table VI: Data for background questionnaire, questions 3–9. For
each question and “Method” (EVOSUITE or Manual), “Size” is the
no. of participants giving a particular response (“Group”). “Branch”,
“Mutation”, “Failing” and “Faults” are median values for branch cover-
age, mutation score, failing tests on original and no. of faults found
respectively. Confidence intervals (“CI”) for median values are shown
using bootstrapping at 95% confidence level.

Question Method Group Size Branch CI Mutation CI Failing CI Faults CI

Q3 EVOSUITE female 4 86.78 [83.57, 98.57] 18.92 [-11.65, 32.30] 6.0 [0.00, 9.00] 0.5 [-1.00, 1.00]
male 31 83.33 [80.95, 88.10] 51.48 [47.41, 56.37] 4.0 [1.00, 5.00] 1.0 [1.00, 2.00]

Manual female 7 25.71 [-28.57, 31.43] 50.00 [32.79, 75.93] 1.0 [-2.00, 2.00] 1.0 [0.00, 2.00]
male 51 33.07 [16.15, 41.54] 51.47 [45.05, 61.27] 1.0 [0.00, 1.00] 1.0 [1.00, 2.00]

Q4 EVOSUITE 2nd year undergraduate 17 83.07 [80.44, 144.62] 42.59 [33.70, 55.19] 4.0 [3.00, 5.00] 0.0 [-1.00, 0.00]
3rd year undergraduate 6 79.03 [68.79, 117.36] 56.96 [40.04, 71.45] 3.0 [-2.00, 4.50] 1.0 [-0.50, 2.00]
4th year undergraduate 0 - - - - - - - -
industrial partner 0 - - - - - - - -
master’s student 6 87.50 [84.29, 119.01] 61.11 [47.34, 72.28] 6.5 [5.00, 11.50] 1.0 [-1.00, 1.50]
phd student 5 82.85 [77.14, 154.18] 44.44 [33.65, 73.15] 7.0 [-6.00, 11.00] 1.0 [0.00, 2.00]
post doc 1 87.14 - 51.88 - 8.0 - 0.0 -

Manual 2nd year undergraduate 25 33.07 [16.15, 41.54] 51.40 [45.36, 67.92] 1.0 [0.00, 2.00] 0.0 [-1.00, 0.00]
3rd year undergraduate 10 23.84 [-6.54, 29.12] 58.09 [47.35, 74.53] 1.5 [-1.00, 2.00] 1.0 [0.00, 1.00]
4th year undergraduate 4 44.23 [8.46, 70.00] 40.36 [16.26, 65.10] 3.5 [-11.00, 7.00] 0.5 [0.00, 1.00]
industrial partner 1 90.00 - 77.88 - 0.0 - 4.0 -
master’s student 13 35.71 [-13.57, 49.89] 55.22 [47.11, 77.66] 1.0 [0.00, 2.00] 1.0 [1.00, 2.00]
phd student 4 31.09 [-21.14, 52.20] 38.62 [16.64, 59.06] 1.0 [-2.00, 2.00] 1.0 [0.00, 2.00]
post doc 1 85.00 - 73.95 - 8.0 - 4.0 -

Q5 EVOSUITE ? 1 87.14 - 51.88 - 8.0 - 0.0 -
AI and computer science 4 89.28 [87.14, 158.57] 52.42 [49.19, 99.29] 8.0 [4.00, 14.00] 0.5 [0.00, 1.00]
computer science 21 83.07 [81.15, 93.08] 49.00 [42.44, 57.38] 4.0 [2.00, 5.00] 1.0 [1.00, 2.00]
enterprise computing 1 90.00 - 82.40 - 2.0 - 3.0 -
itmb 1 75.00 - 22.11 - 5.0 - 1.0 -
software engineering 7 85.00 [84.29, 108.57] 49.50 [32.66, 56.42] 5.0 [2.00, 9.00] 1.0 [-1.00, 2.00]

Manual ? 1 85.00 - 73.95 - 8.0 - 4.0 -
AI and computer science 2 28.97 [24.62, 33.33] 34.47 [14.29, 54.67] 1.0 [0.00, 2.00] 0.5 [0.00, 1.00]
computer science 37 27.14 [15.40, 31.98] 51.47 [45.37, 61.27] 1.0 [-1.00, 1.00] 1.0 [1.00, 2.00]
enterprise computing 1 80.00 - 64.47 - 0.0 - 1.0 -
itmb 1 33.33 - 18.51 - 4.0 - 1.0 -
software engineering 16 51.19 [17.38, 79.30] 46.22 [28.17, 59.67] 1.0 [-0.97, 1.50] 1.0 [0.00, 2.00]

Q6 EVOSUITE none 20 83.09 [80.48, 92.15] 50.19 [45.54, 57.21] 4.0 [2.00, 5.50] 1.0 [1.00, 2.00]
1 to 3 months 7 85.00 [81.43, 148.46] 49.35 [43.15, 63.52] 7.0 [6.00, 11.00] 0.0 [-1.00, 0.00]
4 to 6 months 2 90.00 [90.00, 90.00] 75.92 [66.67, 85.19] 4.5 [3.00, 6.00] 3.0 [2.00, 4.00]
7 to 12 months 2 75.71 [61.43, 90.00] 56.70 [31.00, 82.41] 5.0 [2.00, 8.00] 2.0 [1.00, 3.00]
1 to 2 years 1 80.00 - 44.44 - 20.0 - 1.0 -
3 to 5 years 3 83.07 [81.15, 138.46] 15.74 [-38.65, 31.48] 5.0 [3.00, 8.00] 0.0 [-1.00, 0.00]
6 to 10 years 0 - - - - - - - -

Manual none 34 29.23 [-8.21, 33.85] 47.88 [39.25, 58.44] 1.0 [-1.00, 2.00] 1.0 [1.00, 2.00]
1 to 3 months 7 21.42 [18.57, 25.16] 50.00 [43.33, 69.05] 2.0 [1.00, 4.00] 1.0 [1.00, 2.00]
4 to 6 months 7 58.46 [31.92, 91.54] 42.45 [21.57, 50.02] 3.0 [-2.00, 5.00] 1.0 [1.00, 2.00]
7 to 12 months 3 33.07 [-23.85, 33.30] 64.38 [47.29, 69.15] 1.0 [0.00, 2.00] 1.0 [-2.00, 2.00]
1 to 2 years 5 33.33 [25.90, 55.24] 57.89 [51.69, 101.50] 1.0 [0.00, 2.00] 0.0 [-2.00, 0.00]
3 to 5 years 1 90.00 - 77.88 - 0.0 - 4.0 -
6 to 10 years 1 85.00 - 73.95 - 8.0 - 4.0 -

Q7 EVOSUITE 1 year or less 1 85.00 - 35.18 - 13.0 - 0.0 -
2 years 3 85.00 [80.00, 96.92] 58.27 [51.16, 110.99] 4.0 [-4.00, 7.00] 0.0 [-2.00, 0.00]
3 years 11 83.33 [76.67, 105.24] 50.87 [42.89, 79.64] 4.0 [1.00, 5.00] 1.0 [1.00, 2.00]
4 years 7 84.28 [82.86, 90.00] 49.00 [42.44, 53.56] 7.0 [6.00, 12.00] 1.0 [1.00, 2.00]
5 to 10 years 12 82.96 [77.36, 148.24] 49.42 [37.69, 57.25] 4.0 [1.00, 6.00] 1.0 [0.50, 2.00]
more than 10 years 1 87.14 - 51.88 - 8.0 - 0.0 -

Manual 1 year or less 5 33.33 [8.21, 33.81] 37.33 [-3.84, 69.11] 2.0 [0.00, 4.00] 1.0 [-1.00, 2.00]
2 years 5 70.00 [51.11, 115.38] 54.66 [33.84, 92.67] 4.0 [-3.00, 8.00] 0.0 [-2.00, 0.00]
3 years 8 23.68 [-42.64, 28.90] 53.64 [30.36, 68.22] 1.5 [-1.00, 2.00] 1.0 [-1.00, 2.00]
4 years 15 27.14 [4.29, 34.29] 41.66 [21.26, 59.26] 1.0 [-1.00, 2.00] 0.0 [-1.00, 0.00]
5 to 10 years 20 27.08 [-19.16, 32.69] 52.61 [41.51, 62.00] 1.0 [0.00, 2.00] 1.0 [0.50, 1.50]
more than 10 years 5 35.71 [-13.57, 61.43] 30.35 [-19.47, 46.43] 2.0 [0.00, 4.00] 1.0 [-1.00, 2.00]

Q8 EVOSUITE 1 year or less 12 84.03 [82.36, 94.04] 43.75 [31.14, 68.57] 5.0 [3.00, 6.50] 0.0 [-1.00, 0.00]
2 years 7 21.53 [-41.92, 31.54] 43.75 [38.15, 49.04] 4.0 [1.00, 6.00] 1.0 [1.00, 2.00]
3 years 10 84.16 [78.33, 114.49] 54.81 [30.00, 68.69] 3.5 [-1.00, 5.00] 1.0 [-1.00, 1.50]
4 years 3 88.57 [87.14, 98.57] 49.50 [43.45, 52.41] 3.0 [-2.00, 4.00] 1.0 [0.00, 2.00]
5 to 10 years 2 86.42 [82.86, 90.00] 60.95 [55.24, 66.67] 9.0 [6.00, 12.00] 1.0 [0.00, 2.00]
none 1 87.14 - 51.88 - 8.0 - 0.0 -

Manual 1 year or less 18 33.33 [-1.67, 42.05] 50.73 [44.49, 82.95] 2.0 [1.00, 4.00] 0.5 [0.00, 1.00]
2 years 12 36.92 [9.62, 51.98] 54.64 [43.26, 72.88] 2.0 [0.00, 3.50] 0.5 [-1.00, 1.00]
3 years 18 26.42 [-5.00, 34.29] 55.94 [48.80, 73.02] 1.0 [0.50, 2.00] 1.0 [0.50, 1.50]
4 years 7 21.42 [-37.14, 24.40] 47.54 [27.87, 64.13] 3.0 [1.00, 6.00] 1.0 [1.00, 1.00]
5 to 10 years 3 83.33 [81.67, 100.00] 32.78 [-8.38, 35.87] 1.0 [-6.00, 1.00] 0.0 [-4.00, 0.00]
none 0 - - - - - - - -

Q9 EVOSUITE 1 to 2 3 75.00 [70.00, 128.46] 49.35 [32.36, 76.59] 5.0 [5.00, 7.00] 1.0 [-1.00, 1.00]
3 to 5 18 84.64 [83.57, 115.44] 47.93 [41.91, 54.77] 5.0 [3.00, 7.50] 1.0 [1.00, 2.00]
5 to 10 14 85.35 [81.43, 97.64] 53.56 [48.26, 66.50] 4.0 [0.00, 5.50] 0.5 [0.00, 1.00]

Manual 1 to 2 1 4.28 - 0.00 - 0.0 - 0.0 -
3 to 5 32 33.33 [-3.33, 40.79] 51.43 [43.26, 66.76] 1.0 [-0.50, 1.00] 1.0 [1.00, 2.00]
5 to 10 25 25.71 [10.66, 30.00] 55.22 [49.84, 68.78] 2.0 [1.00, 3.00] 1.0 [1.00, 1.00]

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34

Q3

N
um

be
r

of
 P

ar
tic

ip
an

ts

fem
ale m

ale

0
20

40
60

80

(a) Gender

Q4

N
um

be
r

of
 P

ar
tic

ip
an

ts

2n
d

ye
ar

 u
nd

er
gr

ad
ua

te

3r
d

ye
ar

 u
nd

er
gr

ad
ua

te

4t
h

ye
ar

 u
nd

er
gr

ad
ua

te

ind
us

tri
al

pa
rtn

er

m
as

te
r's

 st
ud

en
t

m
sc

 co
m

p
sc

i

ph
d

stu
de

nt

po
st

do
c

0
20

40
60

80

(b) Education Level

Q6

N
um

be
r

of
 P

ar
tic

ip
an

ts

no
ne

1
to

 3
 m

on
th

s

4
to

 6
 m

on
th

s

7
to

 1
2

m
on

th
s

1
to

 2
 ye

ar
s

3
to

 5
 ye

ar
s

6
to

 1
0

ye
ar

s

0
20

40
60

80

(c) Industrial Experience

Q7

N
um

be
r

of
 P

ar
tic

ip
an

ts

1
ye

ar
 o

r l
es

s

2
ye

ar
s

3
ye

ar
s

4
ye

ar
s

5
to

 1
0

ye
ar

s

m
or

e
th

an
 1

0
ye

ar
s

0
20

40
60

80

(d) General Programming Experience

Q8

N
um

be
r

of
 P

ar
tic

ip
an

ts

1
ye

ar
 o

r l
es

s

2
ye

ar
s

3
ye

ar
s

4
ye

ar
s

5
to

 1
0

ye
ar

s

m
or

e
th

an
 1

0
ye

ar
s

no
ne

0
20

40
60

80

(e) Java Experience

Q9

N
um

be
r

of
 P

ar
tic

ip
an

ts

1
to

 2
3

to
 5

5
to

 1
0

m
or

e
th

an
 1

0

0
20

40
60

80

(f) Languages Known

Fig. 14: Demographics of the study participants, as collected from
the background questionnaire. Each bar represents the number of
participants for each given category.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:35

Table VII: Data for background questionnaire, questions from Q10
to Q15. For Q15, we group the participants by the number of correct
answers. For each question and “Method” (EVOSUITE or Manual),
“Size” is the no. of participants giving a particular response (“Group”).
“Branch”, “Mutation”, “Failing” and “Faults” are median values for
branch coverage, mutation score, failing tests on original and no. of
faults found respectively. Confidence intervals (“CI”) for median values
are shown using bootstrapping at 95% confidence level.

Question Method Group Size Branch CI Mutation CI Failing CI Faults CI

Q10 EVOSUITE no 2 45.76 [11.54, 80.00] 44.09 [43.75, 44.44] 12.0 [4.00, 20.00] 1.0 [1.00, 1.00]
yes 33 85.00 [84.29, 90.00] 50.87 [46.52, 55.15] 5.0 [3.00, 7.00] 1.0 [1.00, 2.00]

Manual no 1 35.71 - 30.35 - 2.0 - 0.0 -
yes 57 30.00 [19.23, 35.38] 51.47 [45.37, 60.49] 1.0 [0.00, 1.00] 1.0 [1.00, 2.00]

Q11 EVOSUITE no 2 86.07 [85.00, 87.14] 58.63 [51.89, 65.38] 4.5 [1.00, 8.00] 1.0 [0.00, 2.00]
yes 33 83.33 [80.95, 91.67] 49.35 [44.25, 54.95] 5.0 [3.00, 7.00] 1.0 [1.00, 2.00]

Manual no 2 24.72 [22.31, 27.14] 45.88 [24.07, 67.69] 0.5 [0.00, 1.00] 1.0 [0.00, 2.00]
yes 56 32.96 [16.32, 40.93] 51.43 [45.36, 60.81] 1.0 [0.00, 1.00] 1.0 [1.00, 2.00]

Q12 EVOSUITE no 24 85.00 [82.86, 90.00] 51.68 [45.10, 58.93] 5.0 [3.00, 6.00] 1.0 [1.00, 2.00]
yes 11 82.85 [80.00, 151.87] 49.00 [44.03, 59.54] 3.0 [-6.00, 4.00] 1.0 [1.00, 2.00]

Manual no 43 28.57 [18.25, 32.86] 51.40 [46.14, 61.14] 1.0 [0.00, 2.00] 1.0 [1.00, 2.00]
yes 15 33.33 [-16.67, 41.28] 57.44 [50.79, 96.38] 2.0 [0.00, 3.00] 1.0 [0.00, 2.00]

Q13 EVOSUITE ? 1 6.92 - 46.87 - 0.0 - 1.0 -
not at all 3 85.71 [84.29, 92.86] 51.48 [51.08, 56.37] 3.0 [-2.00, 4.00] 0.0 [0, 0]
very poorly 1 83.07 - 0.00 - 5.0 - 0.0 -
somewhat poorly 9 85.71 [81.43, 98.35] 54.45 [50.05, 91.47] 4.0 [-4.00, 4.00] 0.0 [-1.00, 0.00]
well 17 80.00 [75.00, 138.46] 49.00 [42.44, 62.81] 5.0 [2.00, 8.00] 1.0 [1.00, 1.00]
very well 4 85.71 [81.43, 143.74] 60.95 [51.77, 72.40] 4.5 [-3.00, 7.00] 1.5 [1.00, 3.00]

Manual ? 1 30.00 - 37.50 - 1.0 - 3.0 -
not at all 4 52.77 [25.56, 88.41] 47.00 [18.51, 56.67] 1.5 [-1.00, 3.00] 0.5 [-1.00, 1.00]
very poorly 5 33.07 [-23.85, 39.01] 48.23 [32.00, 96.47] 1.0 [-17.00, 2.00] 0.0 [-1.00, 0.00]
somewhat poorly 16 33.09 [24.52, 41.90] 46.56 [36.47, 74.62] 1.5 [0.00, 2.50] 1.0 [1.00, 2.00]
well 26 25.54 [-15.57, 29.56] 57.04 [50.76, 67.87] 1.0 [-1.00, 2.00] 1.0 [1.00, 1.50]
very well 6 52.38 [17.26, 90.48] 47.52 [19.61, 71.11] 1.5 [-3.00, 2.50] 1.0 [-1.50, 2.00]

Q14 EVOSUITE never 2 79.28 [78.57, 80.00] 45.52 [44.44, 46.60] 11.0 [2.00, 20.00] 0.5 [0.00, 1.00]
rarely 11 85.71 [82.86, 88.57] 50.87 [46.52, 58.00] 5.0 [2.00, 7.00] 0.0 [-1.00, 0.00]
occasionally 15 83.33 [79.52, 93.59] 49.00 [31.65, 68.00] 5.0 [3.00, 8.00] 1.0 [0.00, 2.00]
often 5 90.00 [87.69, 173.08] 55.55 [28.70, 80.11] 4.0 [0.00, 8.00] 1.0 [-1.00, 2.00]
always 2 56.34 [27.69, 85.00] 42.93 [15.74, 70.13] 4.5 [2.00, 7.00] 0.5 [0.00, 1.00]

Manual never 3 40.76 [1.54, 71.54] 60.60 [45.72, 103.03] 4.0 [4.00, 7.00] 2.0 [2.00, 3.00]
rarely 20 26.59 [-20.15, 34.73] 53.06 [48.47, 64.08] 1.0 [0.00, 2.00] 1.0 [1.00, 2.00]
occasionally 21 27.14 [20.95, 30.00] 47.54 [37.51, 65.38] 1.0 [-1.00, 1.00] 1.0 [1.00, 2.00]
often 11 58.46 [28.03, 91.21] 62.06 [50.18, 86.80] 2.0 [-1.00, 4.00] 1.0 [-1.00, 2.00]
always 3 33.33 [30.95, 48.10] 30.35 [-3.39, 55.16] 2.0 [2.00, 3.00] 0.0 [-1.00, 0.00]

Q15 EVOSUITE 2 3 80.00 [71.43, 153.08] 49.50 [32.66, 52.13] 3.0 [1.00, 6.00] 2.0 [1.00, 3.00]
3 2 48.46 [6.92, 90.00] 17.77 [5.56, 30.00] 7.0 [2.00, 12.00] 0.5 [0.00, 1.00]
4 16 84.03 [82.36, 94.86] 50.11 [44.99, 61.77] 6.5 [3.00, 10.00] 1.0 [1.00, 2.00]
5 14 84.64 [80.71, 96.21] 53.17 [39.68, 62.59] 4.0 [1.50, 5.50] 0.0 [-1.00, 0.00]

Manual 2 1 24.28 - 55.81 - 3.0 - 1.0 -
3 12 23.46 [13.25, 26.98] 44.95 [30.15, 53.20] 0.5 [-1.50, 1.00] 1.0 [0.50, 2.00]
4 27 33.33 [-3.33, 41.28] 56.52 [50.97, 80.26] 2.0 [0.00, 3.00] 1.0 [1.00, 2.00]
5 18 34.52 [-5.95, 47.62] 50.70 [39.43, 63.13] 1.0 [0.00, 2.00] 1.0 [1.00, 2.00]

can level the playing field with respect to different levels of expertise. An interesting
observation is that for question 14 the users of EVOSUITE who claim to always write
unit tests when programming achieved lower coverage than the other groups (partially
even significantly so). This may be an effect of the difficulty of changing habits — users
who do not write tests so often do not need to change their habits as much to use
automated test generation tools.

Question 15 presented five JUnit assertions and asked participants whether they
would pass or not. Almost all scored 3/5 or more, with the majority scoring 4 or 5
out of 5. This again shows that participants were well-trained for the task in hand.
Interestingly, none of the categories of responses to the different questions showed
any form of correlation with different performance indicators obtained during the
experiment. Median values for branch coverage, mutation score, failing tests on the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36

original artifact and faults found are shown in Table VII, with confidence intervals,
for the answers to questions 10–15. Confidence intervals demonstrate a high degree
of overlap between responses, and in many cases the numbers of participants giving a
particular response are too small to draw any real conclusions.

6.2. Exit Questionnaire

At the end of the experiment, each participant received an exit questionnaire to complete.
The questionnaire in the replicated study (presented below) is slightly different from
that used in the original study. In the original study, participants either used EVOSUITE

to generate test cases, or worked manually. Hence they were only asked questions
relevant to the activity they undertook during the experiment. In the second iteration
of the experiment, subjects participated in both activities, and so were presented with
both sets of questions—i.e., those focussed on EVOSUITE and those centering on writing
test cases manually. Finally, participants in the second experiment were asked a new
question—whether they found working with EVOSUITE easier, or whether writing test
cases manually was in fact easier, i.e., without the assistance of EVOSUITE.

The questions were as follows:

Q1: For each of the following questions about the part of the experiment where
you manually created tests, please specify whether you: fully agree, partially agree,
partially disagree, or fully disagree.
— (A) I had enough time to finish my task.
— (B) It was easy to test the given class.
— (C) I have produced a good test suite.
— (D) I am certain I have found all bugs.
— (E) The class under test was easy to understand.

Q2: For each of the following questions about manually creating tests, please specify
whether you: fully agree, partially agree, partially disagree, or fully disagree.
— (A) Writing assertions is more difficult than creating the test input sequence.
— (B) A test generator would be useful for covering trivial code such as getters/set-

ters.
— (C) A test generator would be useful for covering complex code.
— (D) Manual testing works great, there is no need for test generation tools.
— (E) Before writing tests manually, an automatic test generator should be applied.
— (F) Automated test generation should be applied after manual testing is finished.

Q3: What do you find most difficult about manually writing unit tests?
Q4: What features should an automated unit test generator have so that you would
consider using it?
Q5: For each of the following questions about the part of the experiment where you
used EvoSuite to automatically create tests, please specify whether you: fully agree,
partially agree, partially disagree, or fully disagree.
— (A) I had enough time to finish my task.
— (B) It was easy to test the given class.
— (C) I have produced a good test suite.
— (D) I am certain I have found all bugs.
— (E) The class under test was easy to understand.

Q6: For each of the following questions about automatic test generation with EvoSuite,
please specify whether you: fully agree, partially agree, partially disagree, or fully
disagree.
— (A) It is easier to test with generated tests than having to manually write tests.
— (B) It is easier to confirm suggested assertions than to manually add them to

generated tests.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:37

— (C) Generated unit tests are difficult to read and understand.
— (D) Generated unit tests are too long to understand.
— (E) Generated unit tests are too short to exercise useful behaviour.
— (F) Automated test generation does not provide enough tests.
— (G) Automatically generated unit tests only exercise the “easy” parts of the

program.
— (H) Automated test generation selects the right assertions.
— (I) Automated test generation selects too many assertions.
— (J) Adding assertions to generated unit tests is prohibitively difficult.
— (K) Performance is a prime concern when using automated test generation.
— (L) Difficulty in understanding generated unit tests depends on the complexity

of the tested class, not the actual tests.
Q7: In what respect would the test generator need to be improved such that you
would consider using it in practice? For each of the following aspects, please rank
whether they are: irrelevant, nice to have or important.
— (A) Performance.
— (B) Coverage.
— (C) Readability.
— (D) Better assertions.
— (E) Complex behaviour.
— (F) Documentation / comments.
— (G) User interface.
— (H) More tests.

Q8: Do you have any suggestions on improving the readability of generated unit
tests?
Q9: Do you have any suggestions on making unit test generation more usable?
Q10: Which of the two parts of today’s experiment did you feel was easier?

Tables VIII, IX, and X show the results to the background questions; open text
questions are discussed in Section 6.2.1. Figures 15 and 16 summarize the proportions
of different responses to questions from the exit survey with stacked bar charts. The
results demonstrate opinions that, on balance, were favorable towards EVOSUITE

(and automation in general). However, these opinions did not always match actual
reported experiences. For example, when quizzed on their experience when testing a
particular class, responses to the statement “It was easy to test the given class” and
“The class under test was easy to understand” were more in more favorable agreement
for experiments where manual testing had actually been used rather than EVOSUITE

(answers to part (b) and (e) respectively of questions 1 and 5 shown in Figure 15).
Responses to the latter statement may allude to the possibility that it was easier to
understand the class having been forced to write tests for it by hand.

However, when manual testers were quizzed specifically on their opinions regarding
manual testing versus automation, they displayed strong support for the potential role
of automation (question 2(d), Figure 16). Figure 16 further shows that manual testers
in general preferred the idea of using automatic test case generation for “trivial” code
(getters and setters) as opposed to more complex code (questions 2(b) and 2(c)), and
generally participants preferred the idea of using automated test case creation before
tackling the problem by hand, as opposed to the other way around (questions 2(e) and
2(f)).

When participants were quizzed specifically about EVOSUITE, subjects were of the
opinion that writing tests was easier with the tool than without, and that having asser-
tions generated automatically was also of benefit (questions 6(a) and (b), Figure 16).
When responding to questions regarding specific aspects of EVOSUITE, the survey

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38

Table VIII: Raw data for exit questionnaire, questions Q1 and Q5. For
each question, we report how many participants answered to those
questions, and how many agree and disagree.

Question Size Agree Disagree
Fully Partially Partially Fully

(Q.1A) Manual: I had enough time to finish my task. 72 21 21 19 11
(Q.5A) EvoSuite: I had enough time to finish my task. 73 20 30 17 6
(Q.1B) Manual: It was easy to test the given class. 72 14 39 17 2
(Q.5B) EvoSuite: It was easy to test the given class. 73 5 31 31 6
(Q.1C) Manual: I have produced a good test suite. 72 6 34 28 4
(Q.5C) EvoSuite: I have produced a good test suite. 72 5 28 33 6
(Q.1D) Manual: I am certain I have found all bugs. 72 2 20 30 20
(Q.5D) EvoSuite: I am certain I have found all bugs. 73 1 18 29 25
(Q.1E) Manual: The class under test was easy to understand. 72 21 31 17 3
(Q.5E) EvoSuite: The class under test was easy to understand. 73 8 27 26 12

Table IX: Raw data for exit questionnaire, questions Q2 and Q6. For
each question, we report how many participants answered to those
questions, and how many agree and disagree.

Question Size Agree Disagree
Fully Partially Partially Fully

(Q.2A) Manual: Writing assertions is more difficult than cre-
ating the test input sequence.

71 5 26 31 9

(Q.2B) Manual: A test generator would be useful for covering
trivial code such as getters/setters

72 55 11 4 2

(Q.2C) Manual: A test generator would be useful for covering
complex code

72 10 20 36 6

(Q.2D) Manual: Manual testing works great, there is no need
for test generation tools.

72 0 14 41 17

(Q.2E) Manual: Before writing tests manually, an automatic
test generator should be applied.

71 19 36 14 2

(Q.2F) Manual: Automated test generation should be applied
after manual testing is finished.

71 5 17 32 17

(Q.6A) EvoSuite: It is easier to test with generated tests than
having to manually write tests.

72 21 27 19 5

(Q.6B) EvoSuite: It is easier to confirm suggested assertions
than to manually add them to generated tests.

72 21 33 16 2

(Q.6C) EvoSuite: Generated unit tests are difficult to read and
understand.

73 4 30 31 8

(Q.6D) EvoSuite: Generated unit tests are too long to under-
stand.

72 0 9 44 19

(Q.6E) EvoSuite: Generated unit tests are too short to exercise
useful behaviour.

72 0 9 42 21

(Q.6F) EvoSuite: Automated test generation does not provide
enough tests.

71 15 26 19 11

(Q.6G) EvoSuite: Automatically generated unit tests only ex-
ercise the “easy” parts of the program.

70 7 26 32 5

(Q.6H) EvoSuite: Automated test generation selects the right
assertions.

73 1 40 27 5

(Q.6I) EvoSuite: Automated test generation selects too many
assertions.

72 9 26 28 9

(Q.6J) EvoSuite: Adding assertions to generated unit tests is
prohibitively difficult.

71 3 11 34 23

(Q.6K) EvoSuite: Performance is a prime concern when using
automated test generation.

73 7 26 26 14

(Q.6L) EvoSuite: Difficulty in understanding generated unit
tests depends on the complexity of the tested class, not the
actual tests.

72 25 30 16 1

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:39

Table X: Raw data for exit questionnaire, question Q7. For each
property, we report how many participants gave an opinion, and how
they ranked the importance of each of those properties.

Question Size Irrelevant Nice To Have Important

Q. 7A: Performance 72 15 35 22
Q. 7B: Coverage 72 3 22 47
Q. 7C: Readability 71 3 20 48
Q. 7D: Better assertions 72 4 33 35
Q. 7E: Complex behaviour 72 14 39 19
Q. 7F: Documentation / comments 72 10 36 26
Q. 7G: User interface 72 29 31 12
Q. 7H: More tests 72 10 40 22

Count

5E

1E

5D

1D

5C

1C

5B

1B

5A

1A

60 40 20 0 20 40 60

Fully Disagree Partially Disagree Partially Agree Fully Agree

Fig. 15: Stacked bar charts for exit questionnaire, questions Q1 and
Q5.

results found no general agreement that EVOSUITE presented obstacles to testing
in the form of tests that were too complex, long or short (questions 6(c–k)). Partici-
pants generally agreed that understanding generated tests depended on the class being
tested, not the actual tests themselves (question 6(l)). Participants clearly felt there
were several avenues for improving the tool for its use in practice, however, as seen
by the responses to question 7 of the exit survey, shown in Figure 17. Coverage and
improved readability of test cases received the highest proportion of votes for impor-
tance of improvement while only refinements to the GUI were largely skewed towards
“irrelevant” when participants were asked about the features that were relevant to its
future improvement.

Participants that performed both manual testing and EVOSUITE were asked which
of their classes they found easier to test. The results are reported in Table XI, with a
majority responding that the class they tested using EVOSUITE was easier.

6.2.1. User Suggestions. As part of the background questionnaire, subjects were given
the chance to provide feedback and suggestions on improving EVOSUITE and automated
test generation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40

Count

6L

6K

6J

6I

6H

6G

6F

6E

6D

6C

6B

6A

2F

2E

2D

2C

2B

2A

50 0 50

Fully Disagree Partially Disagree Partially Agree Fully Agree

Fig. 16: Stacked bar charts for exit questionnaire, questions Q2 and
Q6.

Count

More tests

User interface

Documentation / comments

Complex behaviour

Better assertions

Readability

Coverage

Performance

40 20 0 20 40 60

Irrelevant Nice to Have Important

Fig. 17: Stacked bar charts for exit questionnaire, question Q7.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:41

Table XI: Data for exit questionnaire, question Q10, which applied
only to the replicated study. Participants are divided on whether they
first use EVOSUITE (and then Manual), or the other way round.

Order Size EvoSuite is Easier Manual Is Easier

EvoSuite and then Manual 22 12 10
Manual and then EvoSuite 24 19 5

In the first experiment, several subjects not using EVOSUITE commented that they
would like to use an automated tool, in particular to test getters/setters and other trivial
pieces of code. As one subject put it, test generation tools would be great to take over
the “boring” parts of testing.

Subjects using EVOSUITE listed a number of concrete suggestions on how to improve
unit test generation. The suggestion given most frequently (by seven subjects) was
that automatically generated test cases need a short comment explaining what they do.
An additional frequent suggestion was to reduce the number of assertions per test. In
particular, if one test has several assertions it might even be better to split it up into
several tests with fewer assertions.

An interesting suggestion was to prioritize test cases by their importance to avoid
the problem of “1000 tests without structure”, although of course the question what
makes a test case important is not easy to answer. Finally, subjects using EVOSUITE

were generally happy about the readability, and several subjects explicitly commended
it. However, there were a couple of useful suggestions on how to improve the tests,
in particular by changing variable and method naming as well as value choices to
something closer to what manual testers would choose.

Comments fed back by participants of the second study mirrored those of the first.
Several subjects commented on the tedious and time consuming nature of testing, and
the desire for an automated tool like EVOSUITE to automate repetitive and trivial
aspects of testing. Some participants suggested the ability to be able to select which
methods to automatically test and which to leave for manual testing, and one suggested
a facility for checking boundary input values thoroughly. An overwhelmingly frequent
suggestion made by participants was the addition of code comments or JavaDocs around
the tests explaining what the tests were doing (23 individual comments). Another was
to assign more meaningful, readable identifiers (18 comments). A few participants
commented on a general need to improve test case readability and in one case, string
values. Related to this, one subject suggested a graphical component to explain what
the automatically generated tests were doing.

7. IMPLICATIONS FOR FUTURE WORK

7.1. Test Generation Must Move Beyond Best-Effort

As discussed in Section 5, even given terrible generated tests, most testers still invest
a significant amount of effort in understanding and attempting to repair the tests.
Even if testers recognize that a test generation tool will sometimes produce very poor
tests, they must invest some effort toward recognizing the generated tests should be
discarded. This is a natural reaction, as there is typically an expectation with widely-
used software development tools, such as compilers, debugging frameworks, IDEs, etc.,
that information presented to the developer is accurate.

In contrast, however, these tools have been developed to employ best-effort approaches,
and thus will always present the user with a test suite—even when the quality of the
test suite (in terms of coverage, etc.) is quite poor. Over time, testing tools which require
significant effort from testers but which only sometimes repay that effort seem likely to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:42

be discarded, as testers learn to not trust the tool and invest their time elsewhere (in
this case, manual test development). For example, the use of EVOSUITE with DocType
in the initial study essentially wastes the time of the developers; it seems likely that
those testers will be far less likely to use EVOSUITE after experiencing such a poor
return on time invested.

We therefore believe developers of automatic test generation tools must develop
trustworthy test generation tools. Such tools should feature strong methods of culling
their test suites, presenting only tests and groups of tests which are very likely to repay
the effort required to understand them. Thus we need not only the ability to generate
test suites, but also to assess our confidence in them before presenting them to testers.
In particular, methods of determining when the tool is performing well or poorly appear
to be needed. If EVOSUITE was capable of, for example, distinguishing the quality
of the test suites generated for DocType in the initial study (when EVOSUITE was
misconfigured) and the much better test suites generated in the second study—either
by coverage, or mutation score, or some other method—testers could be spared useless
test suites while still gaining the benefits of EVOSUITE when those benefits are present.
Given previous results indicating that situations similar to misconfigured DocType
occur frequently in practice [Fraser and Arcuri 2012b], such a method seems a necessary
step towards creating trustworthy test generation tools.

Naturally, part of improving our ability to generate tests which testers trust is
adapting our test generation techniques to create more understandable tests. This need
has been established in the testing research literature (e.g., [Fraser and Zeller 2011;
Pastore et al. 2013; Afshan et al. 2013; Fraser and Zeller 2012]) and are underscored by
our study’s results; however, to the best of our knowledge no human subject study has
been conducted to determine what factors impact human understanding of tests. In lieu
of this, researchers have developed ad-hoc metrics for quantifying user understanding,
in particular assuming that test length and the number methods invoked correspond
to user understanding. While these metrics appear to be intuitively sensible, given
the importance of accurately predicting test understanding, human subject studies
examining the relationship between these proposed factors and test understanding are
warranted.

7.2. High Test Coverage is Not the Goal

Much of the work in test case generation focuses on improving structural test coverage
under the assumption that improving coverage is the key to improving test generation
effectiveness. While this is inevitably partly true—we cannot detect faults in unexecuted
code—our results indicate that at best a moderate relationship between test coverage
and fault detection is present (correlation generally less than 0.6). From this we infer
two implications. First this underscores the need for continual user studies, since we
have no effective proxy measure for determining if a tool will be effective when used by
users. Mechanically evaluating automatic test generation tools, without user studies,
increases the likelihood of forming misleading or incorrect conclusions.

Second, this highlights the need for carefully considering how assertions are gener-
ated during test generation. We must execute incorrect code in order to detect faults,
but without an effective test oracle, detection remains unlikely. Indeed, previous work
has demonstrated that careful consideration of how the test oracle is selected can
increase the detection of faults [Staats et al. 2012a], and based on our results we believe
additional work focused on improving test oracle selection is needed.

7.3. Linking Automated Test Generation with Manual Test Generation

The scenario of our experiment was that a class is fully implemented and needs to be
tested. Without specification, this process cannot be fully automated, which means that

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:43

the result of the automated test generator need to be manually processed, and the test
suite potentially needs to be complemented by manual test cases. Our instructions to
the participants were to start this by invoking EVOSUITE, and taking the resulting
test suite as a starting point for the manual work. The exit questionnaire suggests
that our participants agreed with this, and would generally prefer to start testing with
automatically generated tests. However, as discussed in subsection 5.1 this approach is
not without problems if the tool provides a starting test suite of poor quality.

An alternative way to integrate automated test generation into the testing process
would be to start testing manually, and then to complement the manual tests with
automatically generated tests. In fact this may happen implicitly, if developers follow
a test-driven development approach and start by writing unit tests rather than code.
Doing manual testing first, one could initially focus on the more “interesting” scenarios
and, as also suggested by the exit questionnaire, defer testing of simpler code (e.g.,
getters and setters) to the automated testing tool for later. A particular advantage of
this alternative would be that automated test generation could leverage information
from the manually written tests. On one hand, this could lead to improved effectiveness
and efficiency of the test generator (e.g., [Fraser and Arcuri 2012a; Yoo and Harman
2012]. On the other hand, these manually written tests could provide realistic input
values or suitable assertions to improve readability of the generated tests, although we
are aware of no existing technique that would exploit this information.

However, conversely manual testing can also benefit from automatic test generation.
If the user is not familiar with an API, then automatically generated tests can provide
possible usage examples and scenarios. Furthermore, trivial test obligations might only
be recognised as such once automated tests have been generated, and the alternative
approach would also raise the question when to stop testing manually and use the
automated test generator. Indeed, the answer may be that the two approaches are best
used together iteratively, alternating between manual and automatic test generation.

8. RELATED WORK

Although controlled human studies are not common in software engineering, there has
been some recent work evaluating techniques with users (e.g., [Sautter et al. 2007]), and
not always with positive results. Parnin and Orso [Parnin and Orso 2011] conducted a
study to determine if debugging techniques based on statement ranking help to locate
bugs quicker. They found that significant improvements in speed were “limited to more
experienced developers and simpler code”. Staats et al. [Staats et al. 2012b] conducted
a study to investigate if dynamic invariant generation tools are helpful, e.g. in creating
automated oracles. Thirty subjects were asked to classify automatically generated
invariants as correct or incorrect. Unfortunately, subjects “misclassified 9.1− 39.8% of
correct invariants and 26.1− 58.6% of incorrect invariants”, “calling into question the
ability of users to effectively use generated invariants”.

One study addressing the question of how automated testing tools compare to manual
testing was carried out by Ramler et al. [Ramler et al. 2012], involving 48 subjects. The
fault detection of manually written test cases was compared with randomly-generated
test cases using Randoop. Fault detection rates were found to be similar, although the
techniques revealed different kinds of faults.

The EVOSUITE tool is based on the use of metaheuristic search algorithms [Fraser and
Arcuri 2011], e.g., genetic algorithms, which have achieved several “human competitive”
results (e.g., for genetic programming [Koza 2010]). While the application of search-
based algorithms in software engineering (SBSE) has been increasing in the last few
years [Harman et al. 2012], there have only been a few studies involving human
subjects and SBSE. Pastore et al. [Pastore et al. 2013] used crowdsourcing to verify the
correctness of assertions generated with EVOSUITE against JavaDoc documentation,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:44

but unlike our study the source code of the tested classes was not shown to participants.
In this study, the human participants (crowd-workers) performed well at this task, but
only as long as the documentation and tests were both readable and understandable.
Afshan et al. [Afshan et al. 2013] also used crowdsourcing to evaluate the readability
of test cases involving string inputs produced with another search-based testing tool,
IGUANA. Finally, Souza et al. [de Souza et al. 2010] compared the solutions generated
with search-based techniques against those constructed by humans, concluding that
SBSE was capable of generating solutions of higher quality and, of course, in less time.

This work is an extension of a previously published paper [Fraser et al. 2013]. It
extends the previous work chiefly through the replication study presented in Section 4.
This replication study adds 48 additional subjects, corrects the configuration issue
found when using EVOSUITE to generate tests over DocType, and adds an additional
Java class for study, ArrayIntList. Through this replication study, we have altered some
conclusions — for example, finding that the use of EVOSUITE does not always lead to
an increase in the number of failing tests in generated test suites — and have increased
our confidence in many of our previous findings. Additionally, analyses which had to be
cut or trimmed for space reasons in the previous work, for example many statistical
analyses, have been re-included in this work.

9. CONCLUSIONS

Beginning with earliest attempts at automated test data generation in the 70s, the
assumption has been that even partial automation of the testing process yields a
net benefit. Initially, test data generation explicitly assumed that test data would
be analyzed manually [Miller and Melton 1975], although later work distinguishes
between the availability of an automated test oracle and manual test oracles [Wegener
et al. 2001]. Successive work on white-box test generation has frequently ignored
the question of using the test data after generation, and focused on the technically
challenging aspects of test generation.

In this work, we have conducted two studies examining the core assumption behind
automatic test generation — that by generating high coverage test data, we aid testers
in constructing test suites capable of detecting faults. Our studies illustrate that
this assumption does not appear to be true; merely achieving high coverage does not
necessarily improve our ability to test software.

This result can be seen as a call to arms to the software testing research community.
It is time for software testing research to consider the follow-up problem to white-box
test data generation: once we have generated our test data, how should the developer
use it? Our results highlight several possible avenues to explore, in particular: providing
a better indication of what each generated test input does; more careful selection of
the assertions which form the foundation of the test oracles; and stronger, perhaps
non-coverage based methods of reducing test suites.

Besides these important areas of future research on improving test generation, there
is also the need to conduct further empirical studies to understand the effects and the
problems of using automated test generation better, such as:

— What is the influence of code ownership? In our experiments, subjects were
asked to test code they had not seen before. Thus, they spent a good amount of the
time trying to understand what the existing code does. The effects of using automated
unit test generation may be different if applied by the developers who write the code.

— What is the influence of the complexity of the code under test? In our
experiments, the classes under test are all relatively easy by necessity, such that they
can be understood and tested within an hour. If a class under test is more complex,
will that lead to more benefits of using automated test generation, or do the problems

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:45

of automatically generated tests (e.g., tests without understandable purpose) become
more inhibitive leading to overall worse results?

— How does automated test generation influence maintenance? Once gener-
ated, the unit tests need to be maintained together with the software they are testing.
As automatically generated tests are sometimes less readable than manually written
ones and have less clear purposes, what is the influence of automatic test generation
throughout software maintenance?

— How does the presence of partial oracles (e.g., assertions) change results?
The existence of powerful test generation tools may offer incentive to add more
assertions or code contracts during development, potentially with profound effects
on testing and quality.

In order to facilitate reproduction of our study and future studies in software testing,
we provide all experimental material of this study as well as EVOSUITE on our Web
site:

http://www.evosuite.org/study

10. ACKNOWLEDGEMENTS

We thank René Just for his help in modifying the MAJOR mutation system.

REFERENCES

S. Afshan, P. McMinn, and M. Stevenson. 2013. Evolving Readable String Test Inputs Using a Natural
Language Model to Reduce Human Oracle Cost. In Int. Conference on Software Testing, Verification and
Validation (ICST). (To appear).

J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is mutation an appropriate tool for testing experiments?.
In Proceedings of the 27th international conference on Software engineering (ICSE ’05). ACM, New York,
NY, USA, 402–411.

A. Arcuri and L. Briand. 2014. A Hitchhiker’s Guide to Statistical Tests for Assessing Randomized Algorithms
in Software Engineering. Software Testing, Verification and Reliability 24, 3 (2014), 219–250.

L. Baresi, P. L. Lanzi, and M. Miraz. 2010. TestFul: an Evolutionary Test Approach for Java. In IEEE
International Conference on Software Testing, Verification and Validation (ICST). 185–194.

Raymond PL Buse, Caitlin Sadowski, and Westley Weimer. 2011. Benefits and barriers of user evaluation in
software engineering research. In ACM SIGPLAN Notices, Vol. 46. ACM, 643–656.

C. Csallner and Y. Smaragdakis. 2004. JCrasher: an automatic robustness tester for Java. Software: Practice
and Experience 34, 11 (2004), 1025–1050.

J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P. Coutinho. 2010. The Human Competitiveness of
Search Based Software Engineering. In International Symposium on Search Based Software Engineering
(SSBSE). 143–152.

Hyunsook Do and Gregg Rothermel. 2006. On the Use of Mutation Faults in Empirical Assessments of Test
Case Prioritization Techniques. IEEE Transactions on Software Engineering 32, 9 (2006), 733–752.

G. Fraser and A. Arcuri. 2011. EvoSuite: Automatic Test Suite Generation for Object-Oriented Software.. In
ACM Symposium on the Foundations of Software Engineering (FSE). 416–419.

G. Fraser and A. Arcuri. 2012a. The Seed is Strong: Seeding Strategies in Search-Based Software Testing. In
IEEE International Conference on Software Testing, Verification and Validation (ICST).

G. Fraser and A. Arcuri. 2012b. Sound Empirical Evidence in Software Testing. In ACM/IEEE International
Conference on Software Engineering (ICSE). 178–188.

G. Fraser and A. Arcuri. 2013. Whole Test Suite Generation. IEEE Transactions on Software Engineering 39,
2 (2013), 276–291.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. 2013. Does Automated White-Box Test Generation
Really Help Software Testers?. In ACM International Symposium on Software Testing and Analysis
(ISSTA).

G. Fraser and A. Zeller. 2011. Exploiting Common Object Usage in Test Case Generation. In IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST). IEEE Computer Society,
80–89.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.evosuite.org/study

A:46

G. Fraser and A. Zeller. 2012. Mutation-Driven Generation of Unit Tests and Oracles. IEEE Transactions on
Software Engineering 28, 2 (2012), 278–292.

M. Harman, S.A. Mansouri, and Y. Zhang. 2012. Search-based software engineering: Trends, techniques and
applications. ACM Computing Surveys (CSUR) 45, 1 (2012), 11.

M. Harman and P. McMinn. 2010. A Theoretical and Empirical Study of Search Based Testing: Local, Global
and Hybrid Search. IEEE Transactions on Software Engineering 36, 2 (2010), 226–247.

Michael Inzlicht and Talia Ben-Zeev. 2000. A threatening intellectual environment: Why females are suscep-
tible to experiencing problem-solving deficits in the presence of males. Psychological Science 11, 5 (2000),
365–371.

M. Islam and C. Csallner. 2010. Dsc+Mock: A test case + mock class generator in support of coding against
interfaces. In International Workshop on Dynamic Analysis (WODA). 26–31.

R. Just, F. Schweiggert, and G.M. Kapfhammer. 2011. MAJOR: An efficient and extensible tool for mutation
analysis in a Java compiler. In International Conference on Automated Software Engineering (ASE).
612–615.

B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K. El Emam, and J. Rosenberg. 2002.
Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software
Engineering 28, 8 (2002), 721–734.

J.R. Koza. 2010. Human-competitive results produced by genetic programming. Genetic Programming and
Evolvable Machines 11, 3 (2010), 251–284.

K. Lakhotia, P. McMinn, and M. Harman. 2010. An Empirical Investigation Into Branch Coverage for C
Programs Using CUTE and AUSTIN. Journal of Systems and Software 83, 12 (2010), 2379–2391.

N. Li, X. Meng, J. Offutt, and L. Deng. 2013. Is bytecode instrumentation as good as source code instrumenta-
tion: An empirical study with industrial tools (Experience Report). In Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. IEEE, 380–389.

P. McMinn. 2004. Search-based Software Test Data Generation: A Survey. Software Testing, Verification and
Reliability 14, 2 (2004), 105–156.

E. F. Miller, Jr. and R. A. Melton. 1975. Automated generation of testcase datasets. In International Conference
on Reliable Software. ACM, 51–58.

A.S. Namin and J.H.Andrews. 2009. The influence of size and coverage on test suite effectiveness. In ACM
International Symposium on Software Testing and Analysis (ISSTA). ACM.

C. Pacheco and M.D. Ernst. 2007. Randoop: feedback-directed random testing for Java. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA). ACM, 815–816.

C. Parnin and A. Orso. 2011. Are automated debugging techniques actually helping programmers?. In ACM
International Symposium on Software Testing and Analysis (ISSTA). 199–209.

C.S. Pasareanu and N. Rungta. 2010. Symbolic PathFinder: symbolic execution of Java bytecode. In
IEEE/ACM International Conference on Automated Software Engineering (ASE), Vol. 10. 179–180.

F. Pastore, L. Mariani, and G. Fraser. 2013. CrowdOracles: Can the Crowd Solve the Oracle Problem?.
In IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE. (To
appear).

R. Ramler, D. Winkler, and M. Schmidt. 2012. Random Test Case Generation and Manual Unit Testing:
Substitute or Complement in Retrofitting Tests for Legacy Code?. In EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 286–293.

G. Sautter, K. Böhm, F. Padberg, and W. Tichy. 2007. Empirical Evaluation of Semi-Automated XML
Annotation of Text Documents with the GoldenGATE Editor. Research and Advanced Techn. for Digital
Libraries (2007), 357–367.

C.B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Transactions on
Software Engineering 25, 4 (1999), 557–572.

D.I.K. Sjoberg, J.E. Hannay, O. Hansen, V. By Kampenes, A. Karahasanovic, N.K. Liborg, and A. C Rekdal.
2005. A survey of controlled experiments in software engineering. IEEE Transactions on Software
Engineering 31, 9 (2005), 733–753.

M. Staats, G. Gay, and M.P.E. Heimdahl. 2012a. Automated oracle creation support, or: how I learned to stop
worrying about fault propagation and love mutation testing. In ACM/IEEE International Conference on
Software Engineering (ICSE). 870–880.

M. Staats, S. Hong, M. Kim, and G. Rothermel. 2012b. Understanding user understanding: determining
correctness of generated program invariants. In ACM International Symposium on Software Testing and
Analysis (ISSTA). ACM, 188–198.

N. Tillmann and N. J. de Halleux. 2008. Pex — White Box Test Generation for .NET. In International
Conference on Tests And Proofs (TAP). 134–253.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:47

N. Tillmann and J. De Halleux. 2008. Pex–white box test generation for .NET. In Tests and Proofs. Springer,
134–153.

P. Tonella. 2004. Evolutionary testing of classes. In ACM International Symposium on Software Testing and
Analysis (ISSTA). 119–128.

J. Wegener, A. Baresel, and H. Sthamer. 2001. Evolutionary test environment for automatic structural testing.
Information and Software Technology 43, 14 (2001), 841–854.

Y. Wei, C. Furia, N. Kazmin, and B. Meyer. 2011. Inferring better contracts. In ACM/IEEE International
Conference on Software Engineering (ICSE). ACM, 191–200.

S. Yoo and M. Harman. 2012. Test Data Regeneration: Generating New Test Data from Existing Test Data.
Software Testing, Verification and Reliability 22, 3 (2012), 171–201. http://dx.doi.org/10.1002/stvr.435.

A. APPENDIX

A.1. Study Faults

Listing 1: Option study mutants.

@@ -610,7 +610,7 @@
}
if (longOpt != null ? !longOpt.equals(option.longOpt) : option.longOpt != null)
{

- return false;
+ return true;

}

return true;

@@ -336,7 +336,7 @@
*/
public boolean hasArgs()
{

- return numberOfArgs > 1 || numberOfArgs == UNLIMITED_VALUES;
+ return numberOfArgs > -1 || numberOfArgs == UNLIMITED_VALUES;

}

@@ -143,7 +143,7 @@
*/
public int getId()
{

- return getKey().charAt(0);
+ return getKey().charAt(1);

}

*/
public boolean hasArgName()
{

- return argName != null && argName.length() > 0;
+ return argName != null && argName.length() >= 0;

}

*/
private void add(String value)
{

- if ((numberOfArgs > 0) && (values.size() > (numberOfArgs - 1)))
+ if ((numberOfArgs > 0) && (values.size() > (numberOfArgs + 1)))

{
throw new RuntimeException("Cannot add value, list full.");

}

Listing 2: Rational study mutants.

@@ -92,7 +92,7 @@
* @return <code>this</code>+<code>integer</code>.
*/
public Rational add(long integer) {

- return add(new Rational(integer, 1L));

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:48

+ return add(new Rational(integer, 0L));
}

@@ -122,7 +122,7 @@
* @return <code>this</code>*<code>r</code>.
*/
public Rational multiply(Rational r) {

- return new Rational(numerator * r.numerator, denominator * r.denominator).reduce();
+ return new Rational(numerator / r.numerator, denominator * r.denominator).reduce();

}

@@ -193,7 +193,7 @@

for(int i = 0; i < numFactors.length; i++) {
for(int j = 0; j < denomFactors.length; j++) {

- if(numFactors[i] == denomFactors[j] && numFactors[i] != 1L && denomFactors[j] != 1L) {
+ if(numFactors[i] == denomFactors[j] && numFactors[i] < 1L && denomFactors[j] != 1L) {

numFactors[i] = 1L;
denomFactors[j] = 1L;

}

@@ -112,7 +112,7 @@
* @return <code>this</code>-<code>integer</code>.
*/
public Rational subtract(long integer) {

- return subtract(new Rational(integer, 1L));
+ return subtract(new Rational(integer, -1L));

}

@@ -141,7 +141,7 @@
* @return sqrt(<code>this</code>^2).
*/
public Rational abs() {

- return new Rational((numerator < 0L) ? -numerator : numerator, (denominator < 0L) ? -denominator :
denominator).reduce();

+ return new Rational((numerator < 0L) ? -numerator : numerator, (denominator < 0L) ? +denominator :
denominator).reduce();

}

Listing 3: DocType study mutants.

@@ -359,7 +359,7 @@

private void _setSystemID(String id) {

- if (id == null && publicID != null) {
+ if (id == null) {

throw new WellformednessException(
"Cannot remove system ID without removing public ID first"
);

@@ -591,7 +591,7 @@
case ’l’: return true;
case ’m’: return true;
case ’n’: return true;

- case ’o’: return true;
+ case ’o’: return false;

case ’p’: return true;
case ’q’: return true;
case ’r’: return true;

@@ -293,7 +293,7 @@

if (id != null) {
int length = id.length();

- if (length != 0) {
+ if (length != -1) {

if (Verifier.isXMLSpaceCharacter(id.charAt(0))) {
throw new IllegalDataException("Initial white space "
+ "in public IDs is not round trippable.");

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:49

@@ -233,7 +233,7 @@
*/
public final void setInternalDTDSubset(String subset) {

- if (subset != null && subset.length() > 0) {
+ if (subset != null == subset.length() > 0) {

Verifier.checkInternalDTDSubset(subset);
fastSetInternalDTDSubset(subset);

}

@@ -425,7 +425,7 @@
* @return zero
*/
public final int getChildCount() {

- return 0;
+ return 1;

}

Listing 4: ArrayIntList study mutants.

@@ -230,7 +230,7 @@
private final void checkRange(int index) {

- if(index < 0 || index >= _size) {
+ if(index <= 0 || index >= _size) {

throw new IndexOutOfBoundsException("Should be at least 0 and less than " + _size + ", found " +
index);

}
}

@@ -188,7 +188,7 @@
checkRangeIncludingEndpoint(index);
incrModCount();
ensureCapacity(_size+1);

- int numtomove = _size-index;
+ int numtomove = _size/index;

System.arraycopy(_data,index,_data,index+1,numtomove);
_data[index] = element;
_size++;

@@ -92,7 +92,7 @@
public ArrayIntList(int initialCapacity) {

- if(initialCapacity < 0) {
+ if(initialCapacity < -1) {

throw new IllegalArgumentException("capacity " + initialCapacity);
}
_data = new int[initialCapacity];

@@ -140,7 +140,7 @@
checkRange(index);
incrModCount();
int oldval = _data[index];

- int numtomove = _size - index - 1;
+ int numtomove = _size - index;

if(numtomove > 0) {
System.arraycopy(_data,index+1,_data,index,numtomove);

}

@@ -237,7 +237,7 @@
private final void checkRangeIncludingEndpoint(int index) {

- if(index < 0 || index > _size) {
+ if(index < 0 || index != _size) {

throw new IndexOutOfBoundsException("Should be at least 0 and at most " + _size + ", found " +
index);

}
}

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

	1 Introduction
	2 Study Design
	2.1 The Automated Testing Tool: EvoSuite
	2.2 Study Subject and Object Selection
	2.2.1 Object Selection: Initial Study
	2.2.2 Object Selection: Replication Study
	2.2.3 Subject Selection and Assignment: Initial Study
	2.2.4 Subject Selection and Assignment: Replication Study

	2.3 Experiment Process
	2.4 Analysis of Results
	2.5 Threats to Validity

	3 Results: Initial Study
	3.1 RQ1: Structural Code Coverage Achieved
	3.2 RQ2: Faults Detected
	3.3 RQ3: Tests Mismatching the Intended Program Behavior
	3.4 RQ4: Regression Fault Detection

	4 Results: Replication Study
	4.1 RQ1: Structural Code Coverage Achieved
	4.2 RQ2: Faults Detected
	4.3 RQ3: Tests Mismatching the Intended Program Behavior
	4.4 RQ4: Regression Fault Detection

	5 Discussion
	5.1 Evolution of a Test Suite
	5.2 Influence of Assertions

	6 Background and Exit Questionnaires
	6.1 Background Questionnaire
	6.2 Exit Questionnaire
	6.2.1 User Suggestions

	7 Implications for Future Work
	7.1 Test Generation Must Move Beyond Best-Effort
	7.2 High Test Coverage is Not the Goal
	7.3 Linking Automated Test Generation with Manual Test Generation

	8 Related Work
	9 Conclusions
	10 Acknowledgements
	A Appendix
	A.1 Study Faults

