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Abstract. This paper considers the geometry of E8 from a Clifford point
of view in three complementary ways. Firstly, in earlier work, I had
shown how to construct the four-dimensional exceptional root systems
from the 3D root systems using Clifford techniques, by constructing
them in the 4D even subalgebra of the 3D Clifford algebra; for instance
the icosahedral root system H3 gives rise to the largest (and therefore ex-
ceptional) non-crystallographic root system H4. Arnold’s trinities and
the McKay correspondence then hint that there might be an indirect
connection between the icosahedron and E8. Secondly, in a related con-
struction, I have now made this connection explicit for the first time: in
the 8D Clifford algebra of 3D space the 120 elements of the icosahedral
group H3 are doubly covered by 240 8-component objects, which en-
dowed with a ‘reduced inner product’ are exactly the E8 root system. It
was previously known that E8 splits into H4-invariant subspaces, and we
discuss the folding construction relating the two pictures. This folding
is a partial version of the one used for the construction of the Coxeter
plane, so thirdly we discuss the geometry of the Coxeter plane in a Clif-
ford algebra framework. We advocate the complete factorisation of the
Coxeter versor in the Clifford algebra into exponentials of bivectors de-
scribing rotations in orthogonal planes with the rotation angle giving
the correct exponents, which gives much more geometric insight than
the usual approach of complexification and search for complex eigenval-
ues. In particular, we explicitly find these factorisations for the 2D, 3D
and 4D root systems, D6 as well as E8, whose Coxeter versor factorises
as W = exp( π
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describes 30-fold rotations in 4 orthogonal planes with the correct ex-
ponents {1, 7, 11, 13, 17, 19, 23, 29} arising completely algebraically from
the factorisation.
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1. Introduction

At the last AGACSE in 2012, I presented a new link between the geometries
of three and four dimensions; in particular, I have shown that any reflection
group in three dimensions induces a corresponding symmetry group in four
dimensions, via a new Clifford spinor construction [8,9]. This connection
had been overlooked for centuries (usually one assumes the larger groups
are more fundamental) but the new construction derives all the exceptional
phenomena in 4D—D4, F4 and H4—via induction from the 3D symmetry
groups of the Platonic solids A3, B3 and H3. This spinor construction also
explains the unusual 4D automorphism groups. The 4D groups in fact do not
contain anything that is not already present in the 3D groups they are induced
from [6].

This begs the obvious question of whether one can derive the largest
exceptional geometry E8, the holy grail of mathematics and physics, in a
Clifford algebra approach as well. I have now found a construction that con-
structs the E8 root system (see Fig. 1) in analogy to the above construction
going from 3D to 4D [10]. This previous construction worked along the follow-
ing lines: each 3D root system—which generates the corresponding reflection
symmetry group via the reflections in the hyperplanes orthogonal to the root
vectors—allows one to form a group of spinors by multiplying together even
numbers of the reflection generating root vectors in the Clifford algebra; these
spinors have four components (the usual 1 scalar and 3 bivector components)
and one can endow these with a 4D Euclidean metric. One can then show that

Figure 1. The projection of the 240 8D root vectors in the
E8 root system into the Coxeter plane is a popular visuali-
sation of E8 as 8 concentric circles of 30
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the resulting set of spinors reinterpreted as 4D vectors satisfies the axioms
for a 4D root system, thereby generating a symmetry group in 4D.

For instance, starting with the root system H3 which generates the
symmetries of the icosahedron, one generates a group 2I of 120 spinors (the
binary icosahedral group) via multiplication in the Clifford algebra. These
are precisely the 120 root vectors of the 4D root system H4 once reinter-
preted using the 4D Euclidean metric. H4 is exceptional and the largest non-
crystallographic Coxeter group; it also has the exceptional automorphism
group 2I × 2I [17,18]. However, this is trivial to see in terms of the spinor
group 2I, as it must be trivially closed under left and right multiplication via
group closure.

Taking the full set of pinors (i.e. not restricting to even products of
root vectors) of the icosahedron, one generates a group (doubly covering the
120 elements of H3) of 240 pinors with 8 components, as befits a group of
multivectors in 3D. I have now been able to show that these 240 pinors
are precisely the 240 roots of E8 by using a reduced inner product, thereby
generating the exceptional group E8 [10].

It is extraordinary that the exceptional geometry E8 has been hiding in
the shadows of icosahedral geometry for millennia, without anyone noticing.
As with the 4D induction construction, this discovery seems only possible in
Clifford algebra. There is much prejudice against the usefulness of Clifford
algebras (since they have matrix representations) and usually matrix methods
are equivalent if less insightful—but the 4D and 8D induction constructions
are to my knowledge the only results that require Clifford algebra and were
completely invisible to standard matrix methods.

This paper is structured in the following way. After some background
and basic definitions in Sect. 2, we summarise the general result that any
3D reflection group induces a 4D symmetry group, via their root systems
(Sect. 3). In terms of their 3D spinors, the Platonic root systems (A3, B3,H3)
thus induce all the exceptional 4D root systems (D4, F4,H4) with this spinor-
ial approach also explaining their unusual symmetry groups. We treat as an il-
lustrative example the case of the icosahedral group H3 whose spinor group is
the binary icosahedral group 2I. It doubly covers the 60 icosahedral rotations
in terms of 120 spinors, but when thought of as a collection of 4-component
objects is precisely H4, the exceptional largest non-crystallographic root sys-
tem. Arnold’s trinities contain the above Platonic root systems (A3, B3,H3)
as well as the exceptional Lie groups (E6, E7, E8). They are connected indi-
rectly via various intermediate trinities as well as more explicitly via the new
spinor construction in combination with the McKay correspondence. This
therefore hints that the icosahedron may be indirectly connected with E8.
Section 4 makes this explicit for the first time via a new, direct construction
[10], which explicitly constructs the 240 roots E8 from the 240 pinors that
doubly cover the 120 elements of the icosahedral group in the Clifford algebra
of 3D. Thus all the exceptional root systems can be seen to be contained in
the geometry of 3D via the Platonic symmetries and the Clifford algebra of
3D. This offers a completely new way of viewing these in terms of spinorial
geometry. Section 5 discusses H4 as a rotational subgroup of E8, and thus
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affords a second way of viewing H4 more naturally as a group of rotations
rather than reflections (as is the standard view in the Coxeter picture). This
construction of H4 from E8 is in fact a partial folding or fourfold colouring
of the E8 diagram, whilst a complete folding leads to the Coxeter plane. We
therefore finish by discussing the geometry of the Coxeter plane of various
root systems, notably E8, and point out which advantages a Clifford algebraic
view has to offer over the naive standard view which involves complexifying
the real geometry: in Clifford algebra the complex eigenvalues in fact arise
naturally as rotations in mutually orthogonal eigenplanes of the Coxeter ele-
ment (Sect. 6) with the bivectors of the planes providing the relevant complex
structures; we conclude in Sect. 7 and again stress that for root systems and
reflection groups Clifford algebra is the most natural framework.

2. Background

Lie groups are a ubiquitous in mathematics and physics. In particular, the
largest exceptional Lie group E8 is of fundamental importance in String The-
ory and Grand Unified Theories and is thus arguably the single most impor-
tant symmetry group in modern theoretical physics. Lie groups are continu-
ous (group manifolds) but they are closely related to their corresponding Lie
algebras whose non-trivial part in turn is described by a root system:

Definition 2.1. (Root system) A root system is a collection Φ of non-zero (root)
vectors α spanning an n-dimensional Euclidean vector space V endowed with
a positive definite bilinear form, which satisfies the two axioms:

1. Φ only contains a root α and its negative, but no other scalar multiples:
Φ ∩ Rα = {−α, α} ∀ α ∈ Φ.

2. Φ is invariant under all reflections corresponding to root vectors in Φ:
sαΦ = Φ ∀ α ∈ Φ. The reflection sα in the hyperplane with normal α is
given by

sα : λ → sα(λ) = λ − 2
(λ|α)

(α|α)
α,

where (·|·) denotes the inner product on V.

For a crystallographic root system, a subset ∆ of Φ, called simple roots

α1, . . . , αn, is sufficient to express every element of Φ via Z-linear combina-
tions with coefficients of the same sign. Φ is therefore completely charac-
terised by this basis of simple roots. In the case of the non-crystallographic
root systems H2, H3 and H4, the same holds for the extended integer ring
Z[τ ] = {a+ τb|a, b ∈ Z}, where τ is the golden ratio τ = 1

2 (1+
√

5) = 2 cos π
5 ,

and σ is its Galois conjugate σ = 1
2 (1−

√
5) (the two solutions to the quadratic

equation x2 = x + 1). For the crystallographic root systems, the classifica-
tion in terms of Dynkin diagrams essentially follows the one familiar from
Lie groups and Lie algebras, as their Weyl groups are the crystallographic
Coxeter groups. A mild generalisation to so-called Coxeter–Dynkin diagrams
is necessary for the non-crystallographic root systems:
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Definition 2.2. (Coxeter–Dynkin diagram and Cartan matrix) A graphical
representation of the geometric content of a root system is given by Coxeter–

Dynkin diagrams, where nodes correspond to simple roots, orthogonal roots
are not connected, roots at π

3 have a simple link, and other angles π
m

have
a link with a label m. The Cartan matrix of a set of simple roots αi ∈ ∆ is
defined as the matrix Aij = 2(αi|αj)/(αj |αj).

For instance, the root system of the icosahedral group H3 has one link
labelled by 5 (via the above relation τ = 2 cos π

5 ), as does its four-dimensional
analogue H4.

The reflections in the second axiom of the root system generate a reflec-
tion group. A Coxeter group is a mathematical abstraction of the concept of
a reflection group via involutive generators (i.e. they square to the identity,
which captures the idea of a reflection), subject to mixed relations that rep-
resent m-fold rotations (since two successive reflections generate a rotation
in the plane defined by the two roots).

Definition 2.3. (Coxeter group) A Coxeter group is a group generated by
a set of involutive generators si, sj ∈ S subject to relations of the form
(sisj)

mij = 1 with mij = mji ≥ 2 for i �= j.

The finite Coxeter groups have a geometric representation where the
involutions are realised as reflections at hyperplanes through the origin in a
Euclidean vector space V , i.e. they are essentially just the classical reflection
groups. In particular, then the abstract generator si corresponds to the simple

reflection si : λ → si(λ) = λ − 2 (λ|αi)
(αi|αi)

αi in the hyperplane perpendicular to

the simple root αi. The action of the Coxeter group is to permute these root
vectors, and its structure is thus encoded in the collection Φ ∈ V of all such
roots, which in turn form a root system.

It is thus straightforward to move between those four related concepts of
Lie groups/algebras, root systems and Coxeter groups and we will usually not
make a distinction—with the exception of non-crystallographic root systems
such as H3 (which generates icosahedral symmetry) and its 4D analogue
H4: their non-crystallographic nature means that there is no associated Lie
algebra, since going to the Lie algebra level in the Kac–Moody approach the
Cartan matrix entries appear in the Chevalley–Serre relations as powers of
the generators, which have to be integers rather than Z[τ ] integers.

The E8 root system is thus usually thought of as an exceptional (i.e.
there are no corresponding symmetry groups in arbitrary dimensions) phe-
nomenon of eight-dimensional geometry, with no connection to the 3D geom-
etry we inhabit. Surprisingly, the eight dimensions of 3D Clifford algebra ac-
tually allow E8 to fit into our 3D geometry; likewise all 4D exceptional root
systems arise within 3D geometry from the Platonic symmetries, unveiling
them all as intrinsically 3D phenomena. This opens up a revolutionary way of
viewing exceptional higher-dimensional geometries in terms of 3D spinorial
geometry.

We employ a Clifford algebra framework, which via the geometric prod-
uct by xy = x · y + x ∧ y affords a uniquely simple prescription for per-
forming reflections λ → si(λ) = λ − 2(α · λ)α = −αλα (assuming unit
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normalisation). This yields a double cover of the reflections (since α and
−α give the same reflection) and thus via the Cartan–Dieudonné theorem
(which allows one to express any orthogonal transformation as the prod-
uct of reflections) one gets a double cover of all orthogonal transformations

A : v → v′ = A(v) = ±ÃvA, in spaces of any dimension and signature, by
products of unit vectors A = α1α2 · · · αk called versors. We also call even ver-
sors spinors, as they doubly cover the special orthogonal transformations, and
general versors pinors, as they doubly cover the orthogonal transformations.

Reflection groups have been considered in Geometric Algebra previously
(though not from the root system perspective) in [12,13,15]. Some Lie groups
have been realised as spin groups in Geometric Algebra [11], and Lie alge-
bras as bivector algebras; here we offer a Clifford geometric construction of
all the exceptional phenomena via their root systems. Of course, H4 does not
even have an associated Lie algebra and Lie group and therefore could not
be constructed as a spin group or bivector algebra. We therefore advocate
the root system as the most convenient, insightful and fundamental concept:
for a root system, the quadratic form mentioned in the definition can always
be used to enlarge the n-dimensional vector space V to the corresponding
2n-dimensional Clifford algebra. The Clifford algebra is therefore a very nat-
ural object to consider in this context, as its unified structure simplifies many
problems both conceptually and computationally, rather than applying the
linear structure of the space and the inner product separately. In particular,
it provides the above (s)pinor double covers of the (special) orthogonal trans-
formations, as well as geometric quantities that serve as unit imaginaries (see
e.g. [14] for a systematic study). We will see the benefits of those through-
out the paper. We will largely be working with the Clifford algebra of 3D
generated by three orthogonal unit vectors e1, e2 and e3, which is itself an
eight-dimensional vector space consisting of the elements

{1}
︸︷︷︸

1 scalar

{e1, e2, e3}
︸ ︷︷ ︸

3 vectors

{e1e2 = Ie3, e2e3 = Ie1, e3e1 = Ie2}
︸ ︷︷ ︸

3 bivectors

{I ≡ e1e2e3}
︸ ︷︷ ︸

1 trivector

.

3. The General Spinor Induction Construction: H4 as a Group

of Rotations Rather than Reflections I, Trinities and

McKay Correspondence

In this section we prove that any 3D root system yields a 4D root system via
the spinor group obtained by multiplying together root vectors in the Clifford
algebra [9].

Proposition 3.1. (O(4)-structure of spinors) The space of Cl(3)-spinors R =
a0 + a1e2e3 + a2e3e1 + a3e1e2 can be endowed with a 4D Euclidean norm
|R|2 = RR̃ = a2

0 + a2
1 + a2

2 + a2
3 induced by the inner product (R1, R2) =

1
2 (R1R̃2 + R2R̃1) between two spinors R1 and R2.

This allows one to reinterpret the group of 3D spinors generated from a
3D root system as a set of 4D vectors, which in fact can be shown to satisfy
the axioms of a root system as given in Definition 2.1.
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Theorem 3.2. (Induction theorem) Any 3D root system gives rise to a spinor

group G which induces a root system in 4D.

Proof. Check the two axioms for the root system Φ consisting of the set of
4D vectors given by the 3D spinor group:

1. By construction, Φ contains the negative of a root R since spinors provide
a double cover of rotations, i.e. if R is in a spinor group G, then so is −R,
but no other scalar multiples (normalisation to unity).

2. Φ is invariant under all reflections with respect to the inner product
(R1, R2) in Proposition 3.1 since R′

2 = R2 − 2(R1, R2)/(R1, R1)R1 =

−R1R̃2R1 ∈ G for R1, R2 ∈ G by the closure property of the group G (in

particular −R and R̃ are in G if R is). �

Since the irreducible 3D root systems are (A3, B3,H3), the induction
construction also yields three induced root systems in 4D. These are in fact
the exceptional root systems in 4D (D4, F4,H4). Both sets of three are in
fact amongst Arnold’s trinities following his observation that (R, C, H) [1,
2] form a basic unit of three which can be extended to analogous sets of
three such as the corresponding projective spaces, Lie algebras of E-type
(E6, E7, E8), spheres, Hopf fibrations etc. This is the first very tentative hint
that the icosahedral group H3 might be related to the exceptional geometry
E8. Arnolds original link between (A3, B3,H3) and (D4, F4,H4) is similarly
extremely convoluted/indirect, whilst our construction presents a novel direct
link between the two; we will first make the H3 and E8 connection more
suggestive below, before making it explicit for the first time. These root
systems are intimately linked to the Platonic solids [7]. There are 5 in three
dimensions and 6 in four dimensions: A3 describes the reflection symmetries
of the tetrahedron, B3 those of the cube and octahedron (which are dual
under the exchange of midpoints of faces and vertices), and H3 describes the
symmetries of the dual pair icosahedron and dodecahedron (the rotational
subgroup is denoted by I = A5), whilst the 4D Coxeter groups describe the
symmetries of the 4D Platonic solids. But this time the connection is much
more immediate: the Platonic solids are actually root systems themselves (or
duals thereof). D4 is the 24-cell (self-dual), an analogue of the tetrahedron,
which is also related to the F4 root system. The H4 root system is the Platonic
solid the 600-cell with its dual, the 120-cell (also Platonic), having the same
symmetry. A3

1 generates A4
1, which constitutes the 16-cell—its dual is the 8-

cell, both are Platonic solids. There is thus an abundance of root systems in
4D giving the Platonic solids, which is essentially due to the accidentalness
of the spinor induction theorem, compared to arbitrary dimensions where the
only root systems and Platonic solids are An (n-simplex), Bn (n-hypercube
and n-hyperoctahedron) and Dn. In fact the only 4D Platonic solid that is
not equal or dual to a root system is the 5-cell with symmetry group A4,
which of course could not be a root system, as its odd number (5) of vertices
violates the first root system axiom.

The induced root systems (D4, F4,H4) are precisely the exceptional ones
in 4D, where we count D4 as exceptional because of its exceptional triality
symmetry (permutation symmetry of the three legs in the diagram accidental
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in 4D). It is of great importance in string theory, showing the equivalence of
the Ramond–Neveu–Schwarz and the Green–Schwarz strings. F4 is the only
F -type root system, and H4 is the largest non-crystallographic root system.
They therefore naturally form a trinity.

On top of the exceptional nature of these root systems (their existence),
they also have very unusual automorphism groups. This is readily shown via
the above spinor construction:

Theorem 3.3. (Spinorial symmetries) A root system induced through the Clif-

ford spinor construction via a binary polyhedral spinor group G has an au-

tomorphism group that trivially contains two factors of the respective spinor

group G acting from the left and from the right.

This systematises many case-by-case observations on the structure of
the automorphism groups [17,18] (for instance, the automorphism group of
the H4 root system is 2I × 2I—in the spinor picture, it is not surprising
that 2I yields both the root system and the two factors in the automorphism
group), and shows that all of the 4D geometry is already contained in 3D
[6] in the following sense. In terms of quaternionic representations of a 4D
root system (e.g. H4), the 3D root system (H3) is often remarked in the
literature to consist precisely of the pure quaternions, i.e. those without a real
part, and the full 4D group can be generated from these under quaternion
multiplication. This is very poorly understood in the literature: in our picture
the spinors are just isomorphic to the quaternions whilst when the inversion
±I is contained in the full group, one can trivially Hodge dualise vectors to
bivectors (pure quaternions). However, this statement is not true when the
inversion is not contained in the group (e.g. for A3). Conversely, the spinorial
induction construction still works perfectly well yielding D4. I.e. the fact that
the 3D group is generated by the subset of the pure quaternions amongst
the 4D group under quaternion multiplication is just a corollary of spinor
induction when the inversion is contained in the group. The literature has
it ‘backwards’ deriving the 3D root system from the 4D root system (under
inconsistent conditions), whilst in our picture the 3D root systems are more
fundamental as they allow us to construct the 4D root system without any
further information. Moreover, the ‘quaternionic generators’ generating the
4D groups via quaternion multiplication cited in the literature are easily seen
to just be the products of pairs of 3D simple roots (spinors) α1α2 and α2α3.
Thus the 4D group clearly does not contain anything that was not already
contained in the 3D group, and we therefore argue that 3D root systems and
spinor induction are fundamental rather than the 4D root systems.

We consider the examples of the inductions of A3
1 → A4

1 and H3 → H4

in more detail. For the former, the 6 roots can be chosen as ±e1,±e2,±e3.
Pairwise products yield the 8 spinors ±1,±e1e2,±e2e3,±e3e1. 3D spinors
have four components (1, e1e2, e2e3, e3e1), such that these 8 spinors give the
8 vertices of the (4D root system and Platonic solid) 16-cell

(±1, 0, 0, 0) (8 permutations).
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We now also construct the spinor group generated by the simple roots of H3,
which we take as

α1 = e2, α2 = −1

2
((τ − 1)e1 + e2 + τe3), and α3 = e3.

Under multiplication with the geometric product they generate a group of 240
pinors doubly covering the 120 elements of H3. Its even subgroup consists of
120 spinors doubly covering the rotational subgroup A5, e.g. α1α2 = − 1

2 (1−
(τ − 1)e1e2 + τe2e3) and α2α3 = − 1

2 (τ − (τ − 1)e3e1 + e2e3). Taking the
components of these 120 spinors in 4D yields exactly the H4 root system

(±1, 0, 0, 0) (8 permutations)

1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±σ,±τ) (96 even permutations).

This is very surprising from a Coxeter perspective, as one usually thinks of
H3 as a subgroup of H4, and therefore of H4 as more fundamental. However,
we have seen that H4 does not actually contain anything that is not already
in H3, which makes H3 more fundamental [6]. From a Clifford perspective it
is not at all surprising to find this group of 120 spinors (the binary icosahe-
dral group 2I) since it is well-known that Clifford algebra provides a simple
construction of the Spin groups. However, this is extremely surprising from
the conventional Coxeter and Lie group point of view.

It is convenient to have all the four different types of polyhedral groups
(chiral, full, binary, pin) in a unified framework within the Clifford algebra,
rather than using SO(3) matrices for the rotations and then having to use
SU(2) matrices for the binary groups, as one can perform all the different
group operations with multivectors in the same Clifford algebra. For instance,
the spinor group 2I consists of 120 elements and 9 conjugacy classes, as one
can easily confirm by explicit computation. A5 has five conjugacy classes
and is of order 60, which implies that it has five irreducible representations
of dimensions 1, 3, 3̄, 4 and 5. The nine conjugacy classes of the binary
icosahedral group 2I of order 120 therefore mean that it has a further four
irreducible spinorial representations 2s, 2′

s, 4s and 6s. This binary icosahedral
group has a mysterious twofold connection with the affine Lie algebra E+

8

via the so-called McKay correspondence [20], which in fact applies to all
other binary polyhedral groups and the affine Lie algebras of ADE-type
(cf. Fig. 3): firstly, we can define a graph by assigning a node to each of
the nine irreducible representation of the binary icosahedral group where
we connect nodes according to its tensor product structure: each irreducible
representation is represented by a node and it is only connected to other
nodes corresponding to those irreducible representations that are contained
in its tensor product with the irreducible representation 2s. For instance,
tensoring the trivial representation 1 with 2s trivially gives 1 ⊗ 2s = 2s and
thus 1 is only connected to 2s; 2s ⊗ 2s = 1 + 3, such that 2s is connected to
1 (as we know) and also to 3, and so on. The graph that is built up in this
way is precisely the Dynkin diagram of affine E8 (Fig. 2). Secondly the order
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1 2s 3 4s 5 6s 4

3̄

2
s

Figure 2. The graph depicting the tensor product structure
of the binary icosahedral group 2I is the same as the Dynkin
diagram of affine E8

of the Coxeter element (the product of all the simple reflections α1 · · · α8),
the Coxeter number h, is 30 for E8, which is also exactly the sum of the
dimensions of the irreducible representations of 2I,

∑
di. As already stated,

these both extend to a correspondence between all binary polyhedral groups
and the ADE-type affine Lie algebras.

We can therefore extend the connection between (A3, B3,H3) and
(2T, 2O, 2I) via the McKay correspondence which links (2T, 2O, 2I) and
(E6, E7, E8) to a new connection between (A3, B3,H3) and (E6, E7, E8) via
Clifford spinors, which does not seem to be known. In particular, (12, 18, 30)
is one of the two connections in the McKay correspondence denoting the
Coxeter number of the affine Lie algebra as well as the sum of the dimensions
of the irreducible representations of the binary polyhedral group. We note
that (12, 18, 30) is more fundamentally the number of roots Φ in the 3D root
systems (A3, B3,H3), which therefore feeds all the way through to the binary
polyhedral groups and via the McKay correspondence to the affine Lie alge-
bras. Our construction therefore makes deep connections between trinities,
and puts the McKay correspondence into a wider framework, as shown in
Fig. 3. It is worth noting that the affine Lie algebra and the 4D root system
trinities have identical Dynkin diagram symmetries: D4 and E+

6 have triality
S3, F4 and E+

7 have an S2 symmetry and H4 and E+
8 only have S1, but

are intimately related as explained in Sect. 5. This therefore again suggests
that there is a link between the icosahedron and E8, which is slightly more
explicit than just from observing the trinities. In the next section we will
show a new, completely explicit direct connection within the Clifford algebra
of 3D by identifying the 240 roots of E8 with the 240 pinors doubly covering
the elements of the icosahedral group H3 (right of Fig. 3) [10].

4. The Birth of E8 Out of the Spinors of the Icosahedron

Previously, we have constructed the 120 elements of 2I, which can be rein-
terpreted as the 120 roots of H4

(±1, 0, 0, 0) (8 permutations)

1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±σ,±τ) (96 even permutations).
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Figure 3. Web of connections putting the original trinities
and McKay correspondence into a much wider context. The
connection between the sum of the dimensions of the irre-
ducible representations di of the binary polyhedral groups
and the Coxeter number of the Lie algebras actually goes all
the way back to the number of roots in the 3D root systems
(12, 18, 30). These then induce the binary polyhedral groups
(linked via the McKay correspondence to the E-type affine
Lie algebras) and the 4D root systems via the Clifford spinor
construction. The new pinor construction links H3 directly
with E8 explaining the latter entirely within 3D geometry

A set of simple roots for these is given e.g. by a1 = 1
2 (−σ,−τ, 0,−1), a2 =

1
2 (0,−σ,−τ, 1), a3 = 1

2 (0, 1,−σ,−τ) and a4 = 1
2 (0,−1,−σ, τ).

As we have discussed above the H3 root system contains the inversion
±e1e2e3 = ±I. It simply Hodge dualises the 120 spinors doubly covering
the even subgroup A5 of 60 rotations to create a second copy consisting of
vector and pseudoscalar parts. This gives the 120 additional group elements
necessary to provide the 240 pinor double covering of the group H3 = A5×Z2

of order 120. These therefore consist of a copy of the 120 spinors (essentially
H4) and another copy multiplied by I. These are now valued in the full
8D Clifford algebra of 3D space consisting of scalar, vector, bivector and
trivector parts. For this set of 240 pinors in the 8D Clifford algebra of 3D
we now define a ‘reduced inner product’: we keep the spinor copy of H4

and multiply the copy IH4 by τI. We then take inner products taking into
account the recursion relation τ2 = τ + 1 but then rather than taking the
usual inner product consisting of both the integer with the Z[τ ]-integer part
(·, ·) = a + τb we extract only the integer part by defining the reduced inner
product [21,24]

(·, ·)τ = (a + τb)τ := a.
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This set of 240 includes the above choice of simple roots of H4

α1 := a1 =
1

2
(−σ,−τ, 0,−1),

α2 := a2 =
1

2
(0,−σ,−τ, 1),

α3 := a3 =
1

2
(0, 1,−σ,−τ) and

α8 := a4 =
1

2
(0,−1,−σ, τ)

along with their τ -multiples

α7 := τa1 =
1

2
(1,−τ − 1, 0,−τ),

α6 := τa2 =
1

2
(0, 1,−τ − 1, τ),

α5 := τa3 =
1

2
(0, τ, 1,−τ − 1) and

α4 := τa4 =
1

2
(0,−τ, 1, τ + 1).

This choice of inner product combines the two sets of H4 into the E8 diagram
by changing the links. The link labelled by 5 in the H4 diagram

(a3, a4) =
1

4
(−1 + σ2 − τ2) =

1

4
(−1 + σ + 1 − τ − 1)

=
1

4
(−1 + 1 − τ − τ) = −τ

2
,

means that these roots are instead orthogonal with respect to the reduced
inner product

(α3, α8)τ = (a3, a4)τ =
(

−τ

2

)

τ
= 0.

Likewise,

(α5, α4)τ = (τa3, τa4)τ =

(

−τ3

2

)

τ

=

(

−2τ + 1

2

)

τ

= −1

2
,

means that the 5-labelled link from the other H4 diagram gets turned into a
simple link. There are additional (simple) links introduced from

(α5, α8)τ = (τα3, α8)τ = (α3, τα8)τ = (α3, α4)τ = −
(

τ2

2

)

τ

= −
(

τ + 1

2

)

τ

= −1

2
,

whilst the simply-connected nodes of the original H4 diagrams are not
affected

(α1, α2)τ =

(

−1

2

)

τ

= −1

2
.
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This set of simple roots yields the following Cartan matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is just the E8 Cartan matrix [10]. The 240 icosahedral pinors therefore
give the 240 roots of E8 under the reduced inner product and it is straight-
forward (if tedious) to check closure under reflections with respect to the
reduced inner product.

Surprisingly, the E8 root system has therefore been hidden in plain sight
within the geometry of the Platonic icosahedron for three millennia, without
anyone noticing. As with the 4D induction construction, this discovery seems
only possible in Clifford algebra—there is much prejudice against the useful-
ness of Clifford algebras since they have matrix representations and usually
matrix methods are equivalent if less insightful—but the 4D and 8D induc-
tion constructions are to my knowledge the only results that required Clifford
algebra and were hitherto invisible to standard matrix methods.

5. H4 as a Group of Rotations Rather than Reflections II:

From E8

The usual view is the reverse of the process shown in the previous section,
inducing E8 from H3, via two intermediate copies of H4. E8 has an H4

subgroup, as can be shown via Coxeter–Dynkin diagram foldings [19,22,23]:
We consider now the Clifford algebra in 8D with the usual Euclidean

metric and take the simple roots α1 to α8 of E8 as shown in Fig. 4. The
simple reflections corresponding to the simple roots are thus just given via

α1 α2 α3 α4 α5 α6 α7

α8

a1 a2 a3
5

a4

Figure 4. Coxeter–Dynkin diagram folding and pro-
jection from E8 to H4: one defines the new genera-
tors sa1

= sα1
sα7

, sa2
= sα2

sα6
, sa3

= sα3
sα5

, sa4
= sα4

sα8
,

which themselves satisfy H4 relations
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sαv = −αvα. The Coxeter element w is defined as the product of all these
eight simple reflections, and in Clifford algebra it is therefore simply given
by the corresponding Coxeter versor W = α1 · · · α8 acting via sandwiching
as wλ = W̃λW . Its order, the Coxeter number h (i.e. Wh = ±1), is 30 for
E8 as mentioned previously.

As illustrated in Fig. 4, one can now define certain combinations of
pairs of reflections (according to a fourfold colouring of the diagram, or cor-
responding to roots on top of each other in a Dynkin diagram folding), e.g.
sa1

= sα1
sα7

etc. In a Clifford algebra setup these are just given by the prod-
ucts of root vectors a1 = α1α7, a2 = α2α6, a3 = α3α5 and a4 = α4α8 (this
is essentially a partial folding of the usual alternating folding/two-colouring
used in the construction of the Coxeter plane with symmetry group I2(h),
see the next section). It is easy to show that the subgroup with the genera-
tors sai

in fact satisfies the relations of the H4 Coxeter group [3,22]: because
of the Coxeter relations for E8 and the orthogonality of the combined pair
the combinations sa are easily seen to be involutions, and the threefold re-
lations are similarly obvious from the Coxeter relations; only for the fivefold
relation does one have to perform an explicit calculation in terms of the re-
flections with respect to the root vectors. This is thus particularly easy by
multiplying together vectors in the Clifford algebra, rather than by concate-
nating two reflection formulas of the type shown in Definition 2.1—despite
it only consisting of two terms, concatenation gets convoluted quickly, unlike
multiplying together multivectors.

Since the combinations sa are pairs of reflections, they are obviously
rotations in the eight-dimensional space, so this H4 group acts as rotations
in the full space, but as a reflection group in a 4D subspace. The H4 Cox-
eter element is given by multiplying together the four combinations ai—its
Coxeter versor is therefore trivially seen to be the same as that of E8 (up
to sign, since orthogonal vectors anticommute) and the Coxeter number of
H4 is thus the same as that of E8, 30. The projection of the E8 root system
onto the Coxeter plane consists of two copies of the projection of H4 into
the Coxeter plane, with a relative factor of τ (see the next section and in
particular Fig. 9). This is also related to the fact that on the level of the
root system there is a projection which maps the 240 roots of E8 onto the
120 roots of H4 and their τ -multiples in one of the H4-invariant 4-subspaces
[5,21] (cf. previous section). This is essentially the exact reverse of finding E8

from the two copies H4 + τH4 in the last section. We therefore now consider
the Coxeter plane itself.

6. The Coxeter Plane

In this section, we consider the geometry of the Coxeter plane e.g. achieved by
a complete folding/twofold colouring of the E8 Dynkin diagram (Fig. 5). For
a given Coxeter element w of any root system, there is a unique plane called
the Coxeter plane on which w acts as a rotation by 2π/h. Projection of a root
system onto the Coxeter plane is thus a way of visualising any finite Coxeter
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α1 α2 α3 α4 α5 α6 α7

α8

Figure 5. Illustration of the geometry of the Coxeter plane
via diagram foldings. Since any finite Coxeter group has a
tree-like diagram, one can partition the simple roots into
two sets (black and white) of roots that are orthogonal within
each set. Since the Cartan matrix is positive definite, it has a
Perron–Frobenius eigenvector with all positive entries. This
allows one to show the existence of the invariant Coxeter
plane (by construction) as the bivector defined by the outer
product of two vectors that are linear combinations of all
the reciprocals of the white (respectively black) simple roots
with the corresponding coefficients given by the entries in
the Perron–Frobenius eigenvector

group, for instance the well-known representation of E8 is such a projection
of the 240 vertices of the root system onto the Coxeter plane. In the standard
theory there is an unnecessary complexification of the real geometry followed
by taking real sections again just so that complex eigenvalues exp(2πim/h) of
w, for some integers m called exponents, can be found [16]. Unsurprisingly,
in Clifford algebra these complex structures arise naturally, and the com-
plex ‘eigenvectors’ are in fact eigenplanes where the Coxeter element acts
as a rotation. We therefore systematically factorise Coxeter versors of root
systems in the Clifford algebra, which gives the eigenplanes and exponents
algebraically. We briefly discuss the 2D case of the two-dimensional family of
non-crystallographic Coxeter groups I2(n), followed by the three-dimensional
groups A3, B3 and H3 [8], before discussing the higher-dimensional examples.

The simple roots for I2(n) can be taken as α1 = e1, α2 = − cos π
n
e1 +

sin π
n
e2, which yields the Coxeter versor W describing the n-fold rotation

encoded by the I2(n) Coxeter element via v → wv = W̃vW as

W = α1α2 = − cos
π

n
+ sin

π

n
e1e2 = − exp (−πe1e2/n). (1)

In Clifford algebra it is therefore immediately obvious that the action of the
I2(n) Coxeter element is described by a versor that encodes rotations in the
e1e2-Coxeter-plane and yields h = n since trivially Wn = (−1)n+1. Since
I = e1e2 is the bivector defining the plane of e1 and e2, it anticommutes with
both e1 and e2 such that one can take W through to the left (which reverses
the bivector part) to arrive at the complex eigenvector equation

v → wv = W̃vW = W̃ 2v = exp (±2πI/n)v.

This yields the standard result for the complex eigenvalues, however, in Clif-
ford algebra it is now obvious that the complex structure is in fact given
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by the bivector describing the Coxeter plane (which is trivial for I2(n)), and
that the standard complexification is both unmotivated and unnecessary.

More generally, if v lies in a plane in which W acts as a rotation, then

v → wv = W̃vW = W̃ 2v

still holds, whereas if v is orthogonal such that the bivector describing the
planes commutes with v, one just has

v → wv = W̃vW = W̃Wv = v.

Thus, if W factorises into orthogonal eigenspaces W = W1 · · · Wk with v lying
in the plane defined by W1, then all the orthogonal Wis commute through and
cancel out, whilst the one that defines the eigenplane that v lies in described
by the bivector Bi gives the standard complex eigenvalue equation

v → wv = W̃vW = W̃1 · · · W̃kvW1 · · · Wk = W̃1
2 · · · W̃kWkv

= W̃1
2
v = exp(2πBim/h)v.

If m is an exponent then so is h − m since w−1 will act as

W1
2v = exp(−2πBim/h)v = exp(2πBi(h − m)/h)v;

in particular 1 and h − 1 are always exponents (from the Coxeter plane)—in
Clifford algebra it is easy to see that these are just righthanded and lefthanded
rotations in the respective eigenplanes, with bivectors giving the complex
structures. If W has pure vector factors then these act as reflections and
trivially yield the exponents h/2.

The pin group/eigenblade description in Geometric Algebra therefore
yields a wealth of novel geometric insight, and we now consider higher-
dimensional examples. For 3D and 4D groups, the geometry is completely
governed by the above 2D geometry in the Coxeter plane, since the re-
maining normal vector (3D) or bivector (4D) are trivially fixed. For H3

one has h = 10 and complex eigenvalues exp(2πmi/h) with the exponents
m = {1, 5, 9}. For simple roots α1 = e2, −2α2 = (τ − 1)e1 + e2 + τe3 and
α3 = e3, the Coxeter plane bivector is BC = e1e2 + τe3e1 and the Cox-
eter versor 2W = −τe2 − e3 + (τ − 1)I (here I = e1e2e3) with eigenval-
ues exp (±2πBC/h), which corresponds to m = 1 and m = 9. The vector
bC = BCI = −τe2 − e3 orthogonal to the Coxeter plane can only get re-
versed (since the Coxeter element in 3D is an odd operation), so one has

−W̃ bCW = −bC = exp (±5 · 2πBC/h)bC which gives m = 5. A3 and B3 are
very similar, they have Coxeter numbers h = 4 and h = 6, respectively, and
thus exponents m = {1, 2, 3} and m = {1, 3, 5}. The exponents 1 and h − 1
correspond to a rotation in the Coxeter plane in which the Coxeter element
acts by h-fold rotation, whilst the normal to the Coxeter plane gets simply
reflected, corresponding to the cases h/2 (m = 2 and m = 3 for A3 and B3,
respectively).

We now consider the four-dimensional cases A4, B4, D4, F4 and H4. We
explain the case of A4 in detail, which is known to have exponents {1, 2, 3, 4}.
We take as the simple roots α1 = 1√

2
(e2 − e1), α2 = 1√

2
(e3 − e2), α3 =

1√
2
(e4 − e3) and α4 = 1

2 (τe1 + τe2 + τe3 + (τ − 2)e4). It is easy to calculate
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(a) (b) (c)

(d) (e)

Figure 6. Coxeter projections of A4 (a, b) and H2 (panel

c), Haff
2 (d) and D6 Coxeter projection (e). The action of

the Coxeter element as an h-fold rotation is visualised by
the two coloured dots (green and blue) that are rotated into
another by this rotation (colour figure online)

that this choice of simple roots yields the correct A4 Cartan matrix and
that reflections in them yield a root polytope of 20 vertices. This matrix has
Perron–Frobenius eigenvector (1, τ, τ, 1)T and one can construct the Coxeter
plane bivector as BC ∝ −e1e3 − e1e4 + e2e3 + e2e4 − 1/2(τ − 1)e3e4 via
the two vectors e3 + e4 and −e1 + e2 + e3 + (2τ + 1)e4 arrived at from the
Perron–Frobenius eigenvector and the reciprocal frame of the simple roots as
illustrated in Fig. 5. The Coxeter versor W = α3α1α2α4 is calculated to be
4W = 1 − e2e3 + e1e4 + (τ − 1)(e3e4 + e2e4 − e1e3) − (τ + 1)e1e2 − (2τ −
1)e1e2e3e4. It is easy to show that W̃BCW = BC and the Coxeter element
therefore indeed stabilises the Coxeter plane. However, we are claiming that
the Coxeter element can actually be written as bivector exponentials in the
planes defined by BC and IBC , with angles given by the exponents {1, 2, 3, 4}.
These are given as left- and righthanded rotations in the two planes as shown
in Fig. 6a, b. The Coxeter projection of the 20 vertices forms two concentric
decagonal circles—in the Coxeter plane w acts as a rotation by 2π/5 (as
denoted by the two coloured vertices in a) with the Coxeter element taking
one into the other), whilst in the plane IBC it acts as a rotation by 4π/5,
as shown in b). It is easy to check that W can indeed be written as W =
exp(π

5 BC) exp(− 2π
5 IBC). It is clear that taking the product of simple roots

in the Coxeter element in a different order introduces overall minus signs as
well as minus signs in the exponentials, so we will not worry about these from
now on.
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A4 is unusual in that the projection from 4D only yields two concentric
circles in the Coxeter plane. In fact, it consists of two copies of H2 (panel
c) with a relative factor of τ . This is similar to the situation for E8 and H4,
as explained in Fig. 4, since by removing four of the eight nodes one gets a
diagram folding from A4 to H2. In [4], we were considering affine extensions of
H2 by adding a translation operator and taking the orbit under the compact

group (panel d). What is striking is that this Haff
2 point set, i.e. an affine

extension of the decagon after one unit translation, is very nearly the Coxeter
projection of D6, which is shown in panel e.

The situation for the other 4D groups is similar, as shown in Fig. 7,
which shows for the groups B4, D4, F4 and H4 that the Coxeter element acts
in the Coxeter plane BC as rotations by ±2π/h, and in the plane defined by
IBC as h-fold rotations giving the other exponents algebraically. For B4 one
has exponents {1, 3, 5, 7} as shown in panels a and b and the decomposition
into eigenblades of the Coxeter element W = exp(π

8 BC) exp(3π
8 IBC) reflects

this.
D4 has exponents {1, 3, 3, 5} which is reflected in the fact that the Cox-

eter versor can be written as W = exp(−π
6 BC) exp(π

2 IBC)=exp(−π
6 BC)IBC .

The Coxeter projections of D4 into the IBC plane demonstrate that the other
factor in W that does not come from BC is actually the product of two vectors
(e1 + e2 − 2e3 and e1 − e2 for simple roots e1, e2, e3 and 1

2 (e4 − e1 − e2 − e3);
for this choice the Coxeter plane bivector is given by BC = (e1 + e2 + e3)e4)
rather than a bivector exponential (since the angle is π/2): on some vectors it
acts as a 3 = h/2-fold rotation in the plane, others it projects onto the origin
(Fig. 7 panels c and d). F4 has exponents {1, 5, 7, 11} which again is evident
from the Clifford factorisation W = exp( π

12BC) exp(5π
12 IBC) and the way

it acts on the two planes (panels e and f). H4 has exponents {1, 11, 19, 29}
and factorisation W = exp( π

30BC) exp(11π
30 IBC) (panels g and h). Table 1

summarises the factorisations of the 4D Coxeter versors.
The Coxeter versor of D6 can be written as W = exp( π

10BC) exp(3π
10 B2)

B3 for certain bivectors B2 and B3 from which it is evident that the exponents
are indeed {1, 3, 5, 5, 7, 9}, including two reflections and otherwise 10-fold
rotations in the Coxeter plane and another orthogonal plane (Fig. 8a, c).
Since as in Fig. 4 by removing a pair of nodes and as for A4&H2 there is
also a diagram folding from D6 to H3 (H3 as we saw above has exponents
{1, 5, 9}), the D6 projection again actually consists of two copies of that of
H3 with a relative factor of τ (panel b)—but the H3 projection already has
radii with a relative factor of τ such that two orbits of the D6 projection fall
on top of each other.

Not surprisingly, analogously the Coxeter versor for E8 can be
written as

−W = exp
( π

30
BC

)

exp

(
11π

30
B2

)

exp

(
7π

30
B3

)

exp

(
13π

30
B4

)

.

This gives the well-known exponents {1, 7, 11, 13, 17, 19, 23, 29} a more geo-
metric meaning as 30-fold rotations in four orthogonal eigenplanes (Fig. 9).
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Figure 7. Coxeter projections of B4, D4, F4 and H4. In
each row the plots are the action of the Coxeter element in
the Coxeter plane given by BC and in the plane given by
IBC
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Table 1. Summary of the factorisations of the Coxeter ver-
sors of the 4D root systems

Rank 4 root system h Exponents W-factorisation

A4 5 1, 2, 3, 4 W = exp
(

π
5 BC

)
exp

(
2π
5 IBC

)

B4 8 1, 3, 5, 7 W = exp
(

π
8 BC

)
exp

(
3π
8 IBC

)

D4 6 1, 3, 3, 5 W = exp
(

π
6 BC

)
exp

(
π
2 IBC

)

F4 12 1, 5, 7, 11 W = exp
(

π
12BC

)
exp

(
5π
12 IBC

)

H4 30 1, 11, 19, 29 W = exp
(

π
30BC

)
exp

(
11π
30 IBC

)

Figure 8. Coxeter projections of D6 (panels a, c) and H3

(panel b). The two innermost radii of the H3 projection are
precisely in the ratio of τ , such that since the D6 projection
consists of two copies of the H3 with a relative radius of
τ , two orbits actually coincide. In the Coxeter plane a and
the other eigenplane c the Coxeter element acts by 10-fold
rotation, as expected

As we have alluded to in Sect. 5, the Coxeter projection of E8 actually con-
sists of two copies of that of H4 in the bottom row of Fig. 7 with a relative
radius of τ . We recall that H4 also has exponents {1, 11, 19, 29} and since it is
a subgroup of E8 they have of course the same Coxeter element and number,
and share two eigenplanes with exponents 1 and 29 as well as 11 and 19.
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Figure 9. Coxeter projections of E8 (panels a–d) and H4

(panel e). Again, E8 consists of H4 and τH4 with the Coxeter
element acting as a 30-fold rotation in both, as usual in the
Coxeter plane a and in three other orthogonal planes accord-
ing to the exponents 11, 7 and 13 in b, c and d, respectively

For this E8 example we explicitly give the details. We choose the simple
roots of E8 (in the Clifford algebra of 8D, rather than as earlier the 8D
Clifford algebra of 3D) as
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α1 =
1√
2
(e7 − e6), α2 =

1√
2
(e6 − e5), α3 =

1√
2
(e5 − e4),

α4 =
1√
2
(e4 − e3), α5 =

1√
2
(e3 − e2), α6 =

1√
2
(e2 − e1),

α7 =
1√
8
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8),

α8 =
1√
2
(e2 + e1).

Then the Coxeter versor W = α2α4α6α8α3α5α1α7 is given by

W = − 1

16
+

1

16
e2,3,4,5,6,7 +

1

16
e1,2,3,4,5,6,7,8 − 1

16
e1,4,5,6,7,8 − 1

16
e1,2,3,6,7,8

− 1

16
e4,5,6,7 +

1

16
e1,6,7,8 +

1

16
e1,2,5,6,7,8 +

1

16
e6,7 +

1

16
e2,5,6,7

+
1

16
e1,3,5,6,7,8 − 1

16
e1,2,4,6,7,8 +

1

16
e3,5,6,7 − 1

16
e1,3,4,6,7,8

− 1

16
e3,4,6,7 +

1

16
e1,3,4,8 +

1

16
e3,4 +

1

16
e1,2,3,4,7,8 − 1

16
e1,4,7,8

+
1

16
e2,3,4,7 − 1

16
e4,7 +

1

16
e2,3,5,7 − 1

16
e1,5,7,8 − 1

16
e5,7 − 1

8
e1,5,6,7

+
1

16
e1,5,6,8 +

1

16
e1,2,7,8 +

1

16
e5,6 +

1

16
e3,7 +

1

16
e2,4,5,7

+
1

16
e1,3,4,5,7,8 +

1

8
e1,3,4,7 − 1

16
e1,3,4,5,6,8 +

1

16
e3,4,5,7 +

3

8
e1,3,4,5,6,7

+
1

4
e1,2,4,5,6,7 − 1

16
e1,2,4,5,6,8 − 1

16
e1,2,6,8 − 1

16
e2,4,5,6 +

1

8
e1,2,6,7

− 1

16
e1,2,3,5,6,8 +

1

16
e2,7 − 1

16
e2,6 +

1

4
e1,2,3,5,6,7 − 1

16
e2,3,5,6

+
1

8
e1,2,3,4,6,7 − 1

16
e1,2,3,4,6,8 − 1

16
e2,3,4,6 +

1

16
e1,2,4,8

− 1

16
e1,2,5,8 +

1

8
e1,2,5,7 − 1

16
e2,5 +

1

16
e1,2,3,8 +

1

16
e2,3 − 1

16
e1,2,3,4,5,8

+
1

8
e1,2,3,4,5,7 +

1

16
e1,2,4,5,7,8 − 1
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+
1
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8
e1,4,5,6 +

1
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1
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−1

8
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8
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8
e1,2,4,5 − 1

8
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1
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e4,6 +

1

16
e4,5

− 1

16
e2,3,6,7 − 1

16
e2,4,6,7 +

1
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e1,2,3,5,7,8 +

1

16
e1,3,7,8 − 1
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e3,4,5,6

+
1

8
e1,7 − 1

16
e1,8 +

1
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e2,4 +

1
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e1,4,6,8 − 1
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8
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−1

4
e1,3,4,6 − 1

16
e3,6 − 1

16
e3,5

= − exp
( π

30
BC

)

exp

(
11π

30
B2

)

exp

(
7π

30
B3

)

exp

(
13π

30
B4

)

,

where the eigenplane bivectors Bi are orthogonal to one another and are
explicitly given by the outer products of the vector pairs (given numerically,
for simplicity)

BC = v1 ∧ w1, v1 = 2.813 e3 + 2.813 e4 + 4.551 e5 + 4.551 e6

+ 5.14 e7 + 21.77 e8,

w1 = −0.2392 e1 + 1.653 e2 + 1.653 e3 + 3.942 e4 + 5.111 e6 + 5.111 e7

+ 3.942 e5 + 21.65 e8,

B2 = v2 ∧ w2, v2 = 1.15 e3 + 1.15 e4 + 1.861 e5 + 1.861 e6

−0.241 e7 − 1.019 e8,

w2 = 2.09 e1 − 0.676 e2 − 0.676 e3 + 1.61 e4 − 0.0978 e6 − 0.0978 e7

+ 1.61 e5 − 0.414 e8,

B3 = v3 ∧ w3, v3 = 2.102 e3 + 2.102 e4 − 1.299 e5 − 1.299 e6 − 4.11 e7

+ 0.9707 e8,

w3 = −0.5848 e1 + 1.999 e2 + 1.999 e3 + 1.13 e4 − 3.056 e6 − 3.056 e7

+ 1.13 e5 + 0.7214 e8,

and

B4 = v4 ∧ w4, v4 = 0.5881 e3 + 0.5881 e4 − 0.3634 e5 − 0.3634 e6

+ 0.787 e7 − 0.1858 e8,

w4 = 0.8549 e1 + 0.559 e2 + 0.559 e3 − 0.315 e4 + 0.164 e6 + 0.164 e7

− 0.315 e5 − 0.0386 e8.

In Clifford algebra, the Coxeter versor as the product of the simple roots
therefore completely encodes the factorisation into orthogonal eigenplanes,
as of course it must, as Geometric Algebra and the root system completely
determine the geometry, without the need for artificial complexification.

7. Conclusions

We have shown that with the help of Clifford algebra all exceptional root
systems can in fact be constructed from the 3D root systems alone. This
offers a revolutionarily new way of viewing these phenomena in terms of
spinorial geometry of 3D as intrinsically 3D phenomena, with huge potential
implications for the many areas in which these symmetries appear. Likewise,
the geometry of the Coxeter plane is best viewed in a Clifford algebra frame-
work, which provides geometric meaning and insight, for instance the complex
eigenvalues in standard theory are just seen to be rotations in eigenplanes of
the Coxeter element given by bivectors which act as unit imaginaries. Since
the definition of root systems stipulates a vector space with an inner product,
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the associated Clifford algebra of this space can easily be constructed without
any loss of generality and is actually the most natural framework to use for
such root systems and Coxeter groups, both since Clifford algebra affords a
uniquely simple reflection formula and since combining the linear structure
of the space with the inner product is better than using both separately.
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