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Abstract

In a standard cointegrating framework, Phillips (1991) introduced the weighted

covariance (WC) estimator of cointegrating parameters. Later, Marinucci (2000)

applied this estimator to various fractional circumstances and, like Phillips (1991),

analyzed the so-called small-b asymptotic approximation to its sampling distrib-

ution. Recently, an alternative limiting theory has been successfully employed

to approximate the sampling distribution of nonparametric estimators of spectral

densities and long run covariance matrices more accurately than by traditional

asymptotics. This has been named �xed-b asymptotics, and the particular form of

the WC estimator makes it an ideal candidate for the application of this type of

theory. Thus, in this paper we derive the �xed-b limit of WC estimators in a frac-

tional setting, �lling also some gaps in the traditional (small-b) theory. Addition-

ally, we compare the small-b and �xed-b limiting approximations to the sampling

distribution of a WC estimator by means of a Monte Carlo experiment, �nding

that the �xed-b limit is more accurate.
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1. INTRODUCTION

Fixed-b asymptotics have been employed to approximate the sampling distribution

of nonparametric estimators of spectral densities and long-run covariance matrices more

accurately than by traditional asymptotics. These estimators depend typically on the

sample size T and on a bandwidth M . The idea, introduced by Neave (1970), is to

analyze the limit of the estimators when M=T ! b 2 (0; 1] as T !1. This is because,

although setting M=T ! 0 makes it possible to obtain consistent estimators of the

spectral density (or of the long run variance) of weakly dependent processes, in any

practical situation a non-zero fraction M=T is used: �xing the proportion M=T could

therefore yield a better approximation to the limit distribution of the estimator. Kiefer

and Vogelsang (2005) derived the �xed-b limit of the estimator of the long run variance

and showed that in most scenarios it represents an improvement over the approximation

obtained by settingM=T ! 0 (the so-called small-b asymptotics). Bunzel and Vogelsang

(2005) showed that the �xed-b approximation to the long run variance is also convenient

when making inference on a trend in presence of a potential (but not certain) unit

root, because the Wald statistic has non-degenerate limit distribution regardless of the

e¤ective existence of said unit root. Iacone, Leybourne and Taylor (2013) exploited this

self-normalization property of the Wald statistic in the context of testing for a break in

the slope in the presence of residuals that may also be fractionally integrated.

Focusing on the single-equation standard cointegration setting (with unit root ob-

servables and weak dependent cointegrating errors), few works have employed �xed-b

asymptotics in the cointegration literature. First, Bunzel (2006) analyzed the �xed-b

limit of a Wald test statistic based on the dynamic ordinary least squares (DOLS) es-

timator of the cointegration parameter and on a weighted covariance estimator of the

corresponding long-run variance, ignoring, however, the impact of lead and lag choices

on the implementation of the DOLS. Jin, Phillips and Sun (2006) derived a �xed-b the-

ory for tests based on the fully modi�ed-OLS (FM-OLS) estimator, although requiring

standard consistency results which, in particular, ignore the impact of choices of tuning

parameters. Thus the type of �xed-b theory developed by these two papers has been

denoted by Vogelsang and Wagner (2014) as �partial�. In fact, Vogelsang and Wagner

(2014) developed the �complete� �xed-b limit of FM-OLS, which depends on a compli-

cated manner upon nuisance parameters. Additionally, they proposed a new estimator

of the cointegration parameter (integrated modi�ed OLS), which does not depend on

choices of tuning parameters, and discussed �xed-b inference for Wald statistics based

on this estimator.

In the spirit of Vogelsang and Wagner (2014), we examine in the present paper the
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�xed-b approximation to the distribution of an alternative estimator of the cointegration

parameter: the weighted covariance (WC) estimator proposed by Phillips (1991) for the

standard cointegration case, and later analyzed by Marinucci (2000) in various fractional

circumstances. This estimator is motivated by the consideration that a cointegration

parameter is a ratio between appropriate long-run covariance and variance, and therefore

its estimation can be naturally based on weighted covariances. Thus, while Phillips

(1991) and Marinucci (2000) analyzed the traditional (small-b) limiting approximation

to the distribution of the estimator imposing (at least) M = o (T ), the form of the

estimator opens the door to considering also its �xed-b approximation. In view of the

evidence provided by the �xed-b literature, comparing the �xed-b approximation to

the traditional, small-b, one appears to be an interesting exercise, which might shed

additional light on the advantages of the �xed-b limits in terms of the accuracy.

The purpose of this paper is therefore twofold. First, we derive the �xed-b limits

of two WC estimators in a fractional setting, �lling also some gaps in the traditional

(small-b) limit theory which were not covered by Marinucci (2000). This is of practical

importance on its own because the WC estimator may be included in the class of �rst

stage estimators (see Hualde and Iacone, 2012). Second, we compare the accuracy of

the small-b and �xed-b approximations relative to the sampling distribution of one of

the WC estimators by means of a Monte Carlo experiment. Nicely, we �nd that, at least

in the di¤erent scenarios covered by our experiment, the conjecture supported by the

literature that the �xed-b limit is more accurate is veri�ed. These results might appear

to be of limited empirical relevance, because the limit distribution of the WC estimator is

not free of nuisance parameters and therefore it is not suitable for statistical inference.

However, evidence showing that the �xed-b approximation is more accurate than the

traditional one might support the empirical relevance of appropriate modi�cations of the

WC estimator, which would lead to Wald test statistics with pivotal �xed-b limits. This

appears to be especially relevant in view of the size problems displayed by the Wald test

statistics based on second stage estimators (like those of Robinson and Hualde, 2003

or Hualde and Robinson, 2010), whose standard limiting distribution is pivotal. We

address brie�y this issue in Remark 6 below.

Incidentally, our results are connected to a related problem: the determination of

the limiting behaviour of the narrow band least squares (NBLS) estimator with �xed

bandwidth. The traditional limit theory (with bandwidth tending to1) is provided by

Robinson and Marinucci (2001, 2003), who conjectured that a faster convergence rate

(like that in Theorem 1 below) is attainable in certain circumstances by holding the

bandwidth �xed in NBLS estimation. Chen and Hurvich (2003) veri�ed this conjec-
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ture for their tapered NBLS estimator using di¤erenced data, and we provide further

(heuristic) evidence.

We introduce the WC estimators in Section 2, where we also derive their �xed-b

limiting distributions, and show that they always achieve the fastest convergence rate in

the class of �rst stage semiparametric estimators. In Section 3, we compare the small-b

and �xed-b limiting approximations to the sampling distribution of a WC estimator by

means of a Monte Carlo experiment. In Section 4, we conclude. The proofs of the

theorems are given in the Appendix.

2. SMALL-b AND FIXED-b LIMITS OF WC ESTIMATORS

We consider a single-equation fractional cointegration framework. For t = 0;�1; :::;,

let �t =
�
�1;t; �

0
2;t

�0
, prime denoting transposition, be a p � 1 zero mean covariance

stationary process such that p � 2, where �1;t is scalar and �t has spectral density �nite

and nonsingular at all frequencies; de�ne et and xt as

et = �
��1
�
�1;t1(t > 0)

	
, xt = �+�

��2
�
�2;t1(t > 0)

	
, (1)

where � is a generic constant vector, 1 (S) denotes the indicator function, which takes

value 1 if the statement S is true, 0 otherwise, and L is the lag operator, so that

� = 1 � L. For d � 0, ��d can be expanded as (1� L)�d =
P1

t=0�
(d)
t L

t, where

�
(d)
t = � (t+ d) = (� (d) � (t+ 1)), � (:) being the Gamma function (with the conventions

� (0) = 1, � (0) =� (0) = 1). We assume that the random vector (yt; x
0
t)
0 is observable

at t = 1; :::; T , and

yt = � + �
0xt + et, with 0 � �1 < �2. (2)

Note that both � and � play an important role in the model. In particular � allows

xt to potentially have a non-zero mean (if � 6= 0). Similarly, the presence of � gives

�exibility to the model. For example, if � were not present, � = 0 would immediately

imply that not only xt has zero mean but also yt. This might be restrictive, and we allow

for more generality. Also, yt and xt are fractionally integrated (see, e.g., Hualde and

Iacone, 2012). In particular, the individual components of xt are I (�2) and, if � 6= 0, yt

is also I (�2), whereas et is I (�1). Furthermore, yt and xt are fractionally cointegrated,

because the linear combination yt��
0xt reduces the integration order of the observables.

Notice that if � = 0, yt is I (�1) and the cointegration is trivial.

Our assumptions imply that if p > 2, given the nonsingularity of the spectral density

of �2;t, the individual components of xt cannot cointegrate (see, e.g., Nielsen and Fred-

eriksen, 2011, p.83). Thus, (2) implies that the cointegrating rank is 1. Extensions to

more complicated settings, allowing for higher cointegrating ranks and the possibility of
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multicointegration, can be accounted for as in Hualde and Robinson (2010) or Hualde

and Iacone (2012). However, for simplicity, we just consider a single-equation model,

which, in any case, is very standard in the literature (see, e.g., Marinucci, 2000, Robinson

and Marinucci, 2001, Robinson and Hualde, 2003, Nielsen and Frederiksen, 2011).

In view of the truncations on the right-hand sides of (1), xt and et are nonstationary

processes. When �2 < 1=2, it is possible to avoid the truncations in (1) and de�ne

e�t = ���1�1;t, x
�
t = � + ���2�2;t, so that processes x

�
t and e

�
t are stationary: xt and

et are usually referred to as Type II fractionally integrated processes, while x
�
t and e

�
t

are Type I. Similarities and di¤erences for these two types have been analyzed by, e.g.,

Marinucci and Robinson (1999). Notice that for �2 > 1=2 a di¤erent truncation is still

necessary to de�ne the Type I x�t , and this also holds true to de�ne e
�
t for �1 > 1=2.

We then prefer the notation for Type II fractionally integrated process because it allows

a more uniform treatment. Admittedly, our model, which sets all initial conditions to

zero (or constants), lacks empirical plausibility, but setting appropriately bounded initial

values as in Johansen and Nielsen (2012a) leads equally to our Type II limiting results.

We introduce the WC estimators of �. Let k (x) be a kernel function satisfying

k (x) = k (�x), k (0) = 1, jk (x)j � 1, k (x) continuous at x = 0 and
R1
0
k (x)2 dx < 1.

For two generic sequences �t, �t, with sample means � = T
�1
PT

t=1 �t, � = T
�1
PT

t=1 �t,

consider ��t = �t, �
�
t = �t, or �

�
t = �t � �, �

�
t = �t � �, and de�ne sample covariances

c��� (l) = T�1
PT�l

t=1 �
�
t �
�0
t+l for l � 0; = T�1

PT
t=1�l �

�
t �
�0
t+l for l < 0. Then if ��t = �t,

��t = �t, let c�� (l) = c
�
�� (l), whereas if �

�
t = �t� �, �

�
t = �t� �, let ec�� (l) = c��� (l). De�ne

�� =
�PT�1

l=�T+1 k (l=M) c
�
xx (l)

��1PT�1
l=�T+1 k (l=M) c

�
xy (l) ; (3)

where 1 �M � T and �� de�nes b� or e�, depending on whether sample covariances c or
ec are used, respectively. Note that b� is a simple multivariate extension of Marinucci�s
(2000) estimator, e� accounting for the possibility that � in (2) might be nonzero. The
parameter M is called bandwidth, and it may be a truncation lag in those kernels that

are truncated.

We introduce some notation and regularity conditions to derive the �xed-b limiting

approximation to the sampling distributions of b�, e�:
Assumption 1. Let "t be independent and identically distributed (iid) p � 1 vectors,

with E ("t) = 0, E ("t"
0
t) = �, where � is positive de�nite, and E k"tk

q < 1 for q > 2.

Let �t = A (L) "t, where A (s) = Ip+
P1

j=1Ajs
j (Is is the s-rowed identity matrix), and

the Aj are p� p matrices such that det (A (s)) 6= 0, jsj = 1, and A
�
ei�
�
is di¤erentiable

in � with derivative in Lip (%), % > 1=2:
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Assumption 1 implies that the derivative of A(ei�) has Fourier coe¢cients jAj =

O (j�%) as j !1, so in particular
P1

l=1 l
1=2 kAlk <1. Let 
 = A (1) �A (1)

0, G (r; s) =

diag
n
��1 (�1) (r � s)

�1�1 , e10��1 (�2) (r � s)�2�1
o
, e1 being a (p� 1) � 1 vector of ones,

� = (�1; �2)
0. Let B (r) be the p-dimensional Brownian motion with covariance matrix


 and B (r; �) =
R r
0
G (r; s) dB (s) be a Type II fractional Brownian motion, noting

that, through B (r), B (r; �) depends on 
. Partition B (r; �) =
�
B1 (r; �1) ; B

0

2 (r; �2)
�0
,

B1 (r; �1), B2 (r; �2) collecting the �rst and last p�1 components of B (r; �), respectively.

For N (�) = diag
n
T�1=2��1 ;e10T�1=2��2

o
, ut = (et; x

0
t � �

0)0, under Assumption 1 and

�1 � 0, �2 � 0, Marinucci and Robinson (2000) derived the functional central limit

theorem (FCLT)

N (�)
PbrT c

t=1 ut )
�
B1
�
r; �+1

�
; B02

�
r; �+2

��0
for r 2 [0; 1] , (4)

where ) denotes weak convergence and �+i = �i + 1, i = 1; 2; note that (4) also holds

for �1=2 < �1 < 0, �1=2 < �2 < 0, strengthening appropriately the moment conditions

in Assumption 1 (see Johansen and Nielsen, 2012b).

As in Bunzel and Vogelsang (2005), we consider the following kernels: Type 1: k (:) is

twice continuously di¤erentiable everywhere, with second derivative k00 (:); Type 2: k (:)

is twice continuously di¤erentiable everywhere, except for jxj = 1; moreover, k (x) = 0

if jxj > 1. The second derivative is k00 (:); for x ! 1 de�ne the derivative from the left

at x = 1, k0_ (1) = limh!0 ((k (1)� k (1� h)) =h); Type 3: k (:) is the Bartlett kernel.

Examples of Type 1 kernel are the Daniell and the Quadratic Spectral; examples of Type

2 are the Parzen and the Bohmann. Formulae for k (:) and k00 (:) are given on pp. 393,

394 of Bunzel and Vogelsang (2005). Finally, de�ne eB1 (r; �1) = B1 (r; �1)� rB1 (1; �1),
eB2 (r; �2) = B2 (r; �2)� rB2 (1; �2).
Theorem 1. Under Assumption 1 and 0 � �1 < �2, M = bT , b 2 (0; 1] ;

T �2��1 (e� � �))
n
eQxx (b; �)

o�1 eQxe (b; �) ; (5)

where

eQxe (b; �) = �
1

b2

Z 1

0

Z 1

0

k00
�
r � s

b

�
eB2
�
s; �+2

� eB1
�
r; �+1

�
drds

for Type 1 kernels,

eQxe (b; �) = �
1

b2

Z Z

jr�sj<b

k00
�
r � s

b

�
eB2
�
s; �+2

� eB1
�
r; �+1

�
drds

+
1

b
k0_ (1)

Z 1�b

0

�
eB2
�
r; �+2

� eB1
�
r + b; �+1

�
+ eB2

�
r + b; �+2

� eB1
�
r; �+1

��
dr
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for Type 2 kernels, and

eQxe (b; �) =
2

b

Z 1

0

eB2
�
r; �+2

� eB1
�
r; �+1

�
dr

�
1

b

Z 1�b

0

�
eB2
�
r; �+2

� eB1
�
r + b; �+1

�
+ eB2

�
r + b; �+2

� eB1
�
r; �+1

��
dr

for the Barlett kernel; eQxx (b; �) is de�ned by replacing eB1
�
r; �+1

�
by eB02

�
r; �+2

�
in all

the formulae for eQxe (b; �) above; also if in (1), (2) �1 > 1=2, or 0 � �1 � 1=2, �2 > 1=2
and � = 0, or 0 � �1; �2 � 1=2 and � = 0, � = 0, then

T �2��1 (b� � �)) fQxx (b; �)g
�1Qxe (b; �) ; (6)

where

Qxe (b; �) = B2
�
1; �+2

�
B1
�
1; �+1

�
�
1

b2

Z 1

0

Z 1

0

k00
�
r � s

b

�
B2
�
s; �+2

�
B1
�
r; �+1

�
drds

+
1

b

Z 1

0

k0
�
1� r

b

��
B2
�
1; �+2

�
B1
�
r; �+1

�
+B2

�
r; �+2

�
B1
�
1; �+1

��
dr

for Type 1 kernels,

Qxe (b; �) = B2
�
1; �+2

�
B1
�
1; �+1

�
�
1

b2

Z Z

jr�sj<b

k00
�
r � s

b

�
B2
�
s; �+2

�
B1
�
r; �+1

�
drds

+
1

b
k0_ (1)

Z 1�b

0

�
B2
�
r; �+2

�
B1
�
r + b; �+1

�
+B2

�
r + b; �+2

�
B1
�
r; �+1

��
dr

+
1

b

Z 1

1�b

k0
�
1� r

b

��
B2
�
r; �+2

�
B1
�
1; �+1

�
+B2

�
1; �+2

�
B1
�
r; �+1

��
dr

for Type 2 kernels, and

Qxe (b; �) = B2
�
1; �+2

�
B1
�
1; �+1

�
+
2

b

Z 1

0

B2
�
r; �+2

�
B1
�
r; �+1

�
dr

�
1

b

Z 1�b

0

�
B2
�
r + b; �+2

�
B1
�
r; �+1

�
+B2

�
r; �+2

�
B1
�
r + b; �+1

��
dr

�
1

b

Z 1

1�b

�
B2
�
r; �+2

�
B1
�
1; �+1

�
+B2

�
1; �+2

�
B1
�
r; �+1

��
dr

for the Barlett kernel; Qxx (b; �) is de�ned by replacing B1
�
r; �+1

�
by B02

�
r; �+2

�
in all

the formulae for Qxe (b; �) above.

Remark 1. Theorem 1 implies that B (r; �), together with k (x) and b (as it is standard
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in the �xed-b literature), fully characterize the �xed-b limiting distributions of b�, e�.
Remark 2. Result (6) implies that when xt and/or et are truly nonstationary, the

limiting distribution of b� is invariant to nonzero � and/or �, because their contribution
is of smaller order.

Remark 3. Letting M grow proportional to T , the WC estimators attain the rate

T �2��1 , the fastest among the �rst stage estimators (see Hualde and Iacone, 2012).

Remark 4. Theorem 1 provides results for Type II processes; the results for Type I

processes are similar (see Johansen and Nielsen, 2012b, for a summary of the regularity

conditions, and for the characterization of the limit of the partial sums).

Remark 5. Marinucci (2000) discussed the traditional limiting behaviour of b� for cases
0 � �1; �2 < 1=2; �1 = 0, �2 = 1; 1 < �2 < 3=2, 0 < �1 < 1=2, when observables are

Type I processes. Without the aim of covering all possible cases, we present in Theorem

2 some results from which the small-b limiting approximations to the sampling distri-

butions of b�, e�, can be straightforwardly derived by the results for the OLS estimator
given in Robinson and Marinucci (2001). Note that Assumption 1 strengthened to �-

nite fourth moment is su¢cient to derive the di¤erent results given in Robinson and

Marinucci (2001), which will be used throughout the proof of Theorem 2. In particu-

lar, it is su¢cient for the conditions related to the cumulant spectral density, it implies

square integrability of the univariate spectra of the components of �t and also fourth-

order stationarity of �t. Note also that we relax conditions in Marinucci (2000), like

Gaussianity.

Theorem 2. Let Assumption 1 with q � 4, M�1 + M=T ! 0 as T ! 1, and

0 � �1 < �2 hold. Also, let k (x) be nonnegative and bounded, k (x) = 0 for jxj > 1,R 1
�1
k (x) dx = 1. Then, if �2 > 1=2 and M=T

2�2�1 ! 0, for c�xx = cxx;ecxx,

1

M

PM
l=�M k (l=M) c

�
xx (l) = c

�
xx (0) + op

�
T 2�2�1

�
: (7)

Also, for c�xe = cxe;ecxe, if (�1; �2) = (0; 1)

1

M

PM
l=�M k (l=M) c

�
xe (l) = c

�
xe (0) +

1

2

�P1
l=1 �l �

P1
l=0 l

�
+ op (1) , (8)

where l = E
�
�1;t�2;t�l

�
, whereas if for �1 � 0, �1+�2 > 1, T

�1M log T+T 1��1��2M ! 0,

then
1

M

PM
l=�M k (l=M) c

�
xe (l) = c

�
xe (0) + op

�
T �1+�2�1

�
: (9)

Remark 6. Both the small-b and �xed-b limiting distributions of the WC estimators
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depend on nuisance parameters �, 
. This dependence makes the WC estimators un-

suitable for statistical inference. However, a modi�ed version of these estimators could

be the basis of asymptotically pivotal Wald statistics. As usual in the cointegration

literature, the main challenge is to transform the estimators to remove the endogeneity

caused by the correlation between �1;t and �2;t, and, without the aim of providing a

complete discussion, we explore here this issue. For the sake of an easy presentation, let

� = 0, � = 0 in (1), (2). Also, for a scalar or vector process �t and real number a, let

�t (a) = �
a f�t1 (t > 0)g and, partitioning 
 according to �t, so


 =

 

11 
12


21 
22

!
;

let � = 
�122 
21. Clearly, (2) can be written as

yt (�1) = �
0xt (�1) + �

0xt (�2) + �1:2;t; (10)

where �1:2;t = �1;t � 
12

�1
22 �2;t, so, denoting zt (�; �) = yt (�1) � �

0xt (�2) and assuming

for the moment that � and � are known, we could estimate � by

� (�; �) =
�PT�1

l=�T+1 k (l=M) cx(�1)x(�1) (l)
��1PT�1

l=�T+1 k (l=M) cx(�1)z(�;�) (l) : (11)

By identical arguments to those in the Appendix, it is simple to show that the �xed-

b limiting distribution of T �2��1 (� (�; �)� �) depends on b, k (�), B2 (r; �2 � �1) and

B1:2 (r) = B1 (r) � 
12

�1
22 B2 (r). Then, noting that B2 (r; �2 � �1) and B1:2 (r) are

independent processes, the �xed-b limiting distribution of T �2��1 (� (�; �)� �) can be

easily shown to be mixed-Gaussian. This is a crucial result which as in, e.g., Hualde

and Robinson (2010), can be exploited to construct a Wald test statistic to test for

values of � with a �2 �xed-b null limiting distribution. Additionally, in the present

setting, the �xed-b theory enjoys other attractive features. First, the type of correction

employed to remove the endogeneity is very simple (the inclusion of �0xt (�2) in (10)).

When considering small-b asymptotics instead, this type of correction would work if �t

is a white noise process, but in more general settings, in view of the results for �zero-

frequency� estimators of Hualde and Robinson (2010), it would only be adequate if the

rate of growth of M is appropriately restricted. Second, the �xed-b limit is identical

irrespective of the type of cointegration which characterizes the data. This is relevant,

because it is well known in the fractional cointegration literature that, typically, di¤erent

results apply under strong (with �2��1 > 1=2) or weak (with �2��1 < 1=2) cointegration,
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the borderline case �2��1 = 1=2 being relatively unexplored. Therefore, while the small-

b limit of (11) depends crucially on the gap �2 � �1, the �xed-b limit is valid for any

�2 � �1 > 0. Finally, given that in practice �, � are unknown, � (�; �) is unfeasible:

however, �, � can be easily estimated (say by b�, b�), which prompts consideration of the
feasible estimator �(b�;b�). Then, by very similar techniques to those in, e.g., Hualde
and Robinson (2010), it can be shown that if b� � � = Op (T

��), for any � > 0, and
b� !p �, then T

�2��1 (� (�; �)� �) and T �2��1
�
�(b�;b�)� �

�
have identical �xed-b limiting

distributions. This is a very strong result, because the conditions on the estimators of

the nuisance parameters are very mild and contrast heavily with the standard theory,

where faster rates of convergence on the estimators of �, � are required the smaller the

cointegrating gap (�2 � �1) is. Note however that the feasibility issue can be considered

from a more attractive (and complex) perspective. Given that � would typically be

estimated by WC estimators, instead of relying on consistency arguments, one could

consider a �complete� �xed-b theory, where �xed-b arguments apply also to b�. This type
of analysis, proposing also an appropriate Wald statistic with a pivotal �xed-b limit,

appears to be a doable but very challenging task.

Remark 7. The frequency domain representations of the WC estimators lead to an

interesting connection between �xed-b theory for WC and �xed bandwidth approach to

NBLS. For two generic sequences �t, �t, let I
�
�� (�) = (2�)�1

P
jlj<T c

�
�� (l) e

�il�, where

i is the complex operator, and then let I�� (�) = I��� (�) when c
�
�� (l) = c�� (l) is used,

whereas let eI�� (�) = I��� (�) when c��� (l) = ec�� (l), so that I�� (�) and eI�� (�) are (cross-)
periodograms. Then, the WC estimators have frequency domain representation

�� =

�Z �

��

KM (�) I
�
xx (�) d�

��1 Z �

��

KM (�) I
�
xy (�) d�; (12)

(see, e.g., Brockwell and Davis, 1991, pp.358-360), whereKM (�) = (2�)
�1P

jlj<T k (l=M) e
�il�

is the spectral window associated to k (�) (see, e.g., Priestley, 1981, p.436), and �� equals

b� or e� depending on whether I or eI are used. Focusing just on b�, approximating the inte-
grals in (12) by sums over the Fourier frequencies �j = 2�j=T for j = 0;�1; :::;�bT=2c

(where b�c denotes integer part), yields an alternative estimator of �, say �. This is

particularly interesting if the Daniell kernel is used: this kernel has spectral window

M=(2�) when ��=M � � � �=M and 0 otherwise, so by the symmetry of the peri-

odogram, � =
�Pm

j=0 sjIxx (�j)
��1Pm

j=0 sj Re Ixy (�j), where sj = 1, j = 0; T=2, sj = 2,

otherwise, and following Brockwell and Davis (1991), pp.359,360, m = bT= (2M)c. Note

that � is the NBLS estimator, whose limiting properties have been derived by Robinson

and Marinucci (2001) under the assumption that 1=m+m=T ! 0 as T !1, implying

10



M=T ! 0. Robinson and Marinucci (2001, p.866) conjectured that the T �2��1 conver-

gence rate could be achievable by the NBLS with m �xed as T !1. Later, Chen and

Hurvich (2003) veri�ed this conjecture for a tapered NBLS used on di¤erenced data. By

our previous reasoning, analyzing the properties of b� (or e�) whenM = bT , b > 0 and the

Daniell kernel is used, relates closely to discussing the properties of the NBLS when m

is �xed, speci�cally m = b1= (2b)c. Providing formal results is beyond the scope of the

present paper, but we conjecture that if M = bT , b 2 (0; 1], under standard conditions,

b� � � = Op
�
T �2��1

�
, although b� and � may have di¤erent limiting distributions.

3. FINITE SAMPLE PERFORMANCE

In a simple bivariate case, we compare the sampling distributions of e� with its small-b
and �xed-b limiting distributions for cases (�1; �2) = (0; 1) ; (0; 1:4) ; (:8; 1:2). While the

�xed-b limit is given by Theorem 1, the small-b can be straightforwardly derived from

Theorem 2 (although stronger moment conditions might be needed). In particular, the

small-b limits of T �2��1 (e� � �) for the bivariate case are
�Z 1

0

B2 (r; 1) dB1 (r; 1) +
1

2

P1
l=�1 l

�
=

Z 1

0

B
2

2 (r; 1) dr, if �1 = 0; �2 = 1; (13)

Z 1

0

B2 (r; �2) dB1 (r; 1) =

Z 1

0

B
2

2 (r; �2) dr, if �1 = 0; �2 > 1; (14)

Z 1

0

B2 (r; �2)B1 (r; �1) dr=

Z 1

0

B
2

2 (r; �2) dr, if �1 >
1

2
; �2 � 1; (15)

where Bj (r; d) = Bj (r; d) �

Z 1

0

Bj (r; d) dr, j = 1; 2. Note also that the small-b ap-

proximation of T �2��1 (b� � �) is given by corresponding expressions (13), (14), (15), just
replacing Bj by Bj. Interestingly, note that (13) with B2 replaced by B2 di¤ers from

(A.12) of Phillips (1991) (there seems to be a minor typo in the proof in p.433, where

the contribution of k (x) is missing) and also from (18) of Marinucci (2000).

We generate "t as an iid Gaussian process with E ("t) = 0, V ar ("1;t) = V ar ("2;t) = 1,

Cov ("1;t; "2;t) = :5, and also �t as in Assumption 1 withA (z) = diag f1= (1� :5z) ; (1 + :5z)g.

Fixing � = � = � = 0, we generate (yt; xt)
0 using (1) and (2), for the three dif-

ferent (�1; �2) combinations and compute e� for b = M=T = :1; :25; :5; 1, using the

Bartlett kernel. Next, using R = 5000 replications we computed the empirical cu-

mulative distribution functions (CDF) of T �2��1 (e� � �), T = 64; 256, using bF (x) =
R�1

PR
i=1 1

�
T �2��1 (e�i � �) < x

�
, where e�i, i = 1; :::; R, are the estimates corresponding

to each replication. To evaluate the accuracy of the small-b and �xed-b asymptotic ap-

proximations (which are nuisance-parameter dependent), we compare the two sampling
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CDFs with corresponding asymptotic CDFs (given in Theorem 1 and (13)-(15)), which,

as in Hashimzade and Vogelsang (2007), were simulated approximating the standard

Brownian motion by scaled partial sums of iid N (0; 1) random variables using 1000

increments and 50000 replications.

Results for (�1; �2) = (0; 1) ; (0; 1:4) ; (0:8; 1:2) are given in Figures 1, 2, 3, respectively.

As expected, we always �nd that the limit distribution computed assuming b = 0:1 is the

closest one to the small-b limit, being these two distributions very close to each other

when (�1; �2) = (0; 1) ; (0:8; 1:2). On the other hand, the small-b and �xed-b limit distrib-

utions di¤erentiate more as b increases. In all cases the �xed-b limit distribution is closer

to the empirical distributions of the estimates in small samples, thus providing a better

approximation: indeed, the �xed-b limit distribution provides a good approximation of

the distributions of the estimates in small samples already for T = 256 and, at least for

b = 0:5; 1, even for T = 64. The gains in accuracy achieved by the �xed-b limit are most

evident when (�1; �2) = (0; 1:4), the small-b approximation being very inaccurate here.

4. CONCLUSION

We have compared the traditional (small-b) and �xed-b limiting approximations to

the sampling distribution of WC estimators. First, we have derived the �xed-b limiting

distribution of two WC estimators, �lling also some gaps in the small-b theory. Then,

by means of a Monte Carlo experiment, we have compared both limiting distributions,

concluding that the �xed-b limit is more accurate. Given that these distributions depend

in general on nuisance parameters, our results are not of direct use in testing. However,

we have proposed an appropriate modi�cation of one of the WC estimators along the

lines of second stage estimation of cointegrating parameters (see, e.g., Robinson and

Hualde, 2003, Hualde and Robinson, 2010, Nielsen and Frederiksen, 2011), which can

be exploited to construct a Wald test statistics with pivotal �xed-b limit. This, in view

of the evidence provided by the present paper and the size problems displayed by the

Wald test statistics based on second stage estimators, appears to be a promising research

avenue which will be explored in future work.

Appendix.

Proof of Theorem 1. We �rst give the proof for e�. From (2), y = � + �x + e and

yt � y = � (xt � x) + et � e. Therefore,

ecxy (l) = �T�1
PT�l

t=1 (xt � x) (xt+l � x)
0 + T�1

PT�l
t=1 (xt � x) (et+l � e) , l � 0;

= �T�1
PT

t=1�l (xt � x) (xt+l � x)
0 + T�1

PT
t=1�l (xt � x) (et+l � e) , l < 0;
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so ecxy (l) = ecxx (l) � + ecxe (l), and

e� = � +
�PT�1

l=�T+1 k (l=M)ecxx (l)
��1PT�1

l=�T+1 k (l=M)ecxe (l) :

Next, adapting notation on p.1353 of Kiefer and Vogelsang (2002), let bet = et � e,

bxt = xt � x, bvt = (bet; bx0t)0, b�l = T�1
PT

t=l+1 bvtbv0t�l for l � 0, b�l = b�0�l for l < 0, b
 =
PT�1

l=�T+1 k (l=M)
b�l, �h;l = k ((h� l) = (bT )),r2�h;l = (�h;l � �h;l+1)�(�h+1;l � �h+1;l+1),

bSl =
Pl

t=1 bvt. Then, as on p.1365 of Kiefer and Vogelsang (2002),

b
 = T�1
PT�1

h=1 T
�1
PT�1

l=1 T
2r2�h;lT

�1=2 bShT�1=2 bS 0l; (16)

so T�(�1+�2)
PT�1

l=�T+1 k (l=M)ecxe (l) = T�(�1+�2)
�
e0; Ip�1

�
b

�
1;e00

�0
equals

T�1
PT�1

h=1 T
�1
PT�1

l=1 T
2r2�h;l

�
T�1=2��1

Ph
t=1 bet

��
T�1=2��2

Pl
t=1 bxt

�
.

We discuss Type 1 kernels �rst. Adapting results from Kiefer and Vogelsang (2005),

p.1159, and Bunzel and Vogelsang (2005), T 2r2�h;l ! �b�2k00 (b�1 (r � s)), so, by the

FCLT (4) and the continuous mapping theorem,

T�(�1+�2)
PT�1

l=�T+1 k (l=M)ecxe (l)) eQxe (b; �) ; (17)

and, in the same way,

T�2�2
PT�1

l=�T+1 k (l=M)ecxx (l)) eQxx (b; �) . (18)

The proofs of (17) and (18) for Type 2 kernels and for Type 3 kernel follow again using

formulae in Kiefer and Vogelsang (2005) and Bunzel and Vogelsang (2005), but applying

the FCLT (4) for fractional processes as in the proof for Type 1 kernels. Finally, (5)

follows by the continuous mapping theorem.

The proof for b� is almost identical, just noting that additional terms arise in the
expansion of b
 (see (16)) because the series are not demeaned, and also that when xt
and/or et are truly nonstationary, the contribution of nonzero � and/or � is of smaller

order.

Proof of Theorem 2. First, noting that M�1
PM

l=�M k (l=M) � 1 = o (1), (7) for
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c�xx = cxx follows as in Lemma 3 of Marinucci (2000) by showing

1

MT

PM
l=1 k (l=M)

Pl
t=1 xtx

0
t = op

�
T 2�2�1

�
;

1

MT

PM
l=1 k (l=M)

PT
t=l+1 xt (xt � xt�l)

0 = op
�
T 2�2�1

�
;

which, as M=T 2�2�1 ! 0, can be easily justi�ed as in Robinson and Marinucci (2001).

The proof for c�xx = ecxx is almost identical and thus we omit it.
The proof of (8) follows by replicating some of the steps given in the proof of Lemma 4

of Marinucci (2000) and also by results in Robinson and Marinucci (2001). In particular

c�xe (0)�
1

M

PM
l=�M � (l=M) c

�
xe (l) = (I) + (II) + (III) + (IV ) + (V ) ; (19)

where for c�xe = cxe the terms of the right hand side of (19) are de�ned in p.701 of

Marinucci (2000), whereas for c�xe = ecxe the de�nitions are almost identical, with the
only di¤erence that the series are demeaned. Then, for either de�nition, it can be shown

that (II) = (IV ) = op (1), (V ) = op (1),

(I) = �E

�
1

MT

PM
l=1 k (l=M)

PT
t=l+1 (xt � xt�l) et�l

�
+ op (1) ;

(III) = E

�
1

MT

PM
l=1 k (l=M)

PT
t=l+1 (xt � xt�l) et

�
+ op (1) ;

so (8) follows because (I)!p �
1
2

P1
l=1 �l, (III)!p

1
2

P1
l=0 l. Finally, the proof of (9)

follows as in Marinucci (2000) using results from Robinson and Marinucci (2001). With

Marinucci�s (2000) notation, the requirement T�1M log T + T 1��1��2M ! 0 is needed

to show that terms �3 and (III) are op
�
T �1+�2�1

�
:
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