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Abstract

Isogeometric analysis (IGA) of geometrically complex three-dimensional ob-
jects is possible when used in combination with the Finite Cell method
(FCM). In this contribution we propose a computational methodology to
automatically analyze the effective elastic properties of scan-based volumet-
ric objects of arbitrary geometric and topological complexity. The first step
is the reconstruction of a smooth geometry from scan-based voxel data using
a B-spline level set function. The second step is a goal-oriented adaptive iso-
geometric linear elastic analysis. Elements are selected for refinement using
dual-weighted residual shape function indicators, and hierarchical splines are
employed to construct locally refined spline spaces. The proposed methodol-
ogy is studied in detail for various numerical test cases, including the compu-
tation of the effective Young’s modulus of a trabecular bone micro-structure
reproduced from µCT-scan data.
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1. Introduction

Isogeometric analysis (IGA) was introduced by Hughes et al. in 2005 [1] as
a novel analysis paradigm aiming at the unification of the fields of computer
aided (geometric) design (CAD) and finite element analysis (FEA), see also
[2]. The fundamental idea of IGA is to directly use the CAD parametrization
of a geometric design for the purpose of analysis. Consequently, in contrast to
the finite element method, no geometry clean-up or meshing operations are
required. This rigorous elimination of the meshing step benefits the design-
through-analysis process, especially for complex designs. Additionally, the
spline basis functions inherited from CAD have various advantageous proper-
ties compared to the basis functions used in finite elements. The smoothness
of higher-order spline basis functions is the most prominent of such advanta-
geous properties. Due to its merits, isogeometric analysis has been applied in
the context of both Galerkin-based and collocation-based (e.g. [3, 4]) analysis
for a wide variety of applications, encompassing the domains of fluid dynam-
ics, (non-linear) solid mechanics, and multi-physics modeling. Finite element
data structures have been developed to facilitate the implementation of the
isogeometric analysis paradigm in existing finite element codes, see e.g. [5–7].

Recently, isogeometric analysis has successfully been applied for the dis-
cretization of a variety of problems on geometrically and topologically com-
plex volumetric domains by using it in conjunction with the finite cell method
[8, 9]. In this method a trivariate tensor-product domain is created in
which the complex domain of interest is immersed [10, 11]. The B-spline
(or NURBS) basis functions required for the construction of trial and test
spaces to be used in combination with a Galerkin problem are initially con-
structed over the structured domain, after which they are restricted to the
domain of interest. Since an underlying structured mesh is available, local
refinements can be obtained using hierarchical splines, see e.g. [12].

A particularly interesting application area of the finite cell method is the
analysis of image-based (or scan-based) geometric models [13]. Since the
finite cell method does not require a conforming mesh, cumbersome mesh-
ing operations can be circumvented. Instead, the image data is used on a
sub-element level to trim the structured domain to the immersed domain
of interest. The image-based finite cell method has been used for e.g. the
analysis of metal foams [14], the validation of in vitro bone experiments [15],
and trabecular bone micro-structures [11] (see [13] for an overview).

In this contribution we study the application of the isogeometric finite
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cell method to the elastic analysis of trabecular bone specimens. Numeri-
cal analysis of trabecular bone plays an important role in efficacy studies of
osteoporosis treatments. In the last few decades micro-scale finite element
techniques have been proposed that use a voxel conversion technique to rep-
resent the bone micro-structure with brick elements (see e.g. [16–18]). Al-
though such analyses can well predict bone stiffness in some clinical research
studies, the disadvantages associated with such analyses prevent wider ap-
plication. Most importantly, due to the non-smoothness of the geometric
model, microscopic stresses cannot be represented accurately. Alternative
finite element techniques, e.g. based on tetrahedral meshes (see e.g. [19–21]),
have been developed to ameliorate the deficiencies of analyses using brick
elements. However, due to the poor performance of linear tetrahedron ele-
ments, and the computational expenses of second order tetrahedrons, these
are not commonly used. Based on its proven advantages, it is anticipated
that isogeometric analysis can render accurate and reliable computational
results for the elastic analysis of trabecular bone micro-structures. In this
contribution we outline a computational methodology to automatically per-
form the elastic analysis of scan-based geometric models with a high degree
of computational accuracy.

One of the novel contributions of this manuscript is the introduction
and analysis of a B-spline-based approximation strategy for gray scale voxel
data, which provides an implicit definition of the scan-based geometry with
a smooth internal boundary. The second novelty of this work is the usage
of goal-oriented adaptive analysis [22] in the context of the scan-based iso-
geometric finite cell method. This aspect of our work builds on the recent
work in [23], where goal-oriented isogeometric analysis is considered in the
context of tensor-product B-splines. The usage of adaptive methods is of
paramount importance in the context of three-dimensional scan-based geo-
metric models, since manual refinement operations are impractical. These
operations involve both the aspect of identifying regions with high contribu-
tions to the error in the quantity of interest, and the actual refinement of the
elements in these regions. In addition to these two main contributions, we
outline various details of the finite cell method that are specific to our work.
Most importantly, we employ and study a simplex-based tessellation of the
elements that intersect the boundary of the physical domain.

The computational methodology proposed in this work is first studied
for two-dimensional test cases, for which high accuracy reference solutions
can be computed. This allows us to perform detailed convergence studies,
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and to assess the quality of our error estimates. Subsequently we apply the
methodology to the elastic analysis of a realistic data set obtained by a µCT-
scan of a trabecular bone micro-structure. Our terminology is tailored to the
three-dimensional setting. The words “pixel” and “voxel” are for example
used synonymously in the two-dimensional setting. We will also use the terms
“volume” and “surface area” in the two-dimensional case, referring to areas
and edge lengths, respectively.

In Section 2 we will discuss the scan-based definition of the computational
domain, and study the main properties of the proposed B-spline smoothing
operation. In Section 3 the linear elasticity problem is introduced along
with the isogeometric discretization and the error estimation and adaptivity
framework. In Section 4 we discuss various computational aspects of our
work, after which three numerical test cases are studied in detail in Section
5. Our conclusions are summarized in Section 6.

2. Scan-based geometry definition

In this section we introduce the scan-based geometry definition. As an ex-
ample we consider the two-dimensional bone geometry depicted in Figure 1,
which has been created in a vector graphics editor. The consideration of this
artificial specimen is particularly useful since it permits us to compare the
geometry reproduced from the scan data with the real geometry. Simulated
scan data for this geometry are constructed by computing the bone volume
fractions per pixel, and performing a shift such that the domain boundary
is characterized by a zero value. As we will see later, this geometry can be
considered as representative for the geometry of real trabecular bone speci-
mens. In particular, it reflects the topological complexity of real bone scan
specimens in the sense that it contains holes and disconnected parts.

2.1. Spline-based level set geometry

The nd-dimensional scan domain Ωscan =
nd

⊗
d=1

[0, Ld] ⊂ Rnd with boundary

∂Ωscan is partitioned by a set of voxels Ωe
vox =

nd

⊗
d=1

((I(e)d − 1)∆d, I(e)d∆d)

with ∆d the voxel size in direction d and I a function that maps an integer
voxel index e ∈ {1, 2, . . . ,mvox} to the corresponding nd-dimensional voxel
indices (see Figure 1). The voxel gray scale function g : Ωscan → R is defined
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(a) (b)

Figure 1: (a) Two-dimensional bone geometry, Ω, inside a scan domain Ωscan. (b) Virtual
gray scale scan data (32× 32 pixels) reproduced from the geometry in (a).

as

g(x) =























c1 x ∈ Ω1
vox

c2 x ∈ Ω2
vox

...
...

cmvox x ∈ Ωmvox
vox

(1)

with c ∈ Rmvox the gray scale values in the voxels {Ωe
vox}

mvox
e=1 . Note that for

arbitrary data the function g is discontinuous. Moreover, often the gray scale
values c are integer values ranging from e.g. 0 to 255.

A physical domain Ω ⊆ Ωscan can be extracted from the gray scale func-
tion directly by thresholding the voxels to yield Ω = {x ∈ Ωscan | g(x) >
gcrit}, for suitable threshold gcrit. The internal boundary of the resulting
domain, S = ∂Ω\∂Ωscan, is non-smooth, which can significantly affect the
approximation properties of discretization strategies. In order to optimally
benefit from the smoothness properties of the isogeometric discretization used
in this work, we therefore employ a smooth reconstruction of the geometry
based on the original gray scale data.

In order to have an r-times continuously differentiable internal surface
S, a level set function f ∈ Cr(Ωscan) is required [24]. To obtain a smooth
domain, a smooth (r ≥ 1) level set function is therefore required. Here we
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employ a smooth approximation of the exact geometry by the spline level set
function

f(x) =
n
∑

i=1

Ni,p(x)ai, (2)

with a ∈ Rn the level set coefficients. The physical domain Ω, with smooth
internal boundary S, then follows as Ω = {x ∈ Ωscan | f(x) > fcrit} with fcrit
the threshold value for the smoothed level set function f . In this work we
use the same threshold level for the voxel data and the smooth level set, i.e.
fcrit = gcrit.

The n basis functions {Ni,p : Ωscan → R}ni=1 are defined as the tensor
product functions of the univariate open B-splines generated over the knot
vectors Ξd = [0, . . . , 0,∆d, 2∆d, . . . , Ld, . . . , Ld] for d = 1, . . . , nd, where the
first and last knot values are repeated p+1 times, see e.g. [25, 26]. Using this
definition, the level set function f is p− 1 times continuously differentiable,
and hence a smooth surface S is obtained for p ≥ 2.

A smooth approximation of the gray scale data g is constructed by com-
puting the level set coefficients by

ai =

∫

Ωscan

Ni,p(x)g(x) dx

∫

Ωscan

Ni,p(x) dx
=

1

VNi,p

∫

Ωscan

Ni,p(x)g(x) dx i = 1, . . . n, (3)

which upon substitution in equation (2) yields the B-spline level set func-
tion f . This convolution-based strategy is preferred over an L2-projection or
collocation strategy because of its reconstruction properties, which we will
study in detail in Section 2.2: i) the gray scale intensity of the voxel data is
preserved; ii) the reconstructed data is bounded by the scan data; iii) the
spectral filtering properties are favorable. An important additional advan-
tage of this convolution-based reconstruction strategy is its computational
efficiency resulting from the fact that it is not required to solve a linear
system of equations, this in contrast to e.g. an L2-projection.

In Figure 2b the quadratic B-spline level set function generated for the
32×32 pixel data structure in Figure 2a is shown. In Figure 3 the dependence
of the geometry approximation on the resolution of the original pixel data
is illustrated by a comparison of the geometry obtained on both a 16 × 16
pixel structure and the 32 × 32 pixel data. Evidently, the quality of the
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(a) (b)

Figure 2: (a) Gray scale data consisting of 32×32 pixels, and (b) its second-order B-spline
level set function approximation.

approximation strongly depends on the resolution of the pixel data. From
Figure 3 it is observed that even for low resolution data the characteristic
features of the real geometry, such as the cavity and the gap between the
two disconnected parts, are preserved in the smoothing operation. For the
present case the geometry generated from the 32× 32 pixel data can hardly
be distinguished from the exact geometry.

2.2. Properties of the spline-based level set function

2.2.1. Conservation of gray scale intensity

The smooth spline approximation (2) conserves the average gray scale inten-
sity of the pixel data:

1

Vscan

∫

Ωscan

f(x) dx =
1

Vscan

∫

Ωscan

g(x) dx =
1

mvox

mvox
∑

e=1

ce. (4)

Note that without this property there is no apparent relation between the
threshold value for smooth level set reconstruction (fcrit) and that of the
original data (gcrit).
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(a) 16× 16 pixels (b) 32× 32 pixels

Figure 3: The second-order B-spline geometry reconstruction with fcrit = 0 (red) based
on a pixel data set (gray) consisting of (a) 16× 16 and (b) 32× 32 pixels. The contour of
the exact geometry is shown in black for comparison.

This property can be verified by rewriting equation (3) as
∫

Ωscan

Ni,p(x)ai dx =

∫

Ωscan

Ni,p(x)g(x) dx i = 1, . . . , n, (5)

summarizing it over the index i, and making use of the B-spline level set
definition (2) and the partition of unity property of the spline basis.

2.2.2. Local boundedness

On every (voxel) subdomain, Ωe
vox, the level set function is bounded by the

minimum and maximum values of the pixel data over all voxels covered by
the B-spline functions with support over this subdomain,

min
x∈Ωe

supp

(g(x)) ≤ f(x) ≤ max
x∈Ωe

supp

(g(x)) ∀x ∈ Ωe
vox, (6)

with Ωe
supp = ∪i∈Ie supp (Ni,p) and Ie = {i | Ni,p|Ωe

vox
6= 0}. These bounds

can be verified by combining the boundedness of the level set function by the
control point level set values, {ai}i∈Ie ,

min
i∈Ie

(ai) ≤ f |Ωe
vox

(

=
∑

i∈Ie

Ni,pai

)

≤ max
i∈Ie

(ai) (7)
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and the fact that, following directly from equation (3), the control point level
set values are bounded by the gray scale data:

min
x∈supp (Ni,p)

(g(x)) ≤ ai ≤ max
x∈supp (Ni,p)

(g(x)) i = 1, . . . , n. (8)

Note that in (7) use is made of the non-negativity and partition of unity
property of the B-spline basis functions.

The local boundedness of the level set function f implies global bounded-
ness by the global minimum and maximum gray scale values. The existence
of the bounds precludes overshoots and undershoots, which indicates that no
spurious oscillations are created by the smoothing procedure. It is noted that
such oscillations can occur when e.g. an L2-projection is used to determine
the level set values.

2.2.3. The approximation kernel

To study the smoothing behavior of the B-spline level set approximation f
we substitute the control point gray scale values, equation (3), in the B-spline
function (2) to obtain

f(x) =

∫

Ωscan

[

n
∑

i=1

Ni,p(x)Ni,p(y)

VNi,p

]

g(y) dy, (9)

which shows that f(x) is an integral transform of the data g(x) with the
kernel

K(x,y) =
n
∑

i=1

Ni,p(x)Ni,p(y)

VNi,p

. (10)

To analyze the integral transform (9) we consider a univariate spline basis of
order p defined over the uniform knot vector Ξ = [. . . ,−2∆,−∆, 0,∆, 2∆, . . .]
if p is odd or Ξ = [. . . ,−3

2
∆,−1

2
∆, 1

2
∆, 3

2
∆ . . .] if p is even (with pixel size

∆). For our analysis we approximate the B-spline basis functions, Ni,p(ξ),
constructed over these knot vectors by

Ni,p(ξ) ≈ Ñi,p(ξ) =

√

6

π(p+ 1)

(

e−
6(i+ ξ

∆)
2

p+1

)

, (11)

for which it has been proven [27] that lim
p→∞

Ñi,p = Ni,p (see Figure 4). Note

that i = . . . ,−2,−1, 0, 1, 2, . . . and that the basis function N0,p is centered
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at ξ = 0. Substitution of this approximation into the kernel (10) yields

K(x, y) ≈

√

3

π∆2(p+ 1)
ϑ3

(

π(x+ y)

2∆
, e−

1
12

(1+p)π2

)

e
−

3(y−x)2

∆2(1+p) (12)

with ϑ3 the third Jacobi theta function [28]. For all considered spline or-
ders, the second argument of this theta function is much smaller than one,
which renders ϑ3 ≈ 1 to be a reasonable approximation. Substitution of this
approximation yields the convolution kernel

K(x, y) ≈

√

3

π∆2(p+ 1)
e
−

3(y−x)2

∆2(1+p) = K̃(y − x). (13)

In Figure 5 we show the original kernel (10) and the convolution approxima-
tion (13) for the case of p = 3. As observed, the primary characteristics of
the original transformation kernel are preserved in the convolution approxi-
mation.

The convolution kernel (13) is of the same form as those commonly used in
image processing techniques [29] and acts as a Gaussian filter [30]. In Figure 6
this kernel is shown for various orders of the spline basis. For comparison, the
ideal (Sinc) filter is also depicted. This ideal filter preserves all frequencies in
the pixel data and completely filters out all higher-order frequencies. Upon
increasing the order of the B-spline approximation, the smoothing operation
behaves more as a low-pass filter, in which high frequencies are filtered out.
In Figure 7 we show the potential effect of this smoothing operation when
the resolution of the original data is insufficient. High frequency features,
such as the gap between the two disconnected parts, can be affected by the
smoothing operation. The robust use of the smoothing procedure relies on
the assumption that the resolution of the scan data is sufficient to distinguish
the main features of the underlying geometry.

3. Goal-adaptive isogeometric analysis

3.1. Problem definition

In this contribution the material in the physical domain, with deformation
u : Ω → Rnd , is modeled by means of linear elasticity. The internal sur-
face S is assumed to be traction-free, resulting in homogeneous Neumann
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Figure 4: Cubic (p = 3) B-spline functions (solid lines) and their approximation by equa-
tion (11) (dashed lines).
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Figure 5: (a) The integral transformation kernel (10), and (b) the approximate convolution
kernel (13) for ∆ = 1 and p = 3.
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Figure 6: The convolution kernel (13) in (a) the spatial and (b) the frequency domain for
∆ = 1 and various orders p.

Figure 7: The influence of the order of the B-spline on the approximation of the geometry.
The results are based on a data set with 16×16 pixels. The contour of the exact geometry
is shown in black for comparison.
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boundary conditions. On the scan domain boundaries, ∂Ω∩ ∂Ωscan, the nor-
mal displacement is prescribed by the (partially homogeneous) Dirichlet data
gn : ∂Ω ∩ ∂Ωscan → R, while the tangential tractions are assumed to vanish.
The strong form problem is then given by

(S)











div (σ) = 0 in Ω

σ = 2µε+ λ tr (ε)I in Ω

un = u · n = gn on ∂Ω ∩ ∂Ωscan

(14)

(15)

(16)

where ε = ∇su is the infinitesimal strain tensor and µ and λ are the Lamé
parameters for Hooke’s law (15).

To derive the weak form primal problem (P) corresponding to the strong
form (S) we define the test space V0 = {u ∈ H1(Ω) | un = 0 on ∂Ω∩ ∂Ωscan}
along with a lift function q ∈ H1(Ω) that satisfies the Dirichlet boundary
conditions. Defining the trial space as V = {v + q | v ∈ V0} then yields the
weak form primal problem:

(P )

{

Find u ∈ V such that:

B(u,w) = F(w) ∀w ∈ V0 , (17)

where the bilinear functional B and linear functional F are given by

B(u,w) =

∫

Ω

σ(u) : ∇sw dx F(w) = 0. (18)

3.2. Hierarchical spline discretization

To discretize the primal problem (17) we use the finite cell method in com-
bination with hierarchical B-splines [9]. We will here briefly discuss the
most important aspects of the employed spline discretization. For details the
reader is referred to e.g. [12].

Using the tensor-product structure of the nd-dimensional scan domain,
Ωscan, we generate a sequence of R nested nd-variate uniform B-spline bases,
{

Sr
p

}R−1

r=0
, of order p. The B-spline functions Sr

p ∋ S : Ωscan → R are con-
structed over the knot vectors Ξr

d with d = 1, . . . , nd. These knot vectors are
defined as Ξr

d = {0, . . . , 0, hr
d, 2h

r
d, . . . , Ld−hr

d, Ld, . . . , Ld}, where h
r
d = 2−rh0

d

with h0
d = Ld/m

0
d the knot spacing for the coarsest spline Bézier mesh, B0,

with m0
d elements in direction d. The first and last knot values are repeated

p+1 times in each direction to create an open spline basis. The interior knots
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(a) Level 0 (b) Level 1 (c) Level 2

Figure 8: Schematic representation of the hierarchical spline levels.

are not repeated, such that the B-spline basis functions are Cp−1-continuous.
Note that using this construction the parameter domain and the physical
scan domain coincide.

We define the B-spline basis at level r as

N r
p =

{

N ∈ Sr
p | suppΩ (N) 6= ∅

}

, (19)

where suppΩ (N) = {x ∈ Ω | N(x) 6= 0}. By element refinement we then
construct a sequence of nested subdomains, ΩR

# ⊆ . . . ⊆ Ω1
# ⊆ Ω0

# (see
Figure 8), with Ω0

# = Ω and ΩR
# = ∅. Using the sequence of B-spline bases,

{N r
p }

R−1
r=0 , we define an hierarchical spline basis Hp ∋ N : Ω → R as

Hp =
R−1
⋃

r=0

{

N ∈ N r
p | suppΩ (N) ⊆ Ωr

# ∧ suppΩ (N) * Ωr+1
#

}

, (20)

see e.g. [12, 23] for details, including a proof of global linear independence of
Hp.

Using the hierarchical basis (20) we can now create the finite dimensional
approximation space for the primal problem (17) as

Vh
0 = span ({N |N ∈ Hp, Nn = 0 on ∂Ω ∩ ∂Ωscan}) ⊂ V0, (21)

with Hp the vector-valued version of Hp.
In order to construct and integrate the basis functions numerically, we

define the Bézier mesh for Vh
0 as

B = K0 ∪

[

R−1
⋃

r=1

{

K ∈ Kr | K * ∪Kr−1
}

]

, (22)
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Figure 9: The hierarchical Bézier mesh B corresponding to the three levels shown in Figure
8.

with
Kr =

{

K ∈ Br | K ∩ Ω 6= ∅ ∧K ∩ Ωr+1
# = ∅

}

. (23)

The Bézier mesh for the three levels of refinement introduced in Figure 8 is
shown in Figure 9.

3.3. A-posteriori error estimation and adaptivity

In this contribution we aim at obtaining an optimal discretization for the
computation of effective elastic properties. In the abstract setting considered
here, an elastic property is expressed as a linear functional, Q(u), of the
solution to the primal problem (17). By defining the dual problem

(D)

{

Find z ∈ V0 such that:

B(w, z) = Q(w) ∀w ∈ V0 , (24)

the error in the quantity of interest can be computed as

E = Q(u)−Q(uh) = Q(v)−Q(vh)

= B(v, z)− B(vh, z) = B(u, z)− B(uh, z)

= F(z)− B(uh, z) = Rh(z −ψh) ∀ψh ∈ Vh
0

(25)

where use is made of Galerkin orthogonality in the final step and Rh(z) is
referred to as the dual-weighted residual. In this contribution we estimate
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the error by approximating the dual problem solution on a mesh which is
obtained by a single uniform refinement of the primal problem mesh,

Est = Rh(zh/2 −ψh), (26)

and in order to obtain a sharp error estimate we take ψh as the L2-projection
of zh/2 on the primal problem space Vh

0 . We note that error estimators for
isogeometric analysis based on the computation of a dual solution on an
h-refined mesh have also been studied in [31]. Evidently, in terms of com-
putational effort, the determination of the dual problem solution on a uni-
formly refined mesh is a relatively expensive operation, particularly in three-
dimensional simulations. In fact, the computational overhead related to the
adaptivity procedure is mainly comprised of this dual solution computation.

Using the functionals (18), the error estimate (26) is expressed as

Est =

∫

Ω

−σ(uh) : ∇s(zh/2 −ψh) dx, (27)

the integrand of which is referred to as the dual-weighted residual density.
To use this error estimate for marking regions of refinement, we exploit the
property of the hierarchical B-spline basis introduced in Section 3.2 that
there exists a vector α such that

∑n
i=1 αiNi,p = 1. Using this property we

obtain

Est =
n
∑

i=1

−αi

∫

Ω

Ni,pσ(u
h) : ∇s(zh/2 −ψh) dx =

n
∑

i=1

ei, (28)

where ei is the error contribution of basis function Ni,p. Herein, we mark
a fixed fraction, η ∈ (0, 1], of the basis functions with the largest absolute
error estimate contribution for refinement in each step. Subsequently, all
elements in the support of the marked basis functions are refined to obtain
the refined mesh on which the hierarchical spline basis can be constructed.
Note that, following from the definition of the hierarchical space (20), this
marking strategy always leads to refinement.

4. Computational aspects

In this section we discuss three important computational aspects of the iso-
geometric finite cell method used in this work: i) The numerical evaluation
of integrals over trimmed elements; ii) The removal of basis functions to im-
prove system conditioning; iii) The removal of geometric features that do not
contribute to the quantity of interest.
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4.1. Numerical integration of trimmed elements

An essential aspect of the finite cell method is the generation of a multi-level
integration scheme for trimmed elements by recursive bisectioning (e.g. [8]).
The integration point generation procedure used in this work is schematically
shown in Figure 10. We define ̺max to be the maximum allowable number
of bisections, i.e. no bisections are made if ̺max = 0. Given a ̺-times bi-
sected integration cell, the decision on whether to perform a further bisec-
tion is based on the evaluation of the level set function in the (2̺max−̺+1)nd

finest-level vertex locations. When all vertex values are positive, the cell
is consolidated, while it is removed when all vertex values are negative. In
the case of vertex values of both positive and negative sign, the integration
cell is bisected if ̺ < ̺max. On the finest level of integration, ̺ = ̺max, we
close this recursive procedure by a tessellation. Exact quadrature rules for
higher-order polynomials are available for all integration cells, including the
simplices generated by the tessellation.

The use of a tessellation on the finest level of integration contrasts the
more common use of Gauss quadrature rules. Using a tessellation offers ad-
vantages in terms of integral approximation properties that – at least from
the vantage point of the work presented in this manuscript – outweigh the
additional computational effort involved in the tessellation procedure. An
additional advantage of the tessellation-based integration scheme is that a
boundary parametrization is directly obtained. Although this is not an ex-
ploited advantage in this work, this parametrization is of value when im-
posing non-homogeneous Neumann boundary conditions or weakly imposing
Dirichlet boundary conditions over the trimmed boundary.

4.1.1. Tessellation procedure

On the finest level of integration a Delaunay tessellation is constructed. The
set of points on which this tessellation is based consists of the integration
cell vertices with non-negative level set values (indicated with plus-squares
in Figure 10) and on the approximate level set function roots along the
integration cell ribbons (indicated with zero-diamonds). These level set roots
are computed based on a linear interpolation of the level set function along a
ribbon. Note that although the employed level set is generally not a piecewise
linear function, upon appropriate selection of ̺max a linear approximation of
this function over the finest level cell ribbons is justified.

17



++

+ + +

+

+

 -0

0

+

+

+ ++

Figure 10: Schematic representation of the multi-level integration scheme used for trimmed
elements. In this example the maximum number of cell bisections is taken as ̺max = 4.

4.1.2. Approximation properties of simplex-based quadrature schemes

To analyze the approximation behavior of the simplex scheme we consider the
finest level integration cell Ωe

int with ribbon lengths hint = he/2̺max as shown
in Figure 11. Assuming, for the two-dimensional case, a domain boundary
with constant radius of curvature R, the area integration error in this cell

is equal to eint =
h3
edge

12R
, with hedge the length of the interior boundary edge

of the triangulation. Since hedge = O(hint) and the number of triangulated
finest level cells scales with O(h−1

edge) = O(h−1
int) – the number of triangulated

finest level cells times the average hedge over these cells is of O(1) – the
total integration error over a two-dimensional trimmed element is O(h−1

int) ·
O(h3

int) = O(h2
int). This convergence rate extends to the three-dimensional

case, nd = 3, for which the volume integration error per finest level cell is
eint = O(hnd+1

int ) and the total trimmed element integration error remains
O(h1−nd

int ) ·O(hnd+1
int ) = O(h2

int).
In Figure 12a we present the error convergence results for the integra-

tion of the volume of a sphere of radius R intersecting a unit square. Note
that the above-mentioned order of convergence is recovered for the simplex
scheme. For comparison the integration error is also shown for uniform and
Gauss schemes. For these schemes it is observed that the convergence is not
asymptotic for the cell sizes considered. This behavior can be explained by
the fact that the volume integration error for these schemes is comprised
of integration points overestimating the volume and integration points un-
derestimating the volume (see Figure 11), which can cancel out. Under the
assumption of sufficiently refined integration cells, the simplex scheme does
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Figure 11: The finest level cells are integrated using either a tessellation-based scheme or
a masked uniform (or Gauss) scheme.

not suffer from this problem. The number of uniform integration points used
on the finest level does not influence the rate of convergence of the integra-
tion error. In fact, using e.g. a 4× 4 uniform scheme at level ̺max = α (see
Figure 11) yields exactly the same error as a 2 × 2 uniform scheme on level
̺max = α + 1. Since a discontinuous function is integrated over the finest
level cells (which is one inside the physical domain and 0 outside), the use of
a Gauss integration scheme is counter-intuitive. For the numerical test case
in Figure 12a we observe that the Gauss integration scheme is generating
reliable results, but that the convergence rate is less stable than that of the
uniform scheme.

In Figure 12b we study the dependence of the error magnitude on the
radius of curvature of the internal boundary. As indicated above, the in-
tegration error per finest level cell is inversely proportional to this radius.
Hence, when making the radius R twice as small, the error is increased by a
factor of two. This scaling relation is confirmed numerically.

The above analysis and numerical observations pertain to the integra-
tion of the unity function over the trimmed domain, but the advantageous
convergence properties extend to the case of arbitrary functions.

4.2. Basis function removal strategy

As discussed in Section 3.2 the constructed hierarchical spline spaces are
linearly independent by construction. A practical complication, however,
is that the trimming of Bézier elements that intersect the boundary of the
physical domain will result in basis functions whose support intersects only
marginally with this domain. This inevitably leads to poor conditioning of
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Figure 12: Convergence of the volume integral of a sphere with radius R intersecting a
unit cube while increasing ̺max (decreasing hint). (a) Comparison of various integration
schemes. (b) Dependence of the simplex-based integration error on the radius of curvature
of the sphere.

the linear system of equations, with a negative effect on solver accuracies and
iterative solver performance (herein we employ conjugate gradient solvers).
A remedy to this problem is to assign a virtual stiffness to the exterior of the
trimmed elements, see e.g. [8, 9]. Although commonly very small values are
used for this virtual stiffness, such an approach in principle nullifies the efforts
to construct a smooth approximation of the scan-based geometry. Therefore,
we follow the alternative approach to remove basis functions when the volume
fraction of their support is smaller than a prescribed tolerance, 0 ≤ rtol ≪ 1,
which yields the function space

H̃p = {Ni,p ∈ Hp | r(supp (Ni,p)) > rtol} ⊆ Hp, (29)

with

r(ω) =

[

vol (ω ∩ Ω)

vol (ω)

]1/nd

. (30)

The nd-th root of the volume fraction is used in order to have a consistent
interpretation of rtol for the two and three-dimensional cases. When the
support of a basis function, Ni,p, is completely inside the physical domain,
ri = r(Ni,p) = 1, and it will never be removed. We typically select the
tolerance as rtol = 2−ptol , with the integer power ptol > 0. The rationale
is that this allows for the interpretation of rtol in terms of the number of
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element bisections as used also for the generation of the trimmed element
integration schemes, even though in assessing ptol in relation to ̺max (Section
4.1), one must account for the fact that not all basis functions are supported
by the same number of elements. We note that a similar basis function
removal criterion has been used in e.g. [32], with an area-fraction tolerance
of 1 · 10−6.

4.3. Removal of obsolete geometric features

Depending on the selection of the quantity of interest, it can occur that
for certain parts of the geometry it is a priori known that they will not
contribute to this quantity of interest. More specifically, when effective elastic
moduli are to be computed, parts of the geometry that remain unloaded can
be removed from the computational domain. Depending on the boundary
conditions on such an unloaded part it could undergo rigid body motions,
which would make the system of equations ill-posed. Removal of the unloaded
parts resolves this ill-posedness issue and is at the same time advantageous
from the perspective of computational effort.

The connectivity of the physical domain is determined on the basis of the
tessellated integration geometry discussed in Section 4.1. When part of the
domain is found to be obsolete, denoted by Ωobs ⊂ Ω, the level set function
(2), f : Ω → R, is redefined as

fobs(x) =

{

f(x) x /∈ Ωobs

α otherwise
, (31)

with α being an arbitrary value smaller than the critical level set value fcrit.
This redefined level set function yields an implicit representation of the ge-
ometry Ω with all obsolete geometric features being removed.

5. Numerical simulations

The isogeometric analysis approach introduced above is studied using three
numerical test cases. To study various details of the isogeometric finite cell
method, in the first simulation an idealized geometry is considered. Since the
exact geometry is known for this test case, the voxel data smoothing scheme
is not employed. In the second example, a detailed study of the scan-based
adaptive isogeometric approach is conducted for the two-dimensional test
case introduced in Section 2. Finally, in the third example the isogeometric
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Figure 13: Schematic representation of the computational model set-up. Note that the
computational domain Ω consists of two disconnected parts. The rigid body motion of the
dark gray part – which is removed from the computational domain – is not constrained
by the boundary conditions.

approach is applied to three-dimensional data obtained from a µCT-scan of a
trabecular bone micro-structure. The reported number of degrees of freedom
pertain in all cases to the vector-valued basis functions of the displacement
field u.

The set-up of the computational model is for all test cases schematically
shown in Figure 13. Note that disconnected parts, such as the dark gray
part in Figure 13, are removed from the computational domain, see Section
4.3. The normal displacement is prescribed by un = u · n = ū = ε̄Lnd

on the top boundary ∂Ωtop = {x ∈ ∂Ω | xnd
= Lnd

} and 0 on all other
boundaries. Homogeneous Neumann boundary conditions are assumed for
the internal boundary S and the tangential components of the displacement
field of ∂Ω\S. The top boundary displacement is taken equal to ū = 0.01Lnd

(1 percent tensile straining). For all test cases considered in this contribution
these boundary conditions eliminate rigid body motions. Following e.g. [21],
the Young’s modulus is taken as 10GPa and the Poisson’s ratio is assumed
to be equal to 0.3.

The quantity of interest is taken as the effective (or apparent) Young’s
modulus of the specimen,Q = σ̄/ε̄, with the effective strain and stress defined
as

ε̄ =
ū

Lnd

σ̄ =
1

Vscan

∫

Ω

σndnd
dx, (32)
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such that

Q(u) =
1

ε̄Vscan

∫

Ω

σndnd
dx. (33)

The effective stress and strain (32) satisfy the Hill-Mandel energy condition,
σ̄δε̄ = V −1

scan

∫

Ω
σ : δε dx [33]. Moreover, the effective Young’s modulus is

independent of the choice of ū since σndnd
(x) ∝ ū. For all results presented

below the effective Young’s modulus is scaled with the elastic modulus E of
the bone material: Ē = Q/E.

We note that the computation of the quantity of interest (33) is affected
both by the approximation of the solution, uh, and the geometrical error
associated with the representation of the computational domain Ω. In the
remainder of this section we consider two refinement strategies, one in which
the geometry representation is fixed under mesh refinement, and one for
which the geometry representation is refined along with the mesh. The lat-
ter approach is employed for the computation of the effective modulus of
elasticity of the realistic test case. In addition, it is noted that although the
quantity of interest (33) is global in the sense that is does not give (local)
preference to particular regions in the computational domain, the geometrical
complexity of the domain will result in some regions having more influence
on the quantity of interest than others. As a result, local refinements that
improve the approximation of the quantity of interest are to be expected.

5.1. Two-dimensional idealized geometry

We consider the cross-shaped geometry of Figure 14a. A piecewise analytic
level set function is defined to create the arms of the cross and the circular
fillets. Note that the fillets can be created exactly by means of a second-order
polynomial level set function. Since this idealized geometry is considered
within the same framework as used for scan-based geometries, we simulate
the complete geometry, although the symmetry of the problem would permit
us to only model a quarter of the geometry.

We consider a series of uniform meshes defined with respect to a 2 × 2
element base mesh. In the following test cases the base mesh is always aligned
with the voxel data, but since an analytical level set function is used here,
the choice for the base mesh is arbitrary. The various considered meshes
consist of (m0

1 · 2
−lbase) × (m0

2 · 2
−lbase), where lbase is the number of uniform

coarsening steps with respect to the m0
1 ×m0

2 base mesh. In Figure 14b we
show the σ22 component of the Cauchy stress obtained on a 16 × 16 mesh
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(a) (b)

Figure 14: (a) Geometry and mesh of the idealized geometry. The untrimmed uniform
mesh consists of 16 × 16 elements. After trimming, 20 untrimmed elements (e.g. the
green element) and 60 trimmed elements (e.g. the red element) are present. (b) The
σ22-component of the Cauchy stress computed on the mesh shown in (a).

(lbase = −3) using second-order B-splines. The continuity of the stress field
(C0) is observed from this figure.

All considered meshes consist of regular elements and trimmed elements.
In Figure 15 we study the basis function support measure ri (see Section 4.2)
for the various meshes. From Figure 15a it is observed that upon refinement
the percentage of basis functions with full support (ri = 1) increases, which
is expected since the element volumes scale with O(hnd), while the surface
intersections scale with O(hnd−1). The range of the support measure is ob-
served to be very large, in the most extreme case of lbase = −6 ranging from
rmin ≈ 2−7 to 20. For this case the basis function with the smallest support
covers less than 1 · 10−4 times the volume of the full basis function support.
The influence of the basis functions with limited support over the compu-
tational domain on the conditioning of the system of equations is shown in
Figure 15b. A direct relation is observed between the minimum support
measure, rmin, and the condition number. It is verified that basis functions
with a small support dramatically affect the conditioning of the system.

In Figure 16 we study the influence of the basis function support trun-
cation value, rtol, by ranging its value from 2−9 to 2−2. Consistent with the
observations in Figure 15b the conditioning of the system can be improved
markedly by the removal of basis functions with limited support. Note that
for rtol ≤ 2−7 no basis functions are removed and hence the condition number
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Figure 15: (a) Distribution of the basis function support measures ri for the idealized
geometry. (b) The relation between the minimal basis function support measure rmin

and the condition number of the system of equations. The minumum support value is
controlled by gradually increasing the support tolerance rtol.
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Figure 16: The influence of the basis function support tolerance rtol on (a) the condition
number of the system of equations, and (b) the H1-error of the solution. Note that since
the reference solution u is taken as uh with rtol = 0, the computed error is zero when no
basis functions are removed. Consequently, the corresponding points are not depicted in
this error plot.
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|Ē
in
t
−
Ē
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Figure 17: Effect of the trimmed element integration scheme and integration level on (a)
the specimen volume, and (b) the effective Young’s modulus.

of the system with all basis functions is reported. For all meshes a dramatic
improvement in the conditioning is observed by the removal of only the basis
functions with the smallest support, e.g. by taking rtol = 2−6 for lbase = −4.
In Figure 16b the influence of the basis function removal strategy on the H1-
error of the solution is studied, where the reference solution is taken as the
discrete solution with rtol = 0 (similar results are obtained for the L2-error).
Removing basis functions clearly affects the accuracy of the solution, but a
major loss of accuracy can be circumvented by limiting the value of rtol. It is
evident, however, that the selection of rtol, is a delicate task, since choosing
it too small results in poor conditioning, while choosing it too large intro-
duces an unwanted source of error. A detailed analysis of the basis function
removal criterion – in particular in the context of hierarchical splines – is
necessary, but beyond the scope of this paper.

In Figure 17 the influence of the trimmed element integration level, ̺max

(with hint = 2−̺maxh), is studied. Second-order splines are considered with
lbase = −3 (16 × 16 elements) and rtol = 2−6. It is noted that although the
choice of ̺max influences the accuracy with which the basis function supports
ri are computed, it can be selected independently of the value for rtol. The
reason is that all computations are performed on the approximate geometry
induced by the element trimming up to the level ̺max, and that also the basis
function removal procedure should pertain to this approximate geometry. An
advantage of the simplex scheme is that it always detects contributions on
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a smaller scale than the finest level integration cell size, whereas detection
of such contributions using uniform or Gaussian schemes depends on the
appropriate selection of the number of finest level integration points.

It is observed from Figure 17 that for both the integration of the vol-
ume and the effective Young’s modulus the predicted second-order conver-
gence rate for the simplex-based integration scheme is recovered, see Section
4.1. In contrast to the results reported in Section 4.1, we now observe a
slower rate of convergence (linear) for the uniform and Gaussian integration
schemes. This is because for the ideal geometry considered here, the uniform
and Gauss schemes consistently overestimate (or consistently underestimate)
the exact integral on the straight domain boundaries. The effect that over
and underestimating integration cells can partially cancel out is therefore not
present here. The first-order convergence rate is in agreement with theoret-
ical expectations. It is stressed that the geometry considered here can be
considered as the worst case scenario for the uniform and Gauss integration
schemes and that these schemes generally compare more favorably with the
simplex-based scheme.

In Figure 18 we show the integration error of the effective modulus of
elasticity versus the number of integration points. Since the total number
of integration points is governed by the finest level integration cells, the
observed second-order convergence rate is expected. When considering the
integration error versus the total number of integration points for this test
case, the simplex-based scheme compares favorably with the uniform and
Gauss schemes. Moreover, it should be noted that the integration error
for the simplex-based scheme is purely geometric (i.e. over the approximate
geometry all functions are integrated exactly), while the error of the other
schemes is comprised of both geometric errors and integral approximation
errors.

In Figure 19 we study the convergence of the L2 and H1-error under uni-
form mesh refinement. In all results the simplex-based integration scheme
is employed. The maximum integration level is taken as ̺max = lbase + 7,
such that the integration geometry is the same for all discretization levels.
The reference solution is computed on a mesh which has been refined uni-
formly several times with respect to the finest mesh shown. The optimal
convergence rates of O(hp+1) for the L2-error and O(hp) for the H1-error are
observed for both linear and quadratic splines. For comparison we also show
the convergence behavior for the case that a non-smooth pixel geometry –
constructed by only selecting pixels with a volume fraction larger than 1

2
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Figure 18: Integration error of the effective Young’s modulus versus the number of inte-
gration points for various integration schemes.

– is used instead of the smooth geometry. In this case the singularities in
the re-entrant corners affect the regularity of the exact solution, which lim-
its the convergence rate. The observed rate of O(h

2
3 ) for the H1-error is in

agreement with theoretical expectations [34]. Note that for such non-smooth
geometries, there is no benefit in using a higher-order discretization.

In Figure 20a we give the convergence rates of the effective modulus of
elasticity under uniform mesh refinement. The rate of O(h2p) is in agreement
with the expectation. As for the L2 and the H1-errors it is observed that the
convergence rate improvement for higher-order discretizations is lost when
the non-smooth pixel geometry is considered. The effect of the support
tolerance, rtol, on the convergence behavior is studied in Figure 20b. For
the two values of the support tolerance, the optimal convergence rates are
preserved.

5.2. Two-dimensional artificial geometry

We now consider the two-dimensional artificial bone specimen introduced in
Section 2. The computational domain is reconstructed from a 32× 32 pixel
data set. As discussed in Section 4.3 the parts that are disconnected from
the top and bottom boundaries have been removed to eliminate unloaded
segments. Unless reported otherwise, in the remainder of this section we will
use second-order B-splines for both the level set function approximation and
the discretization of the primal and dual problems as introduced in Section 3.
The focus on second-order splines is motivated by the fact that for this order
the benefits of higher-order discretizations are exploited, while the geometry
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Figure 19: Convergence behavior of (a) the L2-error and (b) the H1-error for the idealized
geometry under uniform mesh refinement.
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Ē

4

rtol = 2−6

rtol = 2−4

(b)

Figure 20: Convergence of the effective modulus of elasticity for the idealized geometry
under uniform mesh refinement.
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(a) (b)

Figure 21: The σ22-component of the Cauchy stress computed (a) on a 16 × 16 element
untrimmed mesh with second-order B-splines, and (b) using the voxel method with the
original 32× 32 pixels data.

is not smoothed more than necessary (see Section 2.2.3). For all reported
results ̺max = 4 and rtol = 2−6.

In Figure 21a the computed σndnd
(with nd = 2) component of the Cauchy

stress is computed on a 16× 16 element mesh. Compared to the voxel result
obtained on the original 32× 32 data set, the isogeometric solution obtained
on this coarse mesh is capable of representing the expected stress concentra-
tions at re-entrant corners and regions with high curvatures. Compressive
stresses due to bending behavior are also accurately represented.

In Figure 22a the convergence of the effective modulus of elasticity under
uniform mesh refinement is shown for first and second-order B-splines. Since
the level set function for p = 1 differs from that for p = 2, it is expected
that these two orders converge to a (slightly) different value (Ē = 0.1520
for p = 1 and Ē = 0.1534 for p = 3). Note that ̺max has been chosen
sufficiently large to adequately resolve the geometry imposed by the level set
function. For comparison also the voxel result (Ē = 0.1430) is shown. In
contrast to the voxel method, the isogeometric analysis strategy is capable of
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|Ē
h
−
Ē
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Figure 22: Convergence of the effective Young’s modulus under uniform mesh refinement.
The gray area indicates the results for which the computational grid is coarser than the
original pixel data (lbase ≥ 0). The decay of the rate of convergence observed for the
second-order spline approximation is attributed to the presence of stress singularities at
parts of the domain boundary.

reducing discretization errors under mesh refinement, thereby isolating the
geometry approximation error. The ability to control the discretization error
is essential for assessing the quality of the computed result. From Figure
22b it is observed that both the first and second-order results converge with
rates close to the optimal rates reported in the previous section. The decay
in the rate of the second-order results is attributed to the reduced regularity
of the exact solution as a consequence of the existence of stress singularities
at parts of the domain boundary.

From Figure 23a we observe that the minor loss of the rate of convergence
is less visible when the convergence of the quantity of interest is plotted
versus the number of degrees of freedom. This is because the exact scaling
between the element size and the number of degrees of freedom is lost as a
consequence of the removal of unsupported basis functions. Figure 23b shows
the effectivity index, Ieff = Est/E , computed using a dual solution on a (one
time) uniformly refined primal mesh. The computed error estimates are of
excellent quality for all meshes.

In Figure 24 results are presented obtained using goal-oriented refine-
ments with a refinement fraction of η = 5%. Note that since ̺max = 4 is
kept constant under refinement, the trimmed element integration scheme is
refined along with the mesh. In the initial step, Figure 24a, the solution is
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Figure 23: (a) Convergence of the effective modulus of elasticity versus the total number
of degrees of freedom for various uniformly refined meshes. (b) The effectivity indices have
been computed using a dual solution on a (one time) uniformly refined primal mesh.

computed on a 4 × 4 untrimmed initial mesh, which evidently is too coarse
to resolve the stress field – and in particular the stress concentrations – accu-
rately. From the dual solution and the dual-weighted residual density for this
step, Figure 25a and 25b, it is observed that there are multiple regions to be
refined, which, as a consequence of the support tagging strategy discussed in
Section 3.3, will result in an almost global refinement. At the second step of
refinement, Figures 25c and 25d, the dual solution is well resolved and the
dual-weighted residual density indicates a preference for refinement around
the high curvature boundaries in the top-left region of the domain. From
Figure 24b it is observed that refinements are indeed confined to that region,
and that the main features of the stress field are well resolved with only 69
elements and 232 vector-valued shape functions. As observed from Figures
25e and 25f, further refinements are directed toward the region surrounding
the cavity in the specimen, leading to the mesh in Figure 24c. At further
stages of refinement, the stress concentrations at the re-entrant boundary
corners are resolved, see Figure 24d.

In Figure 26a we show the convergence of the quantity of interest un-
der adaptive refinement for various refinement fractions, η. It is observed
that the optimal rates are accurately recovered using all refinement frac-
tions. Comparison with the convergence behavior under uniform refinement,
Figure 23a, shows that under adaptive refinement the optimal rate is recov-
ered regardless of the stress singularities in the boundary corners. This is a
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(a) Step 1: m = 14, n = 68 (b) Step 3: m = 69, n = 232

(c) Step 6: m = 224, n = 668 (d) Step 11: m = 1852, n = 4426

Figure 24: Goal-oriented adaptive refinement of the artificial bone specimen with refine-
ment fraction η = 5%.
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(a) Step 1 (b) Step 1

(c) Step 2 (d) Step 2

(e) Step 5 (f) Step 5

Figure 25: Dual solution and dual-weighted residual density computed at three adaptive
refinement steps with refinement fraction η = 5%.
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Ē

h
| 2

η = 0.05

η = 0.10

η = 0.20

(a)

101 102 103 104

n

0.0

0.2

0.4

0.6

0.8

1.0

I e
ff

η = 0.05

η = 0.10

η = 0.20

(b)

Figure 26: (a) Convergence of the quantity of interest (effective Young’s modulus) for the
artificial bone specimen under adaptive refinement with various refinement fractions. (b)
Effectivity index of the error estimate under adaptive refinement.

consequence of the ability of the refinement procedure to localize refinements
to the regions of influence of these singularities, see Figure 24d. Closer in-
spection reveals that the errors obtained using a small refinement fraction
are smaller than those with larger fractions. This is a consequence of the lo-
cal refinements being better tailored to the intermediate solutions. In Figure
26b the effectivity index is shown under adaptive refinement. The computed
estimates under adaptive refinement are of an even better quality than those
for uniform refinements (Figure 23b).

5.3. Patient-specific geometry

In the final example we compute the effective modulus of elasticity of a
scanned trabecular bone specimen. The gray scale data that serve as input
to the computation is obtained from a µCT -scan of a femur, see Figure 27a.
The analyzed data contains 32 × 32 × 32 voxels, with the voxel size equal
to 40 µm (the domain size Ld = 1.28mm). In Figure 27b we show the
smooth geometry extracted from the voxel data. For all results reported in
this section second-order B-splines have been used, ̺max = 3 and rtol = 2−6.
The parts of the geometry that remain unloaded, which are marked in dark
gray in Figure 27b, have been removed from the computational domain.

In Figure 28 three adaptive refinement steps are shown for the refinement
fraction η = 2.5%, and two details of the solution are shown in Figures 29
and 30. From Figure 29a it is observed that stress concentrations are present
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(a) (b)

Figure 27: (a) Volume plot of the 32×32×32 voxels gray scale data (the opacity is scaled
with the gray scale). (b) The trimmed mesh extracted from the second-order B-spline
level set approximation of the voxel data shown in (a).

in the 8 × 8 × 8 initial mesh on parts that are supposed to be unloaded.
This is because although the geometry shown in the detail is disconnected,
the support of a coarse basis function covers both sides of the observed gap.
As a consequence, from the discretization perspective the two parts are con-
nected, which results in unphysical stresses. The adaptive refinement scheme
is capable of detecting this type of undesirable behavior by locally refining
the mesh in the vicinity of the shown detail. In Figure 29b it is observed that
already after two refinement steps the mesh is sufficiently refined to eliminate
the unphysical stresses. Once these unphysical stresses have been removed,
the shown detail becomes of minor importance to the quantity of interest,
and further refinement in this region is limited in the subsequent steps, see
Figure 29c.

From both details it is observed that since ̺max is defined with respect
to the element size, the integration geometry is refined along with the mesh.
This geometry refinement is required to accurately represent important fea-
tures of the solution, such as stress concentrations around cavities, see Figure
30.

In Figure 31 the convergence of the error estimate under adaptive re-
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(a) Step 1: m = 225, n = 2325 (b) Step 3: m = 1110, n = 7800

(c) Step 7: m = 14670, n = 61224

Figure 28: Goal-oriented adaptive refinement of the 32 × 32 × 32 voxel data scan-based
geometry with refinement fraction η = 2.5%.
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(a) Step 1 (b) Step 3 (c) Step 7

Figure 29: Detail of the patient-specific geometry computation shown in Figure 28 at three
refinement steps.

(a) Step 1 (b) Step 3 (c) Step 7

Figure 30: Detail of the patient-specific geometry computation shown in Figure 28 at three
refinement steps.
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Figure 31: Convergence of the estimator of the quantity of interest (effective Young’s
modulus) for the patient-specific geometry with various refinement fractions.

finement is shown for various refinement fractions. Despite the fact that a
high accuracy reference solution cannot be obtained for this test case, the
error estimate gives insight into the accuracy of the computed solutions. For
example, using the adaptive results with refinement fraction η = 2.5% the
effective modulus of elasticity is computed as Ēh = 0.0216 with the error
estimator Est = −3.16 · 10−5 (the minus sign indicates that the computed
effective modulus of elasticity is an overestimate). The fact that the error
estimates converge at the optimal rates adds confidence to their reliability.
From Figure 31 it is also observed that the adaptive strategy performs con-
siderably better in terms of accuracy in relation to the number of degrees of
freedom than uniform refinements. As with the artificial specimen studied
in the previous section, for a fixed number of degrees of freedom a small
refinement fraction yields a more accurate result than a larger refinement
fraction.

6. Conclusions

We have proposed a computational methodology for the determination of
the effective elastic properties of structures represented by voxel scan data.
This methodology consists of two main steps. In the first step, a B-spline-
based approximation is used to obtain a smooth level set function. This
level set function provides an implicit definition of the physical domain –
which is generally of high geometric and topological complexity – with a
smooth boundary within the scan volume. In this contribution we used
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a level set function only for the definition of the geometry, but a similar
approach could be used to smoothen scan-based material property data. In
the second step the isogeometric finite cell method is used in combination
with a goal-adaptive refinement strategy to efficiently compute the quantity
of interest.

Our analysis of the level set approximation of the voxel data reveals that
the proposed smoothing strategy behaves approximately as a Gaussian fil-
ter. An important consequence is that high-frequency features (relative to
the voxel size) are filtered out. This property is particularly advantageous
when the primary geometric features of the specimen (e.g. the trabeculae)
are represented by a relatively small number of voxels. In that case, the
physically unrealistic non-smoothness of the voxel data is removed, while a
sensible geometry in recovered. A potentially undesirable side effect of the
smoothing procedure is that sharp geometric features that are just resolved
by the scan resolution are subject to unrealistic smoothing. To avoid unnec-
essary loss of geometric information we have limited the used spline order to
p = 2 for the test cases considered in this contribution. For arbitrary scan
data the choice of spline order will depend on the amount of smoothing that
is desired by the analyst.

An essential aspect of the proposed analysis strategy is the integration
of trimmed elements, i.e. the elements that intersect the boundary of the
physical domain. We have used a multi-level integration scheme with a sim-
plex tessellation on the finest scale of bisection. In the context of adaptive
analysis it is an advantage of this simplex-based integration scheme that it
converges asymptotically under mesh refinement. The multi-level integra-
tion schemes generally generate a large number of integration points over
the trimmed elements, which leads to computationally expensive assembly
routines. We have partially ameliorated this drawback by evaluating the in-
tegrals in parallel. The usage of an integration point lumping scheme [35]
could be advantageous, although the effect of such a scheme on the opti-
mality of the obtained results has to be assessed. A final advantage of the
simplex-based integration scheme is that a boundary parametrization is ob-
tained from the tessellation procedure. Although this parametrization is not
used in this work, its availability would permit for the evaluation of surface
integrals, thereby facilitating the imposition of non-homogeneous Neumann
boundary conditions or weakly-imposed Dirichlet boundary conditions.

We have found that the isogeometric finite cell method converges with
the theoretically expected rates for all considered test cases. Optimal con-
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vergence rates are found for the computation of the effective Young’s modulus
using a goal-adaptive analysis with a range of refinement fractions. A de-
tailed visual inspection of the computational results for a trabecular bone
micro-structure has shown that the goal-adaptive strategy is capable of real-
istically representing various distinctive features of the solution.

An essential aspect is the removal of basis functions with a small support
over the physical domain. Since we have used iterative solvers for all test
cases, improving the conditioning of the system of equations by removing
basis functions significantly reduces the solving time. Although we obtained
accurate results using iterative solvers, as also indicated in [13], the develop-
ment of efficient iterative solvers and pre-conditioners should be an important
aspect of future research in the context of finite cell methods. The selection
of the basis function support tolerance is another topic of further study. For
the test cases we have been able to select the truncation value such that a
good balance is obtained between system conditioning and computational
accuracy, but a more systematic approach is needed.
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[12] A. V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical ap-
proach to adaptive local refinement in isogeometric analysis, Computer
Methods in Applied Mechanics and Engineering 200 (49–52) (2011)
3554–3567.

[13] D. Schillinger, M. Ruess, The finite cell method: A review in the context
of higher-order structural analysis of CAD and image-based geometric
models, Archives of Computational Methods in Engineering (2014) 1–65.

42
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