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Abstract Clinical pathway (CP) analysis plays an important role in health-care management in
ensuring specialized, standardized, normalized and sophisticated therapy procedures for individu-
al patients. Recently, with the rapid development of hospital information systems, a large volume
of electronic medical records (EMRs) has been produced, which provides a comprehensive source
for CP analysis. In this paper, we are concerned with the problem of utilizing the heterogeneous
EMRs to assist CP analysis and improvement. More specifically, we develop a probabilistic top-
ic model to link patient features and treatment behaviors together to mine treatment patterns
hidden in EMRs. Discovered treatment patterns, as actionable knowledge representing the best
practice for most patients in most time of their treatment processes, form the backbone of CPs,
and can be exploited to help physicians better understand their specialty and learn from previous
experiences for CP analysis and improvement. Experimental results on a real collection of 985
EMRs collected from a Chinese hospital show that the proposed approach can effectively identify
meaningful treatment patterns from EMRs.

Keywords Clinical Pathway Analysis · Probabilistic Topic Models · Latent Dirichlet Allocation ·
Pattern Discovery · Electronic Medical Records

Zhengxing Huang · Huilong Duan
College of Biomedical Engineering and Instrument Science of Zhejiang University
The Key Laboratory of Biomedical Engineering, Ministry of Education, China.
E-mail: {zhengxinghuang, duanhl}@zju.edu.cn

Wei Dong
Department of Cardiology, Chinese PLA General Hospital.
E-mail: 301dongwei@sina.com

Peter Bath
Information School, University of Sheffield, UK.
E-mail: p.a.bath@sheffield.ac.uk

Lei Ji
IT Department, Chinese PLA General Hospital.
E-mail: jilei nudt@163.com

*Both authors contributed equally to this work.



2

1 Introduction

Clinical pathways (CPs) play an important role in clinical environments by delineating the op-
timal multidisciplinary treatment processes performed by a team of health-care professionals to
achieve a specific treatment objective for a particular diagnosis or procedure [1–4]. Different from
common business processes in commercial and industry environments, treatment processes are
highly dynamic, context sensitive, event driven, and knowledge intensive such that they often
bear no relation to the ideal as envisaged by the designers of CPs [5]. Thus, CPs must be im-
proved continuously [2,6–8]. In this regard, CP analysis is vital for health-care management due
to its usefulness in capturing the actionable knowledge to administrate, automate, and schedule
the best practice for individual patients in the execution of CPs [5–8].

Regarding CP analysis, one of the most important aspects is to infer essential/critical treat-
ment behaviors conditioned on individual patient information for a particular pathway [5]. We
might be interested to know, for example, what treatment behaviors should be performed for
an unstable angina patient with renal insufficiency. Should Percutaneous Coronary Intervention
(PCI) be performed for patients with low-risk levels in the unstable angina pathway? etc. To
ensure best practices in CPs, there are two challenges that need to be addressed:

– What are typical patient conditions that commonly exist for patients who follow a particular
CP? and

– Which treatment behaviors are most appropriate, given the patient’s specific conditions and
the execution of the pathway?

In this study, we represent patient conditions as latent categories of patient features that are
likely to describe homogeneous patient statuses for a particular CP, and represent treatment
behaviors as flexible, transparent, and re-usable pieces of functionality that consist of one or sev-
eral treatment activities required to set up a clinical solution given specific patient conditions.
Furthermore, we represent treatment patterns as a composition of both patient conditions and
treatment behaviors, which are underlying in CPs, and form the backbone of CPs.

Note that a patient might have complex clinical condition in the pathway due to complication-
s, comorbidity or infections, etc., which in turn leads to various treatment behaviors occurring
during the pathway execution, and requires the pathway to be a mixture of latent treatment
patterns. As a result, treatment patterns are composed of multidisciplinary treatment activities,
and the composition of activities has a large variability depending on patient conditions [9].

Previously, it was difficult to perform CP analysis due to a lack of data that were sufficiently
clinical. Recently, with the rapid development of hospital information systems, a large collection
of electronic medical records (EMRs) has become available, which provides the opportunity to
study medical cases, evidence and knowledge for CP analysis. In particular, various types of pa-
tient information (e.g., symptoms, vital signs, lab test results, etc.) and treatment interventions
(e.g., medication, surgery, examination, etc.) are recorded in EMRs, which conceal an untapped
reservoir of knowledge about particular treatments and the way these are applied for patients
with specific conditions. It is therefore possible to mine EMRs, extract non-trivial treatment
patterns from EMRs, and exploit these for helping physicians improve and optimize CPs, and
make the practice better for the care of individual patients [10].

The key objective in this study is to investigate how to discover latent treatment patterns
from the abundant EMRs for the purpose of CP analysis and improvement. We see that an EMR
contains heterogeneous clinical information for a patient (e.g., the patient demographics, labo-
ratory tests results, radiological examination reports, etc.) and various treatment interventions
(e.g., medications, surgeries, examinations, care activities, etc.) performed during the pathway
execution. The different aspects of these types of information are highly correlated and physi-
cians are very interested in the association patterns. While physicians may work through these
problems based on their experiences, the emerging EMRs provide us with unique opportunities
to learn from previous cases. Nontrivial knowledge can be extracted through mining underlying



3

treatment patterns from a large volume of EMRs, and can be profitably exploited as a basis for
further applications, including CP (re)design and optimization, clinical decision support, efficient
medical service delivery and business management, etc [1,11,12].

In this study, we propose to leverage the power of probabilistic topic models 1) to extract
latent treatment patterns from EMRs, and 2) to enable the recognition of patient treatmen-
t processes as a composition of such patterns. Discovered treatment patterns consist of both
prerequisite patient clinical information and subsequent treatment interventions, and their as-
sociations. The proposed approach allows us to infer a number of conditional probabilities for
partial patient instances of CPs, e.g., the probabilities of particular treatment behaviors given
the observations on patient conditions. The probability distribution derived from the proposed
models can surmise the essential features of CPs such that the outcomes of our study can be
potentially valuable for CP analysis and redesign. The proposed approach is evaluated on a collec-
tion containing 985 EMRs of unstable angina patients collected from the cardiology department
of the Chinese PLA general hospital. As well a possible clinical application in terms of treatment
recommendation in CPs is given to illustrate the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. Section 2 outlines related work. Section
3 presents preliminary knowledge of the proposed approach. Section 4 describes the proposed
approach for discovering underlying treatment patterns from EMRs. Section 5 presents our ex-
perimental results. Section 6 provides an outlook on how the presented approach contributes to
CP analysis and improvement. Finally, some conclusions are given in Section 7.

2 Related work

CPs have been recognized as a tool to break functional boundaries and offer an explicit process-
oriented view of health-care where the efficient collaboration and coordination of physicians
become the crucial issue [13,14,11,15–19,12]. To increase the quality of care services in an un-
favorable economic scenario and under the financial pressure by governments, health-care or-
ganizations have to introduce clearly defined CPs for patients, and these pathways must be
improved continuously [20,14,21,2,3]. Since actual treatment activities are extremely complex,
with numerous variations across various stages in CPs, they often bear no relation to the ideal
as envisaged by the designers of CPs. To this end, CP analysis is nonetheless vital for health-
care management due to its usefulness for capturing the actionable knowledge to administrate,
automate, and schedule the best practice for individual patients in the executions of CPs [22,23,
9,5,6,8].

CP analysis is receiving increasing attention in the field of health-care management [6,7].
There have been a large number of studies on CP analysis. For instance, Renholm et al.’s review
of the literature [24] suggested that the use of CPs reduces the cost of care and the length of
stay (LOS), and has a positive impact on outcomes (e.g., increased quality of care and patient
satisfaction, improved continuity of information, and patient education, etc.). Thomas et al., [25]
performed a systematic review on the effect of using CPs on LOS , hospital costs and patient
outcomes. Dy et al., [26] analyzed 26 surgical critical pathways in a tertiary care center, and
their study indicated that CPs’ effectiveness in reducing LOS tends to be for procedures with
lower patient severity of illness. As valuable as these work are, many of them analyze CPs from
an external perspective of CPs, e.g., LOS, mortality, and infection rate, etc [23]. As a matter
of fact, CPs are evolving with the rapid development of medical technologies. While health-care
organizations typically have an simplified and incorrect view of the actual situations in CPs [2,
12,27], efficient analysis should help them keep tracing essential/critical treatment behaviors of
the pathway, and extract potential information, which may substantially improve CPs [28]. In
this regard, it is necessary to provide insights into CPs at a very refined level [5,9].

There has been work from the business process management community on analyzing CPs [9,
14]. In particular, process mining [29,30], as a general method in business process analysis, has
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been used to analyze CPs [5,6,8,9,23]. Process mining techniques allow a more “intelligent” kind
of analysis by executing data mining algorithms on the warehouse data in order to automatically
construct process models explaining the behavior observed from the data. Shifting to the clini-
cal environment, process mining techniques can measure treatment behavior from EMRs, which
regularly record CPs’ execution information. Note that, with a rigorous mathematical logic and
reasoning ability, process mining can be an objective way of analyzing CPs [9]. For instance, Lang
et al., [31] presented their study on the process mining based analysis of the radiology workflow
at the clinic of traditional Business Process Analysis (BPA) in the Erlangen University Clinic,
in Germany. Mans et al., applied process mining to discover how stroke patients are treated in
patient careflow [32]. Rebuge and Ferreira presented a systematic methodology for using process
mining techniques to support health-care process analysis [9]. Bouarfa and Dankelman proposed
a process mining algorithm to derive a consensus model from multiple clinical activity logs, based
on which CP outliers can be detected automatically and without prior knowledge from clinical
experts [33]. Work that is closely related to ours is presented in [34], in which Lakshmanan et
al., present a hybrid approach for mining CPs correlated with patient outcomes that involves
a combination of clustering, process mining and frequent pattern mining. In particular, their
work takes clinical outcome into account in the mining process, and thus could facilitate the
improvement of existing CPs. However, the patient-specific information is not included in CP
mining in their study.

In our previous work [5], we developed a new process mining algorithm to discover treatment
behavior patterns from clinical data such that it can reveal what critical clinical activities are
performed and in what order, and provide comprehensive knowledge about quantified temporal
orders of clinical activities in CPs. In [7], we presented an approach to provide a concise and
comprehensive summary of CP by segmenting the observed time period of the pathway into
continuous and overlapping time intervals, and discovered frequent treatment behaviors in each
specific time interval from a clinical event log. In [35], we proposed a CP-anomaly detection mod-
el to classify a particular patient CP instance to one of the various patient instance clusters of
CPs such that anomalous treatment behaviors can be detected in a timely manner and explained
clearly with respect to its membership cluster in a maximally-informative manner.

In clinical settings, the complexity and diversity of treatment behaviors in CPs are far higher
than that of common business processes [9,14]. Although most process mining algorithms can
discover business process models in a structured manner [6,36], the assumption that the processes
take place in a structured fashion is not valid for CPs. CPs are typical human-centric processes,
and always take place in an unstructured fashion. In clinical practice, many treatment behaviors
can occur arbitrarily without a particular order. Bringing order to the chaos of CPs probably
requires a different mining strategy rather than existing process mining algorithms.

To this end, we previously employed Latent Dirichlet Allocation (LDA) to discover treatment
patterns as a probabilistic combination of treatment activities [6,8]. The probability distribution
derived from LDA surmises the essential features of treatment patterns, and CPs can be accu-
rately described by combining different classes of distributions such that similarities of pairwise
patient instances of CP can be measured based on their underlying behavioral topical features.
This also provides a basis for further applications in CP analysis, e.g., patient instance retrieval,
clustering, and anomaly detection, etc [36]. In this paper, we significantly extend our initial work
by explicitly incorporating patient-related information into probabilistic topic models to model
underlying treatment patterns, which is quite beneficial for CP analysis.

It is worth noting that physicians always refer to patient conditions to work out a patient’s
status in clinical practice. They then give their diagnosis, on which they base their treatments
for the patient during the patient’s CP. In general, patients who have the same conditions will
be treated with similar treatment behaviors, i.e., patients are given some common medications,
medical procedures, etc., while taking some account of known individual specific details, e.g.,
drug allergies. Using probabilistic topic models, not only can prerequisite patient conditions and
subsequent treatment behaviors be discovered from the heterogeneous medical records, but also



5

their associations can be revealed, and thus it has the potential to help physicians learn from
previous cases and assist CP analysis and improvement.

3 Preliminaries

Here we introduce our notations and terminologies for the proposed approach. Formally, let D
be a collection of EMRs. Each EMR d in D, corresponding to a particular patient, consists of the
descriptions on both the patient clinical information and treatments performed on the patient
given his/her clinical conditions and during the pathway execution.

In general, CPs are a mixture of multiple treatment patterns Z. A treatment pattern z
(z ∈ Z) is a latent unobservable variable represented as a multinomial distribution over a set of
clinical words W (W = {〈F, V 〉}

⋃

E), which consist of a set of pairs of patient features F and
their values V , and a set of clinical events E performed on patients in CPs. Patient features are
observable variables, including patient demographics, lab tests results, vital signs, etc., which
can have categorical or numerical values. Intuitively, patient conditions are described as a set of
pairs of patient features and their values 〈fd,vd〉, which are the most important issue physicians

aim to figure out for treatments during CPs. Here, fd = {fdi}
N

f

d

i=1 represents patient features that

are measured on a particular patient and recorded in patient medical record d, vd = {vdi}
N

f

d

i=1

represents their values, and Nf
d is the number of patient features recorded in d.

After observing the patient’s condition, physicians will make a diagnosis and perform the
corresponding treatment behaviors on the patient. In this study, we assume that treatment
behaviors are a set of clinical events performed on a particular patient during the execution of
his/her CP. These clinical events are recorded in the patient’s EMR d. Each clinical event is a

pair of treatment activity and its occurring time stamp e = 〈a, t〉 1. Here ed = {edj}
Ne

d

j=1 represents

clinical events performed on a particular patient and recorded in d, ad = {adj}
Ne

d

j=1 represents

activity types of clinical events ed, td = {tdj}
Ne

d

j=1 represents the occurring time stamps of clinical
events ed, and N

e
d is the number of clinical events in d. Our notation is summarized in Table 1.

4 Method

In this study, we propose a novel approach for extracting latent treatment patterns from EMRs.
In particular, we extend our previous work to propose a new model called treatment pattern
model (TPM). Figure 1(B) shows the graphical model for mining latent treatment patterns from
EMRs. The graphical model represents dependencies among variables. The shaded and unshaded
nodes indicate observed and latent variables respectively. The plate indicates replicates, and the
value in the plate indicates the number of replicates. For comparison, we represent a graphical
model of the standard topic model, i.e., latent Dirichlet allocation in Figure 1(A).

In Figure 1(B), the proposed TPM can figure out patient conditions that are influenced by
both patient features, e.g., patient symptoms, lab tests results, and vital signs, etc., and their
values. In general, patient conditions are latent and unobservable. Even for patients with the
same disease, they may have different conditions. For example, patients whose first diagnosis is
unstable angina may have different conditions due to their individual risk levels (i.e., low-risk,
medium-risk, and high-risk scores, etc.).

1 Note that clinical events could be characterized by various properties, e.g., an event has an occurring
time stamp, it corresponds to a treatment activity type, and has associated costs, etc. We do not impose
a specific set of properties, however, given the focus of this paper, we assume that the activity type and
occurring time stamp of the event are present.
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Table 1 Notation.

Symbol Description

D A collection of patient medical records Set
Z Latent treatment patterns Set
Z Number of latent treatment patterns Scalar
D Number of a collection of patient medical records Scalar
N Number of words (i.e., pairs of both patient features and their values, and treat-

ment activities and their occurring time stamps) in D
Scalar

Nd Number of words in the dth patient medical record, Nd = N
f
d

+Na
d Scalar

N
f
d

Number of pairs of patient features and their values in the dth patient medical
record

Scalar

Ne
d Number of clinical events in the dth patient medical record Scalar
F Vocabulary size of patient features in D Scalar
V Vocabulary size of values of patient feature in D Scalar
A Vocabulary size of treatment activities in D Scalar
T Vocabulary size of time stamps in D Scalar
Vz,f Vocabulary size of values of patient feature f given treatment pattern z Set

e = 〈a, t〉 A clinical event is a pair of a treatment activity and its occurring time stamp Pair
ed Clinical events in the dth patient medical record Na

d -dimensional vector
ad Treatment activities in the dth patient medical record Na

d -dimensional vector
td The occurring time stamps of treatment activities in the dth patient medical record Na

d -dimensional vector
ed,j ith clinical event in the dth patient medical record jth component of ed

Vz,f values of patient feature f that is assigned to treatment pattern z Set
z Treatment pattern assignments N-dimensional vector

fd patient features in the dth patient medical record N
f
d
-dimensional vector

vd values of patient features in the dth patient medical record N
f
d
-dimensional vector

fd,i ith patient feature in the dth patient medical record ith component of fd
zd,j Treatment pattern assignment for patient feature fd,i ith component of pd

α Dirichlet prior Scalar
β Dirichlet prior Scalar
γ Dirichlet prior Scalar
η Dirichlet prior Scalar
ι Dirichlet prior Scalar
x Shape parameter of Gamma distribution Scalar
y Inverse scale parameter of Gamma distribution Scalar
g mean parameter of Gaussian distribution Scalar
k precision parameter of Gaussian distribution Scalar
µz Mean value of normal distribution prior of numerical patient features given treat-

ment pattern z
Scalar

λz Precision of normal distribution prior of numerical patient features given treatment
pattern z

Scalar

Φ Probabilities of treatment activities given treatment patterns A× Z matrix
φz Probabilities of treatment activities given treatment pattern z Z-dimensional vector
Ψ Probabilities of patient features given treatment patterns F × Z matrix
ψz Probabilities of patient features given treatment pattern z Z-dimensional vector
∆ Probabilities of values of categorical patient features given treatment patterns and

patient features
V × Z × F matrix

δz,f Probabilities of values of categorical patient features given treatment pattern z
and patient feature f

Z × F matrix

Ξ Probabilities of occurring time stamps given treatment patterns and clinical ac-
tivities

T × Z × A matrix

ξz,a Probabilities of occurring time stamps given treatment pattern z and treatment
activity a

Z × A matrix

Θ Probabilities of treatment patterns given patient medical records Z ×D matrix
θd Probabilities of treatment patterns given the dth patient medical record D-dimensional vector

The generative process for measured patient features is the same as that of standard topic
models. Each EMR d in D has treatment pattern proportions θd that are sampled from a Dirichlet
distribution with prior α. θd stands for the probability of assigning a treatment pattern z to a
clinical word generated from patient medical record d. As we mentioned above, clinical words
are either pairs of patient features and their values, or clinical events. For each of the Ne

d clinical
event, the generative process is similar to the approach proposed in our previous work [8,6], i.e.,
a treatment pattern z is associated with a multinomial distribution φz over the activity type
a of a clinical event e, and a multinomial distribution ξz,a over the occurring time stamp of e
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Fig. 1 Graphical model representation of the proposed topic models for mining latent treatment pat-
terns. Z, F , and A denote variables “treatment patterns”, “patient features”, and “treatment activities”
respectively. θ, φ, ξ, ϕ, δ, µ, and λ are distributions of treatment patterns over EMRs, treatment ac-
tivities over patterns, the occurring time stamps of treatment activities over patterns, patient features
over treatment patterns, the values of categorical features over treatment patterns, the mean values of
numerical features over treatment patterns, and the precisions of numerical features over treatment pat-
terns, respectively. w represents clinical words which are either a pair of patient feature f and its value
v or a clinical event e (a pair of treatment activity a and its occurring time stamp t). Nd represents the
number of the occurrences of clinical words for one EMR d. D represents the number of EMRs in the
collected data set. The hyperparameters α, β, γ, η, ι, g, k, x, y control dispersions of treatment patterns,
activities and their occurring time stamps, patient features, values for categorical features, values’ means
for numerical features, and values’ precisions for numerical features, respectively.

for pattern z 2. For each of the Nf
d patient features, a treatment pattern z is chosen from the

treatment pattern proportions, and then patient feature f is sampled from a treatment pattern-
specific multinomial distribution ψz.

Note that there are two kinds of patient features, i.e., categorical features and numerical
features. For a categorical patient feature fd,i, its value, denoted as vd,i, is generated from the
distribution δzd,i,fd,i . There are, in total, Z×F prior distributions of patient feature-value pairs,
which follow a Dirichlet distribution with prior ι. For numerical patient features, each treatment

2 Note that CPs, as standardized inpatient treatment processes, are executed in specific time periods
from admission to discharge. During the execution of CPs, treatments of a pathway should be performed
in specific time instants. Taking the unstable angina pathway as an example, typical treatment activities,
such as lab test, ECG examination, etc., have to be performed in the first days after admission, and PCI
surgery have to be performed subsequently, etc. Thus, the occurring time stamps are partially determined
by the treatment activities.
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pattern has its own value distribution for each numerical patient feature, which is assumed to
be a Normal distribution, Normal(µz,i, λ

−1
z,i ). To this end, we adopted an approach proposed in

[37] to process numerical patient features. In particular, we set different means and variations of
a feature’s value depending on the treatment pattern z, and then we can analyze the value of a
numerical patient feature and its range that are specific to z. The mean µz,i and the precision
λz,i are sampled respectively from Normal distributions, which are conjugate priors µ0 and λ0
of a Normal distribution. After treatment pattern zd,i and patient feature fd,i are sampled, its

value vd,i is determined using Normal(µzd,i,fd,i , λ
−1
zd,i,fd,i

).

In summary, the proposed TPM assumes the following generative process for the collection
of EMRs D:

1. For each treatment pattern z = 1, · · · , Z, draw patient feature probability ψz ∼ Dirichlet(η),
draw treatment activity probability φz ∼ Dirichlet(β);

2. For each clinical word w and each treatment pattern z
(a) If w is a categorical feature f , draw patient feature’s value probability δz,f ∼ Dirichlet(ι)
(b) Else if f is a numerical feature

i. Draw patient feature’s value precision λz,f ∼ Gamma(xf , yf )
ii. Draw patient feature’s value mean µz,f ∼ Normal(gf , (kfλz,f )

−1)
(c) Else if w is a clinical event e, draw activity occurring time stamp probability ϕz,e.a ∼

Dirichlet(δ)
3. For each patient medical record d = 1, · · · , D:
(a) Draw treatment pattern proportions θd ∼ Dirichlet(α)

(b) For each patient feature-value pair i = 1, · · · , Nf
d in d:

i. Draw treatment pattern zd,i ∼ Multinomial(θd)
ii. Draw patient feature fd,i ∼ Multinomial(ψzd,i)

A. If fd,i is a categorical patient feature, draw patient feature’s value vd,i ∼ Multinomial(δzd,i,fd,i),
else

B. If fd,i is a numerical patient feature, draw patient feature’s value vd,i ∼ Normal(µd,i, λ
−1
d,i )

(c) For each clinical event ei, i = 1, · · · , Ne
d , in d:

i. Draw treatment pattern zd,i ∼ Multinomial(θd),
ii. Draw treatment activity ed,i.a ∼ Multinomial(φzi), and
iii. Draw time stamp ed,i.t ∼ Multinomial(ϕzi,ei.a).

Note that we assume that θd, φz, ξz,a, ψz, and δz,f have a symmetric Dirichlet prior with hyper
parameters α, β, and γ, respectively, in this study.

Under this generative process, each treatment pattern is drawn independently when condi-
tioned on Θ, each patient feature is drawn independently when conditioned on Ψ and z, each
patient categorical feature’s value is drawn independently when conditioned on ∆, z and f, each
patient numerical feature’s value is drawn independently when conditioned on g, k, x, y, z and
f, each treatment activity is drawn independently when conditioned on Φ and z, and each treat-
ment activity’s occurring time stamp is drawn independently when conditioned on Ξ, z and a.
The joint distribution of patient features f and their values v, treatment activities a and their
occurring time stamps t, and latent treatment patterns z is described as follows:

P (f,v,a, t, z|α, β, γ, η, ι,g,k,x,y) = P (z|α)P (f|z, η)P (v|f, z, ι,g,k,x,y)P (a|z, β)P (t|z,a, γ)
(1)

where x = {xi}
F
i=1 and y = {yi}

F
i=1 are shape and inverse scale parameters of Gamma distribu-

tions for each numerical patient feature fi, respectively, and g = {gi}
F
i=1 and k = {ki}

F
i=1 are

mean and precision parameters of Gaussian distributions for each patient feature fi, respectively.
Regarding Equation 1, we can integrate out multinomial parameters in the first and second
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factors by using Dirichlet distributions. For P (z|α), we have:

P (z|α) =

D
∏

d=1

∏Z

z=1 Γ (Cz,d + α)

Γ (Cd,∗ + αZ)
(2)

where Γ (·) is the gamma function, Cz,d is the count of observing that patient medical record d is
assigned to the treatment pattern z, and ∗ denotes the summing operation at the corresponding

index, e.g., Cd,∗ =
∑Z

z=1 Cz,d.
For P (f|z, η), we have:

P (f|z, η) =

Z
∏

z=1

∏F

f=1 Γ (Cz,f + η)

Γ (Cz,∗ + ηF )
(3)

where Cz,f is the count of observing that patient feature f is assigned to z, and ∗ denotes the

summing operation at the corresponding index, e.g., Cz,∗ =
∑F

f=1 Cz,f .

For the third factor P (v|f, z, ι,g,k,x,y), we have:

P (v|f, z, ι,g,k,x,y) =







∏Z

z=1

∏F

f=1

∏Vz,f
v=1 Γ (ι+Cz,f,v)

Γ (ιVz,f+Cz,f,∗)
: f is a categorical feature

∏Z

z=1

∏F

f=1(2π)
−

Cz,f
2

Γ (xz,f )
Γ (xf )

yf
xf

bz,f
xz,f (

kf
kz,f

)
1
2 : f is a numerical feature

(4)
where Vz,f is the size of value set of patient feature f which is assigned to the treatment pattern
z, Cz,f,v is the count of observing that f and its categorical value v is assigned to p, and ∗ denotes

the summing operation at the corresponding index, e.g., Cz,f,∗ =
∑Vz,f

v=1 Cz,f,v. Note that, for
numerical patient feature f and its value v, gz,f and kz,f are hyperparameters of posterior
distributions for mean µz,f , xz,f and yz,f are hyperparameters of posterior distributions for
precision λz,f . They are given as follows [37]:

gz,f =
kfgf +

∑

v∈Vz,f
v

kf + Cz,f
(5)

kz,f = kf + Cz,f (6)

xz,f = xf +
Cz,f
2

(7)

yz,f = yf +

∑

v∈Vz,f
v2

2
+
kfg

2
f

2
−
kz,fg

2
z,f

2
(8)

where Vz,f is the set of values of patient feature f which is assigned to treatment pattern z.
For P (a|z, β), we have:

P (a|z, β) ∝

Z
∏

z=1

∏A

a=1 Γ (βa + Cz,a)

Γ (Aβ + Cz,∗)
(9)

where Cz,a is the count of observing that activity a is assigned to treatment pattern z, and ∗

denotes the summing operation at the corresponding index, e.g., Cz,∗ =
∑A

a=1 Cz,a.
For P (t|z,a, γ), we have:

P (t|z,a, γ) ∝

Z
∏

z=1

A
∏

a=1

∏T

t=1 Γ (γ + Cz,a,t)

Γ (Tγ + Cz,a,∗)
(10)
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where Cz,a,t is the count of observing that activity a occurring at time stamp t is assigned
to pattern z, and ∗ denotes the summing operation at the corresponding index, e.g., Cz,a,∗ =
∑T

t=1 Cz,a,t.

Our objective is to derive the conditional Gibbs distribution P (zd,i = z|z−id , f,v,a, t, α, β, γ, η, ι,g,k,x,y),

where z−id = z/{zd,i} denotes the set of remaining treatment pattern variables except at the ith
observation of clinical word in the medical record d. Substituting Equations (2)-(4), (9) and (10)
into Equation (1), and using symmetric Dirichlet distribution, we obtain the conditional Gibbs
distribution as follows:

P (zd,i = z|f,v, a, t, z
−i
d , α, β, γ, η, ι, g,k,x,y)

∝
C−i

z,d
+ α

C−i
d,∗

+ αZ
·











































C−i
z,ai

+β

C
−i
z,∗+Aβ

·
C

−i
z,ai,ti

+γ

C
−i
z,ai,∗

+Tγ
: i is a clinical event

·
C

−i
z,fi

+η

C
−i
z,∗+ηF

·



























C
−i
z,fi,vi

+ι

C
−i
z,fi,∗

+Vz,fi
ι

: fi is a categorical feature

Γ (xz,fi
)

Γ (x
−i
z,fi

)
·

y
−i
z,fi

x
−i
z,fi

yz,fi

xz,fi
· (

k
−i
z,fi

kz,fi
)
1
2 : fi is a numerical feature

: i is a patient feature

(11)

where (·)−i represents the count or hyperparameter when excluding sample i. The hyperpa-
rameters of Gaussian-Gamma distributions excluding sample i are calculated using Equations
(12)-(15) as suggested in [37]. In all cases, the current sampling position i is always excluded
during counting. Details of the derivation are in Appendix A.

g−iz,fi =
kz,figz,fi − vi
kz,fi − 1

(12)

k−iz,fi = kz,fi − 1 (13)

x−iz,fi = xz,fi −
1

2
(14)

y−iz,fi = yz,fi −
v2i
2

+
kz,fig

2
z,fi

2
−
k−iz,fig

−i
z,fi

2

2
(15)

Consider Equation (11), which computes a probability of a certain treatment pattern for the
present clinical word i (i.e., either a patient feature with its value or a clinical event) observed
in EMR d.

We can estimate parameters θz,d, ψz,f , δz,f,v, µz,f , λz,f , φz,a and ξz,a,t using sampled latent
treatment patterns z as follows:

θ̂d,z =
Cd,z + α

Cd,∗ + Zα
(16)

ψ̂z,f =
Cz,f + η

Cz,∗ + Fη
(17)

δ̂z,f,v =
Cz,f,v + ι

Cz,f,∗ + Vz,f ι
(18)

µ̂z,f = kz,f (19)

λ̂z,f =
xz,f
yz,f

(20)

φ̂z,a =
Cz,a + β

Cz,∗ +Aβ
(21)

ξ̂z,a,t =
Cz,a,t + γ

Cz,a,∗ + Tγ
(22)
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With all the parameters derived above, we can apply the proposed TPM to various applications.

For example, we can use the estimated treatment pattern proportions {θ̂d,z}
Z
z=1 to describe a

particular patient CP instance, including both the patient condition and treatment behaviors

given that condition. We can use {ψ̂z,f , δ̂z,f,v, µ̂z,f , λ̂z,f}
F
f=1 to analyze the characteristics of pa-

tient condition w.r.t pattern z. As well, associations between patient condition and treatment
behaviors can be revealed using the estimated treatment pattern proportions. It can assist to es-
timate the probability of a treatment activity a, and its occurring time stamp t given a particular

patient by integrating out the latent treatment patterns z, i.e., P (a, t|d) =
∑Z

z=1 θ̂d,zφ̂z,aξ̂z,a,t.
Etc.

5 Experiments and results

In this section, we present experimental results on a real collection of EMRs of unstable angina
patients to evaluate the efficiency and effectiveness of the proposed approach.

5.1 Experimental setup

The experimental data were collected from the cardiology department at the Chinese PLA Gen-
eral hospital. The CP of unstable angina was selected in this case study. Unstable angina is a
kind of chest discomfort or pain that occurs in a continuous and unpredictable way. The cause
of angina is commonly poor blood flow in the coronary vessels caused by atherosclerosis and
a lack of oxygen supply to the myocardium. The unstable pain can result from the disruption
of an atherosclerotic plaque in narrowed coronary vessels with lessened flexibility, embolization
and vasospasm. The symptoms for unstable angina range from exertional stable angina, to a-
cute myocardium infarction and sudden death. While the risk of unstable angina is high, the
population of unstable angina is huge, especially for elderly people and those with associated
diseases such as hypertension and diabetes [38,39]. Thus, the discovery of underlying patterns in
the unstable angina CP will be of significant value and interest. Any discovered patterns could
provide the user with explicit suggestions for treatment actions to influence medical behaviors
for the patient’s benefit.

In this case study, 985 patient medical records following the unstable angina CP were selected
from the Department of Cardiology to demonstrate the ability of the proposed method in discov-
ering latent patterns of the unstable angina CP. These patient medical records have 79 patient
features, and 62047 clinical events within 320 treatment activity types. All experiments were
performed on a Lenevo Compatible PC with an Intel Pentium IV CPU 2.8 GHz, 4G byte main
memory running on Microsoft Windows 7. The algorithms were implemented using Microsoft
C#.

The case study was performed in the Cardiology Department at the Chinese PLA General
hospital. Prior approval was obtained from the data protection committee of the hospital to
conduct the study. We state that the patient data was anonymized in this study and in this
paper.

5.2 Treatment pattern discovery

An input required for the proposed model is the number of topics to be discovered, i.e., the
number of treatment patterns. In the case study, we use a common measure on the ability of a
model to generalize to unseen data, i.e., perplexity, for this model selection task.

Perplexity is defined as the reciprocal geometrical mean of the likelihood of a test corpus
given a model. The perplexity score has been widely used in LDA to determine the number of
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Fig. 2 Choosing number of treatment patterns using perplexity for the unstable angina data-set.

topics, which is a standard measure to evaluate the prediction power of a probabilistic model
suggested in the literature [40–43]. It is defined as the reciprocal geometric mean of the likelihood
of a collection of EMRs given TPM,

Perplexity
TPM

= exp[−

∑D

d=1 logP (〈fd,vd〉, ed|M)
∑D

d=1Nd
] (23)

where M is the proposed TPM, and fd, vd, and ed are the set of unseen patient features, their
values, and clinical events in the patient medical record d, respectively.

Regarding latent treatment pattern discovery by the proposed TPM, we set Dirichlet prior α,
β, γ, η, and ι of TPM as 0.1, 0.01, 0.01, 0.01 and 0.01, respectively, which are common settings
in the literature [40,41]. For numerical patient features, we used gf = µ̄f , kf = 1, xf = 1 and
yf = 1+ σ̄2

f , where µ̄f and σ̄2
f are the empirical mean and variance of the value of patient feature

f . The number of iterations of the Markov chain for Gibbs sampling is set to 1000. Note that
Gibbs sampling usually converges before 1000 iterations for the collected log.

Figure 2 shows the perplexity curve with respect to the number of treatment patterns, using
the proposed TMP. The lower the perplexity, the better the derived model fits with the collected
data-set. In general, the model perplexity decreases with the number of pattern increases. On the
other hand, if the number of patterns is larger, the derived model may over-explain the data-set,
and it requires more sampling computation and storage as well [44]. Thus, it needs to choose a
balance between simplicity of the model and the degree of fitness.

To select the appropriate number of treatment patterns, we examined the discovered patterns
by TPM with different value of Z by a simple way; that is, if the reducing ratio of perplexity is
less than τ , we do not select a larger Z. In practice, we set τ to be 3% according to experiment
analysis. In this study, we empirically choose the number of patterns Z = 3 for the experimental
data set, where the perplexity seems to decrease rapidly and appear to settle down.

For a discovered treatment pattern z, we looked at those clinical words which were assigned to
z, with high probability. In the experiments, we selected a set of representative patient features
{f |∀z ∈ Z,P (f |z) > 0.001} and treatment activities {a|∀z ∈ Z,P (a|z) > 0.01} to represent the
discovered patterns.

Table 2 visualizes patient features and their values for discovered treatment patterns with
the number of patterns set to 3. From the discovered treatment patterns, we can also see that
different patterns might result in different patient features and values. For example, the average
value of age in treatment pattern 1 is 68.885, and that in treatment pattern 2 is 75.216. We can
determine this from the value range of patient features.

In addition, the discovered treatment patterns show the latent correlations between patient
features, from which we can find some interesting phenomena. In fact, all three patterns show
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Table 2 Patient conditions of discovered treatment patterns. Patient condition of each pattern is de-
picted by a set of most related patient feature-value pairs, and their probabilities.

Treatment pattern 1

Patient condition

Feature Value Prob Feature Value Prob

Attack of angina in 24hrs true 0.0087 Sodium Normal 0.0086
Lactate dehydrogenase Normal 0.0082 Creatine kinase Normal 0.0082
Platelet counts Normal 0.0079 Mean corpuscular hemoglobin

amount
Normal 0.0079

Low-density lipoprotein choles-
terol

Normal 0.0077 Creatinine Normal 0.0073

Hemoglobin measurement Normal 0.0072 Creatine kinase isoenzyme Normal 0.0070
Mean platelet volume measure-
ment

Normal 0.0068 Gender Male 0.0067

Total cholesterol Normal 0.0066 Hypertension True 0.0065
Triglycerides Normal 0.0062 History of CHD True 0.0053
High-density lipoprotein choles-
terol

Normal 0.0046 Glucose Normal 0.0045

Qualitative urine glucose test 895.543, 256.623 0.0042 Troponin T Normal 0.0042
Age 68.885,10.515 0.0039 Post-PCI True 0.0034
High-density lipoprotein choles-
terol

Low 0.0031 Serum ferritin Normal 0.0029

Quantitative determination of
creatine kinase isoenzyme

Normal 0.0025 Gender Female 0.0024

Diabetes True 0.0022 Triglycerides High 0.0021
Glucose High 0.0019 Brain natriuretic peptide precur-

sor
High 0.0015

Hyperlipidemia True 0.0016 Tumor True 0.0015
Total cholesterol Low 0.0013 Platelet volume distribution

width
13.254, 2.038 0.0011

Cardiac insufficiency True 0.0010 Platelet volume measurement 0.208,0.083 0.0010
Hemoglobin measurement Low 0.0010 Creatinine High 0.0010

Treatment pattern 2

Patient condition

Feature Value Prob Feature Value Prob

Age 75.216, 9.94 0.0121 Qualitative urine glucose test 583.636, 371.735 0.0044
Platelet volume measurement 0.192, 0.0564 0.0036 Platelet volume distribution

width
12.74, 2.533 0.0034

Brain natriuretic peptide precur-
sor

High 0.0024 Hypertension true 0.0020

Quantitative determination of
creatine kinase isoenzyme

Normal 0.0019 Blood glucose 6.846, 5.016 0.0018

History of CHD True 0.0016 Post-PCI True 0.0013
Creatinine High 0.0012 Tumor True 0.0012
Cardiac insufficiency true 0.0011 Diabetes True 0.0011

Treatment pattern 3

Patient condition

Feature Value Prob Feature Value Prob

Age 78.542, 8.916 0.0179 Qualitative urine glucose test 409.406, 313.454 0.0069
Platelet volume measurement 0.182, 0.051 0.0062 Platelet volume distribution

width
12.495, 1.881 0.0059

Blood glucose 7.242, 4.647 0.0038 Thromboelastography TPI- the
index of thrombosis

52.1, 2.842E-14 0.0022

History of CHD True 0.0014 Cardiac insufficiency True 0.0014
Insufficiency of kidney function True 0.0014 Hypertension True 0.0013
Pulmonary disease Tru 0.0012 Tumor True 0.0012
Post-PCI True 0.0011 Hyperlipidemia True 0.0010
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that there exist latent correlations between unstable angina and Hypertension, which indicates
that there is a large probability for patients with unstable angina to have the complication Hy-
pertension at the same time.

To offer a deeper understanding on treatment pattern discovery, Figures 3-5 show the top
50 treatment activities and their occurring time stamps for the discovered patterns (ranked by
φz,a). Clearly, therefore, different treatment behaviors exist for different patient conditions. A
closer analysis shows that pattern 1 contains typical treatment behaviors (e.g., ‘Coronary angiog-
raphy’, ‘Stent placement’, ‘PTCA’, etc.) for unstable angina. There is little variation occurred
and common treatment activities are carried out smoothly. In clinical practice, patients who
follow this dominant pattern have shorter LOS (on average 13 days) than others, and almost
all physical examinations (e.g., ‘CT’, ‘Routine blood test’, etc.) are performed on the first days
after admission. Pattern 2 contains typical conservative treatments of unstable angina. In clin-
ical practice, patients who follow treatment pattern 2 have either low risks or specific physical
problems, e.g., coronary stenosis such that they prefer conservative treatments instead of PCI
surgery. In general, the LOS of patients who follow “Pattern 2” is greater than 13 days. Moreover,
it is interesting to see that “Pattern 3”, as shown in Figure 5, has captured typical treatment
behaviors of unstable angina patients who have more complex conditions than others such that
many complications can be found in this pattern, e.g., hypertension, diabetes, insufficient kidney,
etc. Note that this variant pattern is a bit normal in the unstable angina CP (4% patient in the
collected EMRs). Some of the patients who follow this pattern were transferred to the Cardio-
vascular Surgery Department to take ‘Coronary Artery Bypass Grafting’ (CABG), which was
not generated for the other patterns. It should be mentioned that we found that most patients
who follow “Pattern 3” also take “Pattern 1” or “Pattern 2” as well. Typically, they are best
represented as a mixture of treatment patterns.

5.3 Treatment pattern analysis w.r.t patient demographics

Furthermore, we wanted to study the characteristics of treatment patterns w.r.t patient demo-
graphics, e.g., what is the average LOS of patients for each pattern? Do the patients of each
pattern have similar risk scores? Does the gender of patients have an impact on their treatment
processes? To this end, we classified patients into 3 clusters by checking the distribution of treat-
ment patterns on EMRs, i.e., θd,z. Each cluster is associated with a specific treatment pattern. If
θd,z ≥ 0.25, we assume the patient whose medical record is d belongs to the cluster z. Apparently,
some patients may belong to more than one cluster.

Figure 6(A) shows the TIMI risk scores of patients of each cluster. TIMI risk score [45] is
a simple prognostication scheme that categorizes a patient’s risk of death and ischemic events
such that it indicates patient demographics implicitly. From Figure 6(A), we find that patients
in cluster 3 have the highest TIMI risk scores. As shown in Table 2, most of the indicators for
TIMI score calculation are observed in the patient feature list of treatment pattern 3, such as
the average age of patients (i.e., 78.542, which is larger than 65), history of CHD, cardiac insuffi-
ciency, hypertension, diabetes, and hypercholesterolemia, etc. In comparison, few risk indicators
can be found in treatment pattern 1, of which patients have smaller TIMI risk scores than other
patterns. It also confirms our assumption that the discovered treatment patterns can reveal the
actual patients’ conditions and provide a basis for therapeutic decision making.

Figure 6(B) shows the gender distribution for the discovered patterns. It seems that male
patients are more likely to have unstable angina than female patients in all three patterns. It is
quite a surprise since most literatures indicate that female patients have more risks for unstable
angina than do male patients [38]. We will investigate this finding using a larger volume of EMRs
in our future work. Furthermore, Figure 6(C) and (D) show that patients with treatment pattern
3 are older than others, and have larger LOS than others. As shown in Figure 6(A), patients



15

Fig. 3 Typical treatment behaviors of the discovered pattern 1 from the unstable angina EMRs
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Fig. 4 Typical treatment behaviors of the discovered pattern 2 from the unstable angina EMRs

k
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Fig. 5 Typical treatment behaviors of the discovered pattern 3 from the unstable angina EMRs
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Fig. 6 The discovered treatment patterns w.r.t patient demographics.

with treatment pattern 3 have higher TIMI risk scores than others. It, therefore, indicates that
high-risk patients may be older and have larger LOS than low-risk patients.

In many real cases, patients probably follow more than one pattern, i.e., they are typically
a mixture of treatment patterns. To this end, we further studied the impact of treatment pat-
tern combinations on patient conditions. Figure 7(A) shows the curve of the number of patients
who follow 1 to 3 patterns, which indicates that the patient population declines with the size
of pattern combinations increasing. In other words, the patient population with more patterns
is smaller than the one with fewer. Figure 7(B) shows the TIMI risk score curve changing with
the size of treatment pattern combinations, and demonstrates that the TIMI risk score has an
obvious growth trend when the number of patterns increases. Thus, we conclude that the high-
risk patients are likely to follow more treatment patterns simultaneously than low-risk patients.
Figure 7(C) shows the average LOS curve changing with the size of pattern combinations, and
demonstrates that the average LOS increases as the size of pattern combination increases.

Table 3 lists the top-ranked treatment activities of 3 patterns learned by the standard LDA
topic model with the same setting of pattern numbers. It is easy to find that the learned patterns
not only enumerate regular treatment behaviors that are expected to occur in CPs, but also dis-
close the correlations between patient-specific information and treatment behaviors. Thus, the
proposed TPM is more effective in discovering one or more patient condition-dependent treat-
ment patterns from EMRs.
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Fig. 7 The impact of treatment pattern combinations on patient conditions.

Table 3 Treatment pattern discovery results with LDA. Top treatment activities are listed for these
patterns, ranked by P (a|z)

Pattern id Significant activities
1 Indifferent medical interventions, Antianginal drugs, Biochemical tests items, Seda-

tive & hypontic and anti-anxiety drugs, Ultrasonography, Drugs for cardiovascular
system disease, Draw off blood, Meal, Routine blood test, Routine care, Drugs for
regulating blood lipids, Coagulation test, Routine faces test, Second-grade care, Dis-
charge, Routine urine test, Admission, Drugs for lowering blood pressure, Drugs of
calcium channel blockers, Occult blood test

2 Indifferent medical interventions, Antiplatelet drugs, Meal, Drug replacement, An-
tianginal drugs, Anti-coagulation drugs, Biochemical tests items, Drugs for regulat-
ing blood lipids, Skin preparation, Ultrasonography, Second-grade care, Routine care,
Coronary angiography, Discharge, Routine blood test, Admission, Drugs for lowering
blood pressure, Anesthesia, Coagulation test, Routine urine test

3 Diuretics, Biochemical tests items, Draw off blood, Indifferent medical interventions,
Routine blood test, Electrolyte regulating drugs, Analysis of blood and ions, An-
tianginal drugs, Drugs for regulating blood glucose, Drug replacement, Biochemical
test, Oxygen inhalation, Troponin T, Meal, Sedative & hypnotic and anti-anxiety
drugs, Drugs for lowering blood pressure, Coagulation test, Cephalosporins, Drugs of
calcium channel blockers, Expert consultation

5.4 Treatment pattern analysis w.r.t clinical outcomes

As stated earlier, the proposed TPM provides a basis for further CP analysis tasks. In this
subsection, we set out to answer an interesting question using the proposed TPM, i.e., how do
the treatment patterns discovered characterize the set of patients and lead to specific clinical
outcomes in CPs? To this end, we propose a Bayesian model, as shown in Figure 8, to derive
the correlations between the discovered treatment patterns and multiple clinical outcomes. This
differs from previous approaches in that each time the model focuses on finding patterns corre-
lated to one outcome label only [46], the proposed model uses all EMRs and finds the patterns
that are specific to the target clinical outcome label and are helpful in differentiating EMRs of
different clinical outcome labels.

Formally, let C be a domain of clinical outcomes. For each piece of EMR d, there is a group
clinical outcomes cd (cd ⊆ C), including a vast range of descriptions on patient health states (e.g.,
mortality, transfer, or normal discharge, etc.), physiologic measures (e.g., heart attack, etc.), and
patient-reported health states (e.g., Length of stay in 7 days, readmission in one month, etc.).
For clinical outcomes, ω denotes the C × Z matrix of clinical outcome-treatment pattern distri-
butions, with a multinomial distribution over C outcome classes for each of Z treatment patterns
drawn independently from a Dirichlet(ζ) prior.

After generating all EMRs D by the proposed TPM, the posterior distribution for θ̂d is further
used to generate clinical outcomes as follows:

1. Choose a treatment pattern zd,j from θ̂d,
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Fig. 8 Treatment pattern-clinical outcome model. Z denotes the variable “treatment patterns”, “pa-
tient features”. θ is the learned distribution of treatment patterns over EMRs based on TPM. ω is the
distribution of clinical outcomes over treatment patterns. c represents clinical outcomes. Md represents
the number of clinical outcomes for one EMR d. D represents the number of EMRs in the collected data
set. The hyperparameter ζ controls dispersions of clinical outcomes.

2. Choose a clinical outcome cd,j ∼Multinomial(ωzd,j ).

For each clinical outcome c, the following conditional posterior distribution is used

P (zd,i = z|cd,i = c, z−id , c−id , ζ) ∼ θ̂d,z ·
M−i
z,c + ζ

M−i
z,∗ + Cζ

(24)

where Mz,c is the number of times treatment pattern z is assigned to a clinical outcome c, and
Mz,∗ is the pattern-outcome sum.

In the experiments, we set out 10 clinical outcome variables, based on the suggestions of
clinical experts, to investigate the patient benefits from the pathway. Each EMR in the collection
can be categorized into one or several classes using these labels. As shown in Table 4, the
representative samples of clinical outcomes are generated by TPM. The probability of clinical
outcomes conditioned on each treatment pattern is estimated by Equation (24).

The results shown in Table 4 indicate that the proposed TPM can be exploited to find
the correlations between latent treatment patterns and specific clinical outcomes. For example,
patients who follow the treatment pattern-1 may have less than 7 days of LOS, and may be
normal discharged. In general, patients who follow pattern-1 have higher probabilities to be
readmitted after six months or without readmission (0. 333) than in one month (0. 003) or
in six months (0.006). In addition, Table 4 shows that our model can distinguish the patterns
evoking strong clinical outcomes from background treatment patterns. For example, pattern-1
and pattern-3 trigger different clinical outcomes, such as different LOS (i.e., “LOS > 28 days”,
and “LOS ≤ 7 days”), and different discharge states (i.e., “Normal discharge” and “Transfer”).
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Table 4 The probability of clinical outcomes conditioned on each treatment pattern (P (c|z))

Treatment pattern 1 Treatment pattern 2 Treatment pattern 3
LOS ≤ 7 days 0.308 0 0
7 days < LOS ≥ 14 days 0.006 0.258 0
14 days < LOS ≥ 28 days 0 0.081 0.219
LOS > 28 days 0 0 0.223
Readmission in one month 0.003 0.014 0
Readmission in six months 0.006 0.026 0
Readmission larger than six
months or without readmission

0.333 0.309 0.248

Normal discharge 0.331 0.276 0
Transfer 0.013 0.036 0.297
Death 0 0 0.013

Furthermore, treatment patterns may result in multiple typical clinical outcomes. For example,
“LOS > 28 days” and “Transfer” are highly correlated for the pattern-3. Last but not the least,
our model can discover some rare but interesting findings from clinical outcome samples. For
example, as shown in Table 4, LOS of patients who follow the treatment pattern-1 and pattern-2
are generally less than 14 days. It is not surprised since both patterns are generally applied to
low-risk patients, as indicated in Figure 6, who are expected to have small LOS. However, there
are few patients who follow pattern-1 and pattern-2 readmit to the hospital in six months (0.006
and 0.026, respectively). It indicates that the treatments for these patients do not achieve the
expected quality in CPs. Clinical experts may have interests in analyzing the demographics of
these patients, and investigating if it is appropriate to perform the treatment behaviors of the
patterns on these patients, so as to adjust and optimize the pathway.

As we mentioned above, an important parameter to the proposed TPM is the number of latent
treatment patterns, which indicates how many aspects of EMRs can be derived. To this end, the
accuracy of clinical outcome classification can be employed as the indicator of performance with
respect to different number of patterns. Formally, given an unlabeled patient record d, its truth
clinical outcome set is Cd,b, including |Cd,b| clinical outcomes, and its |Cd,p| top-ranked predicted
outcome set is Cd,p, where |Cd,b| ≡ |Cd,p|. Then, accuracy is computed through dividing the
number of correctly predicted clinical outcomes by the total number of outcomes obtained in
EMRs, i.e.,

Accuracy =

∑

d∈D |Cd,b
⋂

Cd,p|
∑

d∈D |Cd,b|
(25)

To calculate Accuracy, we split the experimental dataset into a training set and a testing set,
and evaluate the performance by 5-fold cross-validation. In addition, we take clinical outcomes as
multi labels, and employ three widely-used multi-label classification algorithms [47], i.e., Binary
Relevance (BR), RAndom k-labELsets (RAKEL) and Multi-label k-nearest neighbors (ML-kNN),
for comparison 3. The results are shown in Figure 9.

The experimental results show that the performance of the proposed TPM-based method con-
verges with a relatively small number of treatment patterns. The average accuracy of our method
is 86.08%, and the standard deviation of the accuracy is 0.024, indicating that the performance
of the proposed method is quite stable, in particular, when the number of treatment patterns is
larger than 3. It is consistent with the experimental conclusion in the view of perplexity.

In addition, the proposed method always outperforms the baseline BR, RAkEL, and ML-
kNN. Note that BR, RAkEL, ML-kNN are discriminative models, and the performances of BR,
RAkEL, ML-kNN is to classify EMRs regarding their clinical outcomes. On the other hand, the

3 We used a well-known toolkit, i.e., MEKA (http://meka.sourceforge.net/), for the task of multi-label
classification.
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Fig. 9 The performance of clinical outcome classification with different number of treatment patterns

proposed TPM-based method, as a typical generative method, can not only classify EMRs with
respect to their clinical outcomes, but also reveal the details of underlying treatment patterns
for CPs.

5.5 Treatment recommendation based on the proposed TPM

The proposed approach can not only provide a basis for further CP analysis but also be utilized
to support clinical decision-making. In this subsection, we present a promising application of the
proposed TPM, i.e., a treatment recommendation service, which can be used to guide physicians
in CPs by providing recommendations on possible next steps based on the measurement of the
target patient conditions and medical knowledge from completed clinical cases.

As illustrated above, the probability of a treatment activity a given a particular patient by
integrating out the latent treatment patterns z, i.e.,

P (a|d) =

Z
∑

z=1

θ̂d,zφ̂z,a (26)

Based on Equation (26), we can test the performance of treatment recommendation of our
model quantitatively. To this end, we randomly selected 100 EMRs as a testing data-set and used
the rest records to train the model. W.r.t the ground-truth, we asked three experienced physi-
cians in the Cardiology department of the Chinese PLA General hospital to select the top-10
and -50 most important types of treatment activities from the test EMRs adopting a majority
voting 4. Then, we checked the consistency of the possible treatment interventions suggested by
our model with the ground-truth. More specifically, we recommended the top 10 and 50 types of
treatment activities for each test piece of EMR and checked if these are actually equal with ones
in the top 10 or 50 types of treatment activities ranked by physicians. In this sense, we utilize
two measurements which are “mean precision at top 10”, and “mean precision at top 50”.

In comparison with our model, a K-nearest neighbor (kNN) model was employed by using
the weighted combination of treatment interventions of the k (k=10 in this study) nearest neigh-
bors as the suggested treatments. In addition, the standard LDA [6], and an extension of LDA

4 Note that in clinical settings, the given treatments are biased. Even for the same patient, different
physicians may have different opinions on patient conditions so as to give different treatment interven-
tions.
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Table 5 The results of treatment recommendation

Mean precision at top 10 Mean precision at top 50
TPM 0.606 0.545
kNN 0.292 0.234
CPM 0.535 0.497
LDA 0.549 0.505

proposed in our previous work, i.e., CPM [8], were employed. Table 5 shows the experimental
results.

As we can see from Table 5, the LDA-based models outperform kNN significantly in terms of
treatment recommendations. In addition, TPM achieves the best performance among the three
LDA-based models, which indicates that the effectiveness of treatment recommendations can be
significantly improved if the patient-specific information is incorporated into the model.

5.6 Proof-of-concept prototype

We have implemented a system prototype using Microsoft C# and ASP.net, which provides web
services, including upload of EMRs and treatment pattern analysis using EMRs. The proposed
TPM has been implemented in the prototype. Some basic information of patient traces in a
selected EMR such as patient ID, department, LOS, etc., are shown in Figure 10(A), while the
screen-shot of the probability distributions of the derived patterns for a selected EMR shows
on Figure 10(B). The generated patterns indicate the actual patient condition and treatment
behaviors being applied given that condition. Figure 10(C) depicts a screen-shot of the probability
distributions of treatment activities and their occurring time stamps for a particular treatment
pattern. Users can observe the derived pattern from different angles by adjusting the display
parameters shown on the setting panel in the bottom of Figure 10(C).

6 Discussion

The experimental results demonstrate the effectiveness of our approach and the potential of using
the discovered knowledge for CP analysis and improvement. The benefits are listed relating to
the following aspects:

– The discovered treatment patterns have been evaluated by clinical experts from Chinese
PLA general hospital, who indicate that the mining results of our approach: (1) disclose
the correlations between patient conditions and treatment activities; (2) allow treatment
activities to be clearly spread along the time-line of CPs with specific occurring probabilities;
and (3) let a treatment pattern enumerate regular treatment behaviors that are expected to
occur in CPs, which serve as checkpoints for the performance of CPs. In general, physicians
from the hospital are satisfied with the mined results. The evaluations received indicate that
the proposed approach has the ability to find a clear characterization of possible treatment
patterns for particular diseases.

– The discovered treatment patterns form the backbone of CPs, and thus can be utilized to
support CP redesign and improvement. On the one hand, antecedent patient conditions of
the discovered patterns provide domain-specific information to find out the exact meanings
of these patterns. On the other hand, subsequent treatment behaviors of discovered pattern-
s demonstrate that, according to different patient conditions the treatment behaviors are
different. Thus, they provide useful insights into the pathway, and can hence be straightfor-
wardly included explicitly as background knowledge for further analytical objectives. Since
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Fig. 10 A screen-shot of the system prototype
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CPs may not perform as desired according to various measures, and have to be subsequently
redesigned, actionable knowledge discovered from our models can be used as a feedback tool
that helps in auditing and analyzing already enacted CPs, and can also provide a valuable
reference for medical staff to redesign and optimize CPs continuously.

– The discovered treatment patterns can be utilized to support clinical decision-making and
aid clinical diagnosis. For instance, we can analyze the characteristics of patient conditions
for their demographics to aid physicians to create patient-specific CPs. It is also applicable to
clinical decision support systems that recommend proper treatment behaviors matching with
the specific patient conditions. This might guide physicians in CPs by giving recommendations
on possible next steps based on the measurement of the target patient conditions and medical
knowledge, which would be learned from completed clinical cases.

Although our results have been encouraging to date, the proposed approach could be further
improved in a number of ways:

– We could automatically infer the number of treatment patterns by extending the proposed
probabilistic topic models to a nonparametric Bayesian model such as hierarchical Dirichlet
processes [48]. In addition, for the proposed TPM, we could incorporate additional informa-
tion (such as resources of radiological examinations, quantities and costs of medications, etc)
other than treatment activities and their occurring time stamps into the model to allow us
to analyze treatment behaviors at a very refined level. Note that EMRs might contain fruit-
ful information of patient features and treatment behaviors, and thus it would be promising
to exploit this data to provide health-care organizations with nontrivial knowledge to un-
derstand how treatment behaviors are currently being performed on patients, and improve
actual practices in alignment with clinical objectives in CPs [49,50].

– In this study, the patient conditions of the discovered treatment patterns are generated using
the data collected at the admission stage of CPs. However, the dynamic nature of patient
conditions is often essential to treatment behaviors adopted in CPs. During the executions of
CPs, patient conditions could be changed so as to influence physicians’ diagnostic conclusions.
To this end, the selection of treatment behaviors may depend on the time at which the
selection is made. Besides, new evidence often becomes available at time-points, which could
cause the variant treatment behaviors as well. Apparently, by incorporating richer execution
information into the proposed models to disclose the dynamic features of CPs, our method
could be more intelligent.

– This study proposes a probabilistic generative model to simultaneously capture the corre-
lations between patient-specific information and treatment interventions from the heteroge-
neous medical records. However, the causal relationship and the the interaction between the
two were not taken into consideration by the model. Causal analysis can be useful to clinical
analysts to find out unexpected changes of patient status and thus appropriate treatment
behaviors could be performed on patients in CPs. Association rule mining could be a possible
choice to address this challenge [51]. As well, sequence pattern mining could also be used to
classify and analyze interactions among treatment events in CPs [5]. However, the interesting
question that remains address the issues of how to design efficient algorithms for mining the
causal relationships and the interactions among treatment events in CPs, as well as, how to
explain the discovered causal relationships and the interactions in a maximum-informative
manner. Much research is still needed to make such mining both effective and efficient.

7 Conclusion

In this paper, we present a new approach of discovering underlying treatment patterns from
EMRs. In detail, a new probabilistic topic model is developed to link patient features and treat-
ment behaviors together to mine treatment patterns hidden in EMRs. Experimental results
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on a collection of EMRs of unstable angina patients from the Chinese PLA general hospital
demonstrate intrinsic patient characteristics and meaningful treatment patterns discovered by
our models.

The discovered treatment patterns have been evaluated by hospital managers and clinical
experts at the Chinese PLA General hospital, who understand the beneficial effects of our study.
They indicated that the discovered knowledge from EMRs support CP (re)design and improve-
ment. Despite that, the proposed approach is not a tool for designing CPs, it is evident that a
good understanding of the existing patient treatment processes is vital for any design and im-
provement effort [6]. Since a large collection of EMRs becomes available in hospitals nowadays,
they can be meaningfully used to derive nontrivial knowledge explaining treatment intentions
and behaviors in CPs. Besides, discovered knowledge is not biased by perceptions, and is useful
to confront with the man-made CP specifications. Thus, it might be effective in CP analysis and
improvement.

Although our study reveals that the proposed approach is effective in discovering efficient
patterns, there are even more complex analysis and evaluation tasks that need to be considered.
In fact, our clinical collaborators from Chinese PLA general hospital have indicated that, even
though our approach is efficient for mining precise and complete set of regular treatment pat-
terns in CPs, there are still a number of infrequent behaviors that are missing in the discovered
patterns. Note that many of these infrequent behaviors are correlated with the treatments of the
comorbidities of patients, and thus need to be discovered and analyzed. From this perspective,
the interesting questions that remain address the issues of how to design efficient algorithms for
mining and detecting variants in CPs, as well as, how to explain these variants in a maximally-
informative manner. Much research is still needed to make such mining both effective and effi-
cient.

The issue of meaningful or secondary use of EMRs represents a promising and interesting
research direction in health informatics. Our study indicates the feasibility of exploring EMRs
to support CP-oriented and patient-specific clinical decision making. There are many potential
applications of our work, such as a patient-specific treatment recommendation service in CPs,
treatment behavior grouping and identification within the same therapy and treatment intention,
and anomaly detection from normal treatment behaviors, etc. As for future work, we are plan-
ning to evaluate our approach with a larger scale of EMR collections, and address these tasks
by exploiting the potential of the proposed approach, as a crucial advantage over traditional
techniques for CP analysis and optimization.

Appendix A

In this appendix, we give the derivation of Equation (11)

P (f,v,a, t, z|α, β, γ, η, ι,g,k,x,y)

= P (z|α)P (f|z, η)P (v|z, f, ι,g,k,x,y)P (a|z, β)P (t|z,a, γ) (27)
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For P (z|α), we have

P (z|α)

=
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For P (f|z, η), we have
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For P (v|z, f, ι,g,k,x,y), we have
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For P (a|z, β), we have
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For P (t|z,a, γ), we have:
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Substituting Equations (28)-(32) into Equation (27), and using the chain rule and Γ (α) = (α−
1)Γ (α− 1), we can obtain the conditional probability conveniently,
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