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Summary

C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical 

components, which function together to increase the CO2 concentration around Rubisco and reduce 

photorespiration. It evolved independently multiple times and C4 plants now dominate many 

biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with 

numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, 

we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, 

those that generated the C4 physiology, and those that happened in a C4 background and opened 

novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological

evidence in a phylogenetic context, which demonstrates the importance of contingency in 

evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss 

the physiological innovations that allowed C4 plants to escape these constraints for two important 

dimensions of the ecological niche, growth rates and distribution along climatic gradients. This 

review shows that a comprehensive understanding of C4 plant ecology can be achieved by 

accounting for evolutionary processes spread over million of years, including the ancestral 

condition, functional convergence via independent evolutionary trajectories, and physiological 

diversification.

Keywords: C4 photosynthesis, physiology, evolution, ecological niche, co-option, contingency
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Introduction

C4 photosynthesis is a complex phenotype, formed from multiple anatomical and biochemical 

components that together increase the concentration of CO2 around Rubisco (Hatch, 1987; Figure 

1). This evolutionary innovation increases the carbon-fixation efficiency under all conditions that 

restrict CO2 supply to Rubisco, and has its greatest effects at high light and temperature (Ehleringer 

& Bjorkman, 1977; Ehleringer, 1978; Ehleringer et al., 1991, 1997). However, the distributions of 

C4 plants cannot be comprehensively explained by individual environmental variables, and C4 

species thrive across a diversity of habitats, ranging from the tropics to the boreal zone, from deserts

to submerged conditions, from open grasslands to forest understoreys, and from nutrient-depleted to

fertile soils. This ecological diversity results from the rich evolutionary history of this physiological

trait, which evolved many times in distantly related groups (Sage et al., 2011).

Since its discovery in the 60s, C4 photosynthesis has been the subject of many studies, from the 

fields of biochemistry, physiology, organismal biology, ecology and evolution (reviewed in 

Langdale, 2011). In the last fifteen years, our understanding of evolutionary aspects of C4 

photosynthesis has been boosted by the accumulation of molecular phylogenies, which have 

identified more than 62 monophyletic C4 groups (e.g. Kellogg, 1999; GPWG, 2001; Giussani et al., 

2003; Kadereit et al., 2003; McKown et al., 2005; Besnard et al., 2009; Sage et al., 2011; GPWGII, 

2012). Phylogenetic trees allow us to disentangle the events that led to the evolution of C4 

physiology (McKown et al., 2007; Christin et al., 2011b, 2013b; Khoshravesh et al., 2012; Griffiths

et al., 2013; Box 1), and the accumulated evidence shows that some C4 constituents evolved in a C3 

context and enabled the transition to C4 physiology via the gradual addition of other C4 constituents 

(Sage, 2001, 2004; Christin & Osborne, 2013). The availability of robust and densely sampled 

phylogenetic trees has also revolutionized our understanding of C4 ecology, with the possibility of 

dating C4 origins and placing them on the geological timeline (e.g. Christin et al., 2008a; Vicentini 

et al., 2008; Kadereit et al., 2010), and the capacity to differentiate ecological properties that were 

inherited from C3 ancestors from those that represent departures from ancestral conditions (e.g. 

Edwards et al., 2007, 2008; Osborne & Freckleton, 2009; Edwards & Smith, 2010; Taylor et al., 

2010, 2012; Kadereit et al., 2012; Box 1).

In this review, we integrate knowledge acquired during the last 50 years and recent modelling 

efforts into a phylogenetic context, to infer the most plausible events occurring during the 

evolutionary transition from C3 to C4 photosynthesis, and discuss their physiological and ecological 

consequences. Throughout, we evaluate the evidence in the context of two non-mutually exclusive 
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hypotheses. First, that evolutionary trajectories towards novel traits cannot vary in any direction, but

are highly constrained by the phenotype and genotype of the organism. Secondly, that evolutionary 

innovation unlocks new phenotypic opportunities for the organism and shifts the fundamental niche,

by removing constraints on the trait space that can be occupied.

1. Which properties are common to all C4 plants?

C4 physiology

The main effect of C4 photosynthesis is an elevated concentration of CO2 relative to O2 in the 

vicinity of Rubisco, increasing the ratio of carboxylation to oxygenation reactions catalyzed by the 

enzyme, and therefore lowering the rate of photorespiration (Chollet & Ogren, 1975; Hatch & 

Osmond, 1976). It also near-saturates Rubisco with its CO2 substrate, which increases the rate of 

carbon assimilation per unit of Rubisco protein and gives the potential for very rapid photosynthetic

rates under high light conditions (Schmitt & Edwards, 1981; Long, 1999). The ratio of oxygenation 

by Rubisco relative to carboxylation rises with temperature because the solubility of CO2 decreases 

relative to O2, and the specificity of Rubisco declines faster for CO2 than O2 (Long, 1991). At high 

temperatures and low CO2, the C4 cycle therefore increases the number of CO2 molecules fixed per 

absorbed photon (quantum efficiency), but also per unit of Rubisco protein invested, and 

consequently improves the photosynthetic nitrogen-use efficiency (Ehleringer & Bjorkman, 1977; 

Brown, 1978; Skillman, 2008). However, the C4 cycle consumes metabolic energy, and C3 plants 

therefore retain a higher quantum efficiency when photorespiration is low, especially at low light 

and low temperature (Ehleringer & Bjorkman, 1977). These physiological properties are common to

all C4 plants. However, they emerge through a complex assemblage of anatomical and biochemical 

components. When investigating the evolution of C4 photosynthesis, it is useful to distinguish 

phenotypic characters arising from individual developmental changes or biochemical reactions, 

from the functional properties that emerge through the coordinated action of several such characters

(Table 1).

C4 phenotypic functions

The C4 syndrome is defined by the primary fixation of carbon by phosphoenolpyurvate carboxylase 

(PEPC) during the day and its refixation by Rubisco (Kellogg, 1999).  These metabolic functions 

are achieved via the segregation of PEPC and Rubisco into two distinct compartments within the 

leaf, with the compartment containing Rubisco largely isolated from the external environment 

(Hatch & Osmond, 1976). In addition, a number of biochemical functions are required to sustain the

C4 cycle (Figure 1a): a) the action of carbonic anhydrase (CA) for converting CO2 to HCO3
-, and its 
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fixation into organic acids by PEPC; b) a cascade to transform the oxaloacetate produced by PEPC 

into other C4 organic acids, and transport them to the Rubisco compartment; c) a system to release 

CO2 in the Rubisco compartment; and d) a cascade to regenerate the acceptor molecules for carbon 

in the C4 cycle (Hatch, 1987). Besides these biochemical functions, the fixation of carbon by PEPC 

and its later refixation by Rubisco requires a series of functions linked to the plant structure that are 

present in all C4 plants (Hattersley & Watson, 1975; Edwards & Voznesenskaya, 2011; Lundgren et 

al., 2014). These include two compartments separated by a short distance, into which PEPC and 

Rubisco reactions can be segregated (Figure 1).

C4 characters

The anatomical and metabolic functions listed above are present in all C4 plants, independently of 

their taxonomic origin, but each of these functions arises from multiple characters, which result 

from independent modifications in the characteristics of their components (Table 1). Unlike the 

functions generated, these underlying characters and characteristics vary among C4 lineages, and 

each time the C4 syndrome evolved, it was assembled using one of numerous possible sets of 

anatomical and biochemical characters (Sinha & Kellogg, 1996; Kellogg, 1999). This leads to a 

number of important distinctions among C4 lineages. First, the two compartments used to segregate 

PEPC and Rubisco reactions vary among C4 plants, and may be cell types derived from the same or 

different meristematic tissues, or even different compartments within the same cell (Brown, 1975; 

Dengler et al., 1985; Edwards et al., 2004). Similarly, the close contact between the PEPC and 

Rubisco compartments can be achieved by modifying the vein architecture through different 

developmental pathways (reviewed by Lundgren et al., 2014). The biochemical cascade that 

transforms and transports the product of PEPC, releases CO2 and regenerates the intermediate 

compounds (Figure 1a, steps b-d), is also well known to vary among C4 lineages, with different 

enzymes involved, especially in the release of CO2 from C4 acids in the Rubisco compartment 

(Figure 1a, step c; Andrews et al., 1971; Gutierrez et al., 1974). In conclusion, the phenotypic 

characters that are known to be common to all C4 plants are a high activity of CA and PEPC in the 

cytosol of the first compartment and a high activity of Rubisco within chloroplasts in the second 

compartment (Figure 1), and most, if not all, of the others vary among C4 lineages (Kellogg, 1999).

2. What is unique to C4 plants?

Individual C4 components in non-C4 plants

The emergent physiological properties associated with the C4 syndrome are unique to C4 plants, but 

several of the underlying functions and all the components can be found in plants using other 
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photosynthetic pathways. Close contact between the two leaf compartments usually used for PEPC 

and Rubisco reactions is found in several C3 grasses (Lundgren et al., 2014), and in many plants 

that use a C2 pathway, a low efficiency CO2-scavenging mechanism based on glycine decarboxylase

localization (Sage et al., 2012). Similarly, a concentration of Rubisco in bundle sheath chloroplasts 

is observed in C2 plants as well as closely related C3 taxa (Sage et al., 2013). The biochemical 

functions that generate the C4 cycle are not found as such in other plants, except for CAM plants, 

which use a similar pathway with a temporal segregation of reactions. However, all the enzymes of 

the C4 cycle, and the catalyzed reactions, exist in C3 plants (Aubry et al., 2011). In these species, the

enzymes are responsible for different functions in basal metabolism (reviewed by Aubry et al., 

2011). Most of these enzymes are encoded by multigene families, and the different isoforms vary in 

their catalytic properties and expression patterns (Tausta et al., 2002; Svensson et al., 2003). The 

ancestral functions generally still exist in C4 plants, but some isoforms now operate in the C4 cycle, 

which requires specific spatial and temporal regulation, as well as specific kinetic properties. At 

least some of these expression and kinetic characteristics however exist in C3 plants. For instance, 

decarboxylating enzymes are active around the vascular tissue in a phylogenetically diverse range 

of C3 species (Hibberd and Quick, 2002; Osborne & Beerling, 2006; Brown et al., 2010), and most 

of the genes for the enzymes of the C4 cycle can be found at significant levels in C3 leaves (Christin 

et al., 2013a; Bräutigam et al., 2014).

Gradual C4 assembly through repeated co-option of components

All of the components that together generate C4 physiology can therefore be found in other 

photosynthetic types, but their characteristics vary both quantitatively and qualitatively, and C4 

lineages each present unique combinations of the resulting characters (Table 1). The presence of all 

components in C3 or C2 species implies that the evolution of C4 photosynthesis required their co-

option into a new function and, in many cases, their adaptation for the novel metabolic context. The 

different C4 components were not co-opted simultaneously, but must have been added sequentially. 

The exact order of this process is still to be elucidated and is very likely to vary among lineages 

(Williams et al., 2013), but recent insights have come from phylogenetic reconstructions (e.g. 

Christin et al., 2011b; Khoshravesh et al., 2012) and modelling efforts (Heckmann et al., 2013; 

Williams et al., 2013; Mallmann et al., 2014). These studies differ in the characters that are 

considered, sometimes modelling the whole C4 cycle as a simple component (Heckmann et al., 

2013) or transforming quantitative traits into discrete binary variables (Christin et al., 2011b; 

Williams et al., 2013), but they all converge on similar conclusions. For instance, it is now widely 

accepted that several C4 characters, especially anatomical ones, were acquired before C4 physiology 

(Sage, 2001, 2004; McKown et al., 2007; Christin et al., 2011b; Khoshravesh et al., 2012; 
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Heckmann et al., 2013; Williams et al., 2013). Similarly, several C4 characters were probably 

acquired once plants were already fixing the majority of their carbon via PEPC, thereby optimizing 

the syndrome and adapting it to diverse environments (Christin et al., 2011b; Heckmann et al., 

2013). The whole history of events that led to optimized C4 descendants was likely spread over 

many million years (Christin & Osborne, 2013; Figure 2), and the ecological drivers and biological 

consequences are likely to differ among these events. In the following sections, we discuss first the 

events that happened in a non-C4 context and enabled the transition to C4 physiology (previously 

referred to as preconditions; Sage, 2001, 2004), then the process that generated the C4 physiology 

itself, and finally the modifications that likely happened within a C4 context. For each of these, the 

potential physiological and ecological consequences are discussed.

3. What happened before C4 physiology?

Origin of enzymes of the C4 pathway

All enzymes of the C4 pathway originated in bacteria, hundreds of millions or billions of years 

before they were co-opted for C4 photosynthesis. In angiosperms, they are usually encoded by gene 

families, with multiple isogenes that appeared through successive whole genome or single gene 

duplications (Wang et al., 2009; Christin et al., 2013a). The different isoforms generally diversified 

and came to fulfil a variety of functions, mostly anaplerotic (Drincovich et al., 2001; Lepiniec et al.,

2003). This diversification also involved changes in expression patterns (spatial, temporal, and 

quantitative), as well as kinetic properties and responses to regulators (e.g. Blasing et al., 2002; 

Tausta et al., 2002; Christin et al., 2013a; John et al., 2014). This functional diversification was not 

driven by C4 photosynthesis, but might have predisposed some plants for a later C3-to-C4 transition. 

Indeed, a function in the C4 cycle requires specific expression patterns as well as catalytic properties

(Hibberd & Covshoff, 2010), and the existence in some genomes of genes encoding enzymes with 

characteristics partially suitable for the C4 cycle might have facilitated C4 evolution. This hypothesis

is supported by the observation that independent C4 origins preferentially co-opted specific 

isogenes, suggesting that these were more suitable for a function in C4 photosynthesis (Christin et 

al., 2013a; John et al., 2014). It has been shown that some C3 plants possess isoforms with C4-like 

expression patterns (Hibberd & Quick, 2002; Brown et al., 2010). For instance, genes for bundle 

sheath-specific glycine decarboxylase were already present in the C3 ancestors of the genus 

Flaveria (Schulze et al., 2013), and mechanisms for the cell specificity of NAD-ME and NADP-

ME enzymes might have evolved long before the C4 pathway (Brown et al., 2011). While the 

drivers of these characters remain to be elucidated, their co-option would drastically reduce the 

number of steps separating C3 ancestors from C4 descendants.
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Evolution of C4-like anatomical characters

In most C4 lineages, PEPC and Rubisco functions are segregated within leaves into mesophyll and 

bundle-sheath cells, respectively (Figure 1b), the latter being specialized cells surrounding the 

vascular tissue. In this common variant of the C4 syndrome, a short distance between mesophyll and

bundle sheath cells is usually achieved via high vein density. Vein density first increased during the 

early diversification of angiosperms (Feild et al., 2011), and was followed by several further 

increases in diverse groups of C3 plants (Figure 2; Christin et al., 2013b). In a C3 context, a high 

density of major veins provides alternative paths for water transport in case of xylem embolism and 

might confer higher tolerance to damage and drought (Sack et al., 2008, 2012). In addition, higher 

densities of minor veins enable high rates of photosynthesis and are advantageous in productive 

environments, such as high irradiance conditions (McKown et al., 2010). High vein density 

therefore represents an adaptation to high photosynthetic rates or a high risk of xylem embolism or 

damage. However, vein density is only indirectly relevant to C4 photosynthesis. Indeed, the absolute

distance between veins (interveinal distance; IVD) is less important than the number of mesophyll 

cells separating consecutive vascular bundles (Hattersley & Watson, 1975). This latter characteristic

is only partially correlated to IVD, which is also influenced by the size of mesophyll cells, the 

thickness of the bundle sheath, and the diameter of vascular tissue. Similar IVD values can 

therefore emerge through different combinations of mesophyll cell size and number (Lundgren et 

al., 2014), and the environmental drivers of these cellular properties are yet to be identified.

Bundle-sheath cells evolved early in the history of vascular plants, with the function of regulating 

water and metabolite fluxes from and into the leaves, and a variety of additional metabolic tasks 

(Leegood, 2008; Griffiths et al., 2013; Aubry et al., 2014). The ecological significance of bundle-

sheath cell size is still unclear, although it has been proposed that larger cells might provide 

protection against or rapid repair of cavitation (Sage, 2001; Griffiths et al., 2013), and hence confer 

an advantage when transpiration exceeds water supply (Osborne & Sack, 2012). However, C4 

photosynthesis does not necessarily require large bundle-sheath cells, but only a large relative 

amount of bundle-sheath tissue (Hattersley, 1984; Dengler et al., 1994), which may be achieved via 

a proliferation of small bundle-sheath cells, for instance through the development of abundant 

minor veins (Lundgren et al., 2014). The proportion of bundle-sheath tissue varies among clades of 

C3 grasses, with large fractions increasing the likelihood of evolving C4 physiology (Christin et al., 

2013b; Griffiths et al., 2013). Since this leaf property results from multiple characteristics of 

distinct components, and in particular the size of bundle-sheath cells and the number of mesophyll 

cells between consecutive vascular bundles (Christin et al., 2013b), it could be dictated by multiple 
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drivers, including those that influence vein density.

Concentration of Rubisco activity in bundle-sheath cells and the C2 pathway

A high Rubisco activity in chloroplasts of the bundle-sheath is probably necessary for the evolution 

of C4 photosynthesis, since any C4 cycle in its absence would be futile. Determinants of the relative 

abundance of chloroplasts among mesophyll and bundle-sheath cells are poorly understood. 

However, it has been clearly established that enhanced Rubisco activity in the bundle-sheath can be 

related to the C2 pathway (Sage et al., 2012). The C2 cycle arises through a concentration in the 

bundle sheath of glycine decarboxylase (GDC), the enzyme responsible for CO2-liberation in 

photorespiration (Sage et al., 2012). In Flaveria species, mesophyll and bundle-sheath GDC are 

encoded by different isogenes, so that a decrease of GDC expression in the mesophyll increases the 

relative activity of GDC in the bundle-sheath (Schulze et al., 2013). This localization forces 

photorespiration to release CO2 in the bundle-sheath cells, meaning that the CO2 is less likely to 

diffuse back to the atmosphere before being refixed by Rubisco (Sage et al., 2012). The rate of 

refixation is higher if Rubisco is abundant in the bundle-sheath cells, and an increased confinement 

of Rubisco and GDC activities to these cells might co-evolve to optimize the C2 physiology.

The C2 pathway has been seen as an intermediate stage between C3 and C4 photosynthesis for a long

time (Monson et al., 1984; Hylton et al., 1988), a hypothesis later supported by phylogenetic 

analyses in different taxonomic groups (McKown et al., 2005; Khoshravesh et al., 2012). However, 

phylogenetic analyses and molecular dating have also shown that the C2 trait can be stable, having 

existed in some groups for more than 10 million years without producing any known C4 descendant 

(Christin et al., 2011a). Although most plants using the C2 pathway are limited in range (Sudderth et

al., 2009), others, like Mollugo verticillata, are widespread and colonize numerous ecological 

conditions. While some C2 plants possess C4-like biochemical characters (e.g. Mollugo verticillata; 

Kennedy & Laetsch, 1974), others, such as Mollugo nudicaulis, have no C4 activity (Kennedy et al.,

1980), which shows that C2 physiology can evolve and be maintained independently of any C4 

cycle. The main physiological effect of the C2 pathway is to slightly decrease photorespiration, and 

consequently increase the net carbon gain in conditions where photorespiration is important (Vogan 

& Sage, 2011; Way et al., 2014).

Selective pressures

The assembly of C4 physiology via natural selection requires environmental conditions where C4 

photosynthesis is advantageous compared to the ancestral conditions. This is believed to have 

happened after atmospheric CO2 reached very low levels some 30 million years ago during the 
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Oligocene (Pagani et al., 2005; Beerling & Royer, 2011), which exacerbated photorespiration 

(Ehleringer et al., 1991). Molecular dating places C4 origins in the last 30 million years (Box 1; 

Figure 2), and phylogeny-based models have shown that the probability of C3-to-C4 transition 

increased during this time (Christin et al., 2008a, 2011a; Vicentini et al., 2008; Besnard et al., 

2009). However, depending on the taxonomic/phylogenetic placement of some microfossils, the 

earliest C4 origin, in the grass subfamily Chloridoideae, might have happened in a high-CO2 world 

(Prasad et al., 2011; Christin et al., 2014), and fossilized pollen grains from a couple of million 

years before the Oligocene CO2 decline have been assigned to C4 species (Urban et al., 2010). 

Despite this possibility of some C4 origins before the Oligocene CO2 decline, the vast majority of C4

origins happened in a low-CO2 world. (Christin et al., 2014). However, a low atmospheric CO2 level

is not sufficient to select for C4 photosynthesis (Ehleringer and Bjorkman, 1977; Osborne and 

Beerling, 2006), and other environmental factors that increase photorespiration likely promoted 

each of the numerous origins of C4 physiology (Sage, 2001; Roalson, 2008). Comparative analyses 

have shown that transitions to C4 physiology occurred in grass lineages from open habitats of warm 

regions (Osborne & Freckleton, 2009; Edwards & Smith, 2010), while in Chenopodiaceae sensu 

stricto, the evolution of C4 photosynthesis was more likely in lineages inhabiting saline and coastal 

environments (Kadereit et al., 2012).

4. What happened during the transition to C4 photosynthesis?

Increase of PEPC activity and new selective pressures

If the appropriate leaf functions are in place and a significant fraction of Rubisco activity is 

concentrated in the BS cells, the C4 cycle can theoretically evolve through the gradual increase of C4

reactions (Heckmann et al., 2013). The order in which the C4 enzymes are incorporated is not 

known with precision, and the order might differ among lineages (Williams et al., 2013). An 

increase in the rate of transformation and transport of the C4 intermediates, release of CO2, or 

regeneration of the intermediates would not generate any kind of C4 cycle in the absence of a 

sufficiently high concentration of oxaloacetate, the product of the PEPC reaction (Figure 1b). An 

increased activity of the other enzymes could however evolve before enhanced PEPC activity for 

reasons unrelated to C4 photosynthesis (Williams et al., 2013; Mallmann et al., 2014). The very first

step in the establishment of a proper C4 cycle must be an increase in the rate of fixation of 

atmospheric CO2 by the coupled action of PEPC and CA. CA is already present at high levels in 

many C3 plants, where it plays a role in carbon assimilation (Majeau & Coleman, 1994). An 

increase of PEPC activity in the mesophyll might thus be sufficient to generate high concentrations 

of oxaloacetate. This oxaloacetate would however need to be transformed and transported by 
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several enzymes before feeding Rubisco with released CO2. It has been established that at least 

some enzymes of the C4 cycle are already present in some C3 plants in the areas of the leaf required 

for a C4 cycle (Hibberd & Quick, 2002). Their expression levels in C3 plants can moreover be 

significant, although below those observed in C4 plants (Christin et al., 2013a; Bräutigam et al., 

2014). Furthermore, the activities of PPDK and decarboxylating enzymes increase in some C2 

plants before PEPC (Williams et al., 2013), potentially to rebalance nitrogen metabolism in C2 

plants (Mallmann et al., 2014). The enzymes already present in the cells of some C3 or C2 species 

may be sufficient to process the oxaloacetate produced by an increased PEPC activity, especially if 

their activity is induced by an increase in substrate concentrations. Transfer of intermediates 

between cells could initially be made via simple diffusion, so that increased PEPC activity might, in

plants already possessing C4-like characters, be sufficient to generate a C4 physiology.

The establishment of a weak C4 cycle through an increased activity of PEPC and the co-option of 

other enzymes is a key event, because it can significantly decrease photorespiration and 

consequently lead to a gradual improvement of the efficiency of the C4 pathway through natural 

selection (Heckmann et al., 2013), fixing mutations that enhance activities of C4 enzymes and adapt

their catalytic properties for the new metabolic context (Nakamoto et al., 1983; Bauwe, 1984; 

Svensson et al., 2003). In the case of PEPC, the past action of selection left traces as an excess of 

non-synonymous mutations that are mostly concentrated on branches leading to each C4 group 

(Christin et al., 2007; Besnard et al., 2009). This distribution of C4-driven amino acid changes 

suggests that the adaptation of PEPC for the C4 function occurred over a short time that overlaps 

with changes in the enzyme's activity (Figure 2). In most phylogenies, the first C4 descendant is 

separated from its last C3 ancestor by several million years (Christin et al., 2008a, 2011a; Besnard 

et al., 2009), so that the different characters that together generate C4 physiology cannot be 

disentangled. However, some exceptional groups maintained a diversity of photosynthetic 

phenotypes that might represent the footprint of gradual modifications during the evolution of C4 

physiology.

Insights from Flaveria

In the genus Flaveria, the transition from the last C3 ancestor to the first C4 descendant spanned 

about 2-3 million years (Christin et al., 2011a), and extant taxa represent a range of anatomical, 

biochemical and physiological states (Bauwe, 1984; Ku et al., 1991; McKown & Dengler, 2007; 

Sudderth et al., 2007; Vogan & Sage 2011). We compiled data from the literature for different C4-

related traits and reconstructed their evolution on the time-calibrated phylogeny for the genus (from 

Christin et al., 2011a). Ancestral reconstructions for nodes separating the C3 ancestor of all Flaveria
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from the extant C4 species Flaveria trinervia suggest that C4 anatomy, biochemistry and physiology 

were acquired in parallel in this group (Figure 3), although ancestral reconstructions come with 

large confidence intervals. A higher PEPC activity can be observed in some Flaveria species that do

not have a typical C4 metabolism (Bauwe, 1984), as also shown for other groups (Murphy et al., 

2007), and this results in an increase in the proportion of carbon fixed as C4 acids (Monson et al., 

1986; Moore et al., 1987; Vogan & Sage, 2011). The increased C4 activity in these plants might 

result from a need to rebalance the nitrogen metabolism between bundle sheath and mesophyll cells,

putting some C2 plants on a highway towards C4 (Mallmann et al., 2014). An effect of this 

enhancement of C4 activity on water-use efficiency has not been detected (Vogan & Sage, 2011). 

There are, however, indications of a rise in photosynthetic nitrogen-use efficiency (PNUE) in 

parallel with the enhancement of C4 activity in Flaveria, associated with the clear decrease in CO2 

compensation point that accompanies the accumulation of C4 functions (Vogan & Sage, 2011; 

Figure 3).

The C4 characters that accumulated before the transition to a C4 physiology are likely to vary among

taxonomic groups (Williams et al., 2013). The increase of PEPC activity might happen in plants that

already have C4 functional properties, but the establishment of a weak C4 cycle might also be 

possible in plants with components that are more distant from the C4 requirements. In the former 

case, few changes might be needed besides the increase in C4 cycle activity, while in the latter case 

C4 functions would be reinforced by selection for a more efficient C4 cycle, as seen for leaf 

anatomical characteristics in Flaveria (Figure 3). The changes required in both expression patterns 

and catalytic properties will also depend on the properties of the enzyme inherited from the C3 

ancestor and co-opted for the C4 cycle. The timing of origin for C4 characters will consequently vary

among C4 lineages (Williams et al., 2013), with the same changes happening in some cases within a

C3 context, while in other lineages they might happen during the evolution of a C4 physiology, or 

even slightly later.

5. What happened after C4 evolution?

Optimization of Rubisco and PNUE

The relative specificity of Rubisco for CO2 compared to O2 is negatively correlated with its catalytic

efficiency, and the two parameters are thought to be finely tuned to allow the highest catalytic rate 

while minimizing O2 fixation (Tcherkez et al., 2006). In C3 plants and a low-CO2 atmosphere, this 

trade-off results in more specific but slower enzymes that have to be highly expressed to fix 

sufficient CO2, and Rubisco represents up to one third of all leaf soluble proteins and 20% of the 
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total nitrogen budget (Evans & Poorter, 2001). The higher concentration of CO2 around Rubisco 

generated by C4 physiology relaxed selection for enzymes with a higher specificity for CO2, and 

enabled the evolution of faster Rubiscos (Seeman et al., 1984; Tcherkez et al. 2006; Kubien et al. 

2008; Kapralov et al. 2011). A more efficient enzyme, together with increased CO2 concentrations 

at its active site, means that fewer protein molecules are needed, and the abundance of Rubisco is 

reduced by 60-80% in some C4 species (Ku et al., 1979). Although the C4 cycle itself requires 

additional enzymes, large quantities of proteins are not necessary if their catalytic rates are high, 

and the C4 cycle thus allows for lower total protein and nitrogen amounts if the proteins are 

optimized, which increases photosynthetic nitrogen-use efficiency (PNUE; Schmitt & Edwards 

1981; Sage & Pearcy 1987; Ghannoum et al., 2005).

Models suggest that the adaptation of Rubisco kinetics started in parallel with increased C4 enzyme 

activity, but continued once the plants were in a C4 physiological state (Heckmann et al., 2013; 

Williams et al., 2013). In Flaveria, the Rubisco kinetics of C4 species differ from those of related C3

taxa, but those of C3 and intermediate taxa were not consistently different (Kubien et al., 2008). The

continuous adaptation of Rubisco after C4 evolution is supported by the footprint of adaptive 

evolution on genes encoding Rubisco, with an excess of non-synonymous mutations spread across 

branches within C4 lineages in various groups of angiosperms (Christin et al., 2008b; Kapralov et 

al., 2012). The decreased nitrogen costs of Rubisco thus evolved very gradually, and continued long

after the initial diversification of C4 groups. The ranges of Rubisco kinetics almost overlap between 

C3 and C4 species (Seeman et al., 1984), and variation in the catalytic rate of Rubisco affects PNUE 

among C4 grasses, with higher catalytic rates increasing PNUE (Ghannoum et al., 2005). For 

instance, the PNUE increase in C4 lineages compared to C3 sister-groups varies from 25% in the C4 

grass lineage Aristida to 42% in Chloridoideae and 60% in Andropogoneae (Taylor et al., 2010).

The capacity to grow with limited access to nitrogen is key to ecological success on infertile soils, 

and a more efficient use of nitrogen acquired during the diversification of C4 lineages might have 

contributed to the rise to ecological dominance of some C4 species (Edwards et al., 2010). For 

example, recovery after fire in mesic savannas requires rapid resprouting in a nitrogen-depleted soil,

and these environments are dominated by grasses from the Andropogoneae clade (Forrestel et al., 

2014), which have the highest PNUE values among C4 grasses (Taylor et al., 2010). The number of 

species for which PNUE has been measured is limited, and it is thus not known whether the 

evolution of high PNUE coincided with the rise to ecological dominance better than the origin of C4

photosynthesis. It is however likely that C4 physiology enabled the evolution of very high PNUE in 

some cases, and hence the colonization of competitive habitats, like savannas.
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Adaptation of stomatal conductance and plant hydraulics

CO2 partial pressures within the leaf intercellular air spaces are sufficient to saturate the coupled 

CA-PEPC enzyme system at 25-33% of the atmospheric value, and maximum rates of C4 

photosynthesis can thus be maintained despite large decreases in stomatal conductance (Wong et al.,

1979; Long, 1999). C4 plants consequently evolved lower stomatal conductance for a given rate of 

photosynthesis, a property that is amongst the most consistently associated with C4 photosynthesis 

in grasses (Taylor et al., 2010). Decreased stomatal conductance could theoretically arise directly 

from the emergence of a C4 cycle if stomatal aperture is regulated in response to the intercellular 

CO2 partial pressure and photosynthetic rate (e.g. Messinger et al., 2006). Changes in the stomatal 

response to internal CO2 concentrations are already visible in some C3-C4 species of Flaveria 

(Huxman & Monson, 2003), but in the longer term, the maximum capacity for stomatal 

conductance is adjusted downwards via developmental changes in the density and/or size of the 

stomata (Taylor et al., 2012). The diversity of strategies used to decrease stomatal conductance 

within some C4 grass lineages (i.e. smaller versus less numerous stomata; Taylor et al., 2012) 

suggests continuing adjustments after the emergence of a C4 cycle, although an initial decrease of 

stomatal number might result directly from the elevated vein density in C4 species (Way, 2012; 

Figure 3).

A lower stomatal conductance decreases leaf transpiration relative to hydraulic supply, thereby 

improving leaf water status if the hydraulic system remains unchanged (Osborne & Sack, 2012). 

This effect remains if any subsequent reduction in hydraulic conductance is of a smaller magnitude 

than the change in stomatal conductance. In keeping with this expectation, comparisons within 

common garden, glasshouse and controlled environments show that soil-leaf water potential 

gradients are smaller in C4 grass lineages compared to their close C3 relatives under well-watered 

conditions (Taylor et al., 2010, 2011, 2014). This can be advantageous in environments where 

evaporative demand exceeds hydraulic supply, including conditions of high evaporative potential 

where solar radiation is high or the atmosphere is dry (Osborne & Sack, 2012). The advantage of 

reducing stomatal conductance is greater in low CO2 atmospheres, where the stomatal aperture of 

both C3 and C4 species tend to increase, thereby augmenting the risk of hydraulic failure (Osborne 

& Sack, 2012).

The effects of stomatal conductance on plant tolerance of water deficits are complex (Ghannoum, 

2009). During the initial stages of soil drying, stomatal conductance decreases more sensitively in 

C3 than C4 grasses (Ripley et al., 2010; Taylor et al., 2011, 2014). This observation is consistent 
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with a hypothesis of hydropassive stomatal control, mediated via a higher ratio of evaporative 

demand to hydraulic supply in C3 than C4 species (Osborne & Sack, 2012), but may also follow 

from differences in the optimization of stomatal aperture relative to photosynthesis in C3 and C4 

species (Taylor et al., 2014). In a common garden experiment of closely related grasses adapted to 

similar habitats in the same regional flora, this difference in stomatal behaviour unexpectedly led to 

higher stomatal conductance in C4 than C3 species during the early stages of drought (Taylor et al., 

2014). However, during chronic drought, non-stomatal limitation of carbon assimilation becomes 

more important in C4 than closely related C3 grasses, and may reduce or eliminate the differences in 

photosynthesis between them (Ghannoum et al., 2003; Ripley et al., 2007, 2010; Ibrahim et al., 

2008; Ghannoum, 2009; Taylor et al., 2011). The mechanisms underlying this behaviour are 

unknown, but seem to correlate with low water potential in C4 leaves (Ibrahim et al., 2008; Ripley 

et al., 2010; Taylor et al., 2014), and could correspond to a failure of the C4 cycle.

In some C4 eudicots, modifications in the xylem architecture, including narrower and shorter 

vessels, decrease the leaf conductivity, which provides protection against cavitation and thus 

enhanced drought tolerance (Kocacinar & Sage, 2003, 2004). It might be assumed that the higher 

water-use efficiency conferred by the C4 physiology enabled decreases in leaf conductivity. 

However, xylem modifications are already visible in the C3-C4 intermediates of Flaveria that have 

water-use efficiencies similar to the C3 species, suggesting that xylem modifications predated C4-

related higher water-use efficiency, at least in this genus (Kocacinar et al., 2008). It has been 

hypothesized that the decreased conductivity actually drove the evolution of a C2 pathway in these 

species (Kocacinar et al., 2008), and might therefore be seen as a C2 precondition. This emphasizes 

difficulties in generalizing the order of events during the transition from C3 to C4 photosynthesis, 

such that some modifications might have evolved before C4 physiology and favored its evolution in 

some lineages, while they were enabled by C4 physiology in others.

Addition of alternative carbon shuttles

The action of a decarboxylase is necessary directly after PEPC becomes responsible for a 

significant part of atmospheric CO2 fixation. The evidence accumulated so far however indicates 

that the shuttling of carbon between PEPC and Rubisco (Figure 1a, steps b-d) diversified after 

plants were already in a C4 physiological state. The variation in the carbon shuttles among C4 plants 

belonging to the same C4 groups (Gutierrez et al., 1974; Wang et al., 2014) indeed indicates either 

that some shuttles present in the common C4 ancestor were lost in some of the descendants, or that 

shuttles were added in some descendants only. The second hypothesis receives strong support from 

comparative analyses of genes encoding decarboxylating enzymes (Christin et al., 2009a, 2009b). 
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In particular, strong signatures of positive selection are associated with the evolution of C4-specific 

PCK in grasses, and this selection is detected on branches nested within several of the C4 groups 

(Christin et al., 2009a; Figure 2).

The C4 biochemical pathway can be plastic and respond to the environment (Furbank, 2011).

For example, leaves of maize change the balance between NADP-ME and PCK shuttles when 

subject to shade (Bellasio & Griffiths, 2014; Sharwood et al., 2014), and models suggest that the 

addition of alternative carbon shuttles increases the range of light conditions tolerated by the plant 

(Wang et al., 2014). These attributes often evolved long after the initial origins of C4 

photosynthesis, and might thus have allowed the colonization of habitats differing in their 

vegetation cover. These adaptations consequently allowed C4 plants to expand their niches 

compared to the ancestors that first acquired a C4 pathway, and contributed to the ecological 

diversity found within C4 groups.

6. Contingency and the ecological diversity of C4 plants

The evolution of C4 photosynthesis is a long process, beginning with the acquisition of C4 

anatomical and biochemical functions in a C3 context, and continuing long afterward with the 

development of novel attributes enabled by the C4 pathway (Figure 2). Following the establishment 

of C4 physiology, each C4 lineage has subsequently diversified, in some cases producing more than 

a thousand extant species (GPWGII, 2012). The diversity of environments occupied by C4 plants 

means that the C4 syndrome cannot be associated with a simply defined ecological strategy, but only

partially affects the ecological preference of each plant, which is also influenced by other attributes 

inherited from the C3 ancestors or that evolved after C4 photosynthesis (Stowe & Teeri 1978; Stock 

et al., 2004; Edwards et al., 2010). The ecological diversity of C4 species is therefore contingent 

upon (i) the ecology of ancestral C3 lineages, which has subsequently been modified by (ii) 

physiological changes imparted by C4 photosynthesis and then (iii) radiation into new niche space. 

In recent years, a phylogenetic perspective has enabled these three interacting factors to be teased 

apart, to bring a deeper understanding of the ecological diversity of C4 species. In the next two 

sections, we illustrate how these processes have operated, using the examples of growth rate and 

sorting along environmental gradients.

Phenotypic integration – the example of growth

Growth rate varies significantly among plant species, with fast growth especially important for the 

persistence of species in resource-rich or disturbed habitats, and slow growth associated with 

persistence in resource-limited environments (Grime & Hunt, 1975; Grime et al., 1997). C4 
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photosynthesis increases the efficiency of canopy photosynthesis across a range of temperatures 

(Long, 1999), especially in open environments, and allows a higher maximum conversion 

efficiency of intercepted light energy into biomass compared with C3 photosynthesis (Monteith, 

1978). If all else were equal, the acquisition of C4 photosynthesis would therefore increase the rate 

of plant growth under hot, sunny conditions. However, experimental comparisons have surprisingly 

failed to discern a clear general difference in growth between C3 and C4 species.

Snaydon (1991) compiled published aboveground productivity data for 34 herbaceous species 

across 88 sites, and found no significant difference between C3 and C4 species when latitude (and, 

by proxy, temperature and growing season length) were taken into account. The most productive 

species in this analysis were however all C4, consistent with previous results (Monteith, 1978), and 

supporting the hypothesis that C4 photosynthesis confers the potential for higher maximum produc-

tivity than in C3 species (Hatch, 1999; Long, 1999). Indeed, work by Piedade et al. (1991) showed 

that productivity in the C4 hydrophyte Echinochloa polystachya growing in nutrient-rich Amazon 

floodwaters approaches the theoretical limit predicted from the efficiencies of physiological pro-

cesses. However, in general, direct comparisons between C3 and C4 plants have failed to show con-

sistently faster growth in C4 species under controlled environments (e.g. Özẗrk et al., 1981; Pearcy 

et al., 1981; Hunt et al., 1996; Reich et al., 2003), natural climate conditions (e.g. Özẗrk et al., 

1981; Gebauer et al., 1987; Reich et al., 2001), or in comparisons between closely related C3 and C4

species (Slatyer, 1970; Rajendrudu & Das, 1982; Taylor et al., 2010). For example, Taylor et al 

(2010) compared 34 closely related species of C3 and C4 grass, sampling multiple independent C4 

lineages. Although leaf photosynthesis was higher in the C4 species, as expected, there were no dif-

ferences in relative growth and net assimilation rates between these C3 and C4 species. The evidence

from multiple experiments is clear: the large differences in leaf photosynthesis typically observed 

between C3 and C4 species do not generally translate into faster rates of growth.

This apparent paradox might result from the way that C4 photosynthesis is integrated into the 

phenotype of the whole organism. In particular, interactions among processes operating at the 

organismal scale mean that growth often does not depend strongly on area-normalized leaf 

photosynthesis (Poorter et al., 1990). First, a limited number of pairwise comparisons between 

ecologically similar or closely related species have shown that the leaves of C4 plants may be 

shorter-lived than those in C3 species (reviewed by Long, 1999), suggesting that higher 

photosynthesis may be associated with more rapid leaf turnover, with a negative effect on growth. 

In addition, the allocation of growth to leaves versus heterotrophic tissues (e.g. roots and stems) and

the area to mass ratio of leaves (specific leaf area), each have major effects on growth that may 

17

530

535

540

545

550

555

560



partially offset or fully obscure the effects of higher rates of leaf photosynthesis (Körner, 1991). 

These effects are illustrated by work on the recently diverged C3 and C4 subspecies of Alloteropsis 

semialata. Leaf photosynthetic rates differ between these taxa as expected from theory (Osborne et 

al., 2008). However, the associated differences in growth rates are partially offset by a lower 

allocation of growth to leaves, and a smaller specific leaf area in the C4 than C3 subspecies (Ripley 

et al., 2008), which both tend to oppose the effects of C4 photosynthesis. More generally, 

comparative work indicates that each of these growth traits may show phylogenetic patterns (e.g. 

Burns & Strauss, 2012), which means that closely related species share similar attributes, and the 

growth rates of C4 species may be contingent upon characters inherited from their C3 ancestors.

An altered partitioning of growth from leaves to roots in C4 plants has been noted in a number of 

pairwise comparisons between ecologically similar or closely related species (Slatyer, 1970; Long 

& Mason, 1983; Ripley et al., 2008; Taylor et al., 2010). In each documented case, the shift in 

partitioning is achieved alongside similar or faster rates of growth in the C4 species. It has been 

hypothesized that this shift in allocation could arise from the higher PNUE of C4 plants and may 

depend on the ecological context (Long, 1999). C4 species of fertile and/or disturbed habitats may 

use the same investment of nitrogen to produce a larger leaf area than their C3 counterparts, thereby 

promoting more rapid growth. In contrast, C4 plants of infertile habitats may adopt a more 

conservative strategy by producing the same leaf area as their C3 counterparts with less nitrogen, 

but investing the resultant surplus of nitrogen into root development to better acquire this limiting 

resource. The hypothesis is supported by studies of growth allocation in plants adapted to fertile and

infertile habitats (reviewed by Long, 1999). In summary, although C4 photosynthesis offers the 

potential for faster growth, there is little published evidence for a consistent general translation of 

higher rates of leaf photosynthesis into greater productivity. Instead, the effects of C4 photosynthesis

on growth are mediated by changes in allocation and turnover, and may depend on the ecological 

context in which they evolve.

Ecological sorting at the global scale – temperature and water availability

Temperature is the primary determinant of species distributions at the global scale (Woodward, 

1987), and hot conditions have long been considered important for C4 plant ecology (Black, 1971). 

Global distribution patterns in relation to temperature are especially strong for grasses, where the 

classic pattern is turnover from C4 to C3 species with declining temperature, along both latitudinal 

(Teeri & Stowe, 1976) and altitudinal (Rundel, 1980) gradients. However, phylogenetic analyses 

show that C3 grasses closely related to C4 lineages also inhabit warm environments, which is the 

ancestral condition for this taxonomic group (Edwards & Still, 2008; Edwards & Smith, 2010; 
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Figure 4). Differences in land surface temperature can be detected between the habitats of closely 

related C3 and C4 grasses (Still et al., 2013), but the classical global patterns arise largely because 

one lineage of C3 grasses, the Pooideae, acquired cold adaptations in the Oligocene and 

subsequently diversified at high latitudes and altitudes (Edwards & Still, 2008; Sandve et al., 2008; 

Edwards & Smith, 2010; Pau et al., 2013; Visser et al., 2014; Figure 4). These observations have 

prompted a re-evaluation of how C4 taxa are distributed in relation to climate.

Because of the extra metabolic cost of C4 photosynthesis, net leaf photosynthesis under light-limited

conditions is lower for C4 than C3 plants at low temperatures, where the energetic benefit of 

suppressing photorespiration is limited (Ehleringer & Bjorkman, 1977; Collatz et al., 1998). Model 

simulations of leaf or canopy photosynthesis that account for this effect therefore predict a 

“crossover temperature” below which C3 plants outperform their C4 counterparts (Ehleringer, 1978; 

Collatz et al., 1998). However, under light-saturated conditions, energy is absorbed in excess of that

required to drive the C4 cycle and, for a given investment in Rubisco, leaf photosynthesis is higher 

at all temperatures in a C4 than C3 leaf (Long, 1999). As a consequence, a more complex 

photosynthesis model accounting for the penetration of direct light as sunflecks into the canopy 

shows that photosynthesis may be higher in a C4 than C3 canopy at temperatures down to 10 °C 

(Long, 1999). However, a lower concentration of Rubisco in C4 than C3 leaves leads to a 

temperature trade-off in light-saturated photosynthesis, with a crossover temperature similar to that 

observed under light-limitation (Still et al., 2003). Thus, according to theory, if C4 plants maintain a 

high investment in Rubisco, there is no intrinsic energetic cost that would prevent them from 

colonizing open habitats in cool environments, particularly if they also have an open canopy.

C4 physiology evolved in warm climatic regions of the subtropics (Ehleringer et al., 1991; Sage, 

2004; Edwards & Smith, 2010), and the leaves of many C4 species suffer chilling and freezing 

damage in common with other tropical and subtropical plants (Pearce, 2001). However, after 

evolving the C4 syndrome, a number of plant lineages migrated into cool climate regions (Edwards 

& Smith, 2010; Figure 5), and now inhabit high temperate latitudes (Bjorkman et al., 1975; Long et

al., 1975) and montane habitats (Sage & Sage, 2002). Absolute minimum winter temperatures 

impose a stringent climatic filter on the species that can persist in these environments, and 

adaptation requires the prevention or tolerance of ice formation within tissues during extreme low 

temperature episodes (Woodward, 1987). Many C4 species of cold environments survive winter 

freezing events by either adopting an annual life history (e.g. weeds) or being deciduous (e.g. 

prairie grasses), in both cases overwintering in a dormant state, which is a common strategy adopted

by plants to avoid episodic freezing (Zanne et al., 2013). However, there seems to be no intrinsic 
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barrier to freezing tolerance in a C4 leaf, with species developing protection via constitutive or 

facultative cold acclimation mechanisms (Sage & Sage, 2002; Liu & Osborne, 2008, 2013). The 

leaves of other C4 species are intolerant of freezing, but have physiological mechanisms for 

protection against light-mediated damage during chilling events in the range 0-10 °C (Long, 1983; 

Naidu et al., 2003). In conclusion, C4 photosynthesis evolved in hot environments because there 

was a strong selective pressure for decreased photorespiration in these conditions. However, it can 

offer smaller benefits at low temperatures under high light conditions, so that C4 plants can colonize

cooler regions following the acquisition of cold adaptations, increasing the ecological diversity 

within C4 groups (Figure 5).

The water-saving and hydraulic benefits of the C4 syndrome outlined in Section 5 lead to the 

prediction that C4 species should occupy drier habitats and environments with higher potential 

evaporation than C3 species. It has long been known that C4 eudicots sort into drier climate regions 

than their C3 counterparts (Ehleringer et al., 1997). There seems however to be a phylogenetic 

effect, with C4 eudicots that are extremely well adapted to arid conditions having evolved from C3 

ancestors that already inhabited dry conditions (Stowe & Teeri, 1978), and, in several groups of 

eudicots, the distributions of related C3 and C4 lineages along environmental gradients largely 

overlap (Sudderth et al. 2009; Edwards & Ogburn, 2012; Figure 4). Similarly, in the 

Chenopodiaceae group, C3 plants that were more tolerant of salinity gave rise to C4 halophytes 

(Kadereit et al., 2012). Early studies failed to detect an overall relationship between the distribution 

of C4 grasses and rainfall (Hattersley, 1983; Ehleringer et al., 1997), despite the clear differences in 

water relations between C4 and C3 grass species. A phylogenetic perspective has resolved this 

paradox by revealing a complex picture in which contingency, physiological innovation, and 

subsequent ecological radiation have each played important parts.

Phylogenetic patterns in the precipitation (Edwards & Smith, 2010) and habitat water requirements 

of grasses (Osborne & Freckleton, 2009) mean that closely related species tend to occupy similar 

environments, and both the global and regional distributions of major grass lineages thus differ in 

relation to precipitation (Taub, 2000; Edwards & Smith, 2010; Visser et al., 2012, 2014; Figure 4). 

This latter pattern has long been recognized in the differing geographical and climate space 

occupied by different taxonomic groups (Hartley, 1950). When C4 photosynthesis evolved against 

this background, it modified physiological relationships with the environment, but plants 

nonetheless tended to retain attributes of their ancestors (Figure 4). The variation among groups of 

C4 grasses might therefore result from the ecological diversification of grasses before C4 evolution. 

For instance, the groups of C4 grasses that prosper in more arid conditions, such as Aristidoideae 
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and Chloridoideae (Edwards & Smith, 2010; Visser et al., 2012, 2014), have C3 relatives that 

inhabit similarly arid habitats (Gibbs Russell & Le Roux, 1990; Cerros-Tlatilpa et al., 2011). 

Despite this phylogenetic effect, the transition to C4 physiology was still accompanied by changes 

in the ecological niche. Ancestral state reconstructions show that C4 evolution in grasses led to 

consistent shifts into drier and more seasonal niche space (Edwards & Smith, 2010), and C4 grasses 

are more likely to migrate into arid or saline habitats than their C3 counterparts (Osborne & 

Freckleton, 2009; Brohman & Bennett, 2014), suggesting that C4 photosynthesis facilitates 

adaptation to conditions of low soil water potential, probably through the continuous adaptation of 

stomatal conductance and plant hydraulics, and thereby allows plants to more readily access dry 

niche space (Edwards & Donoghue, 2013; Figure 5). In sedges however, many clades of C3 species 

that prosper in more humid habitats produced C4 descendants that share this preference (Stock et al.,

2004). Water-use efficiency is likely irrelevant for sedges of infertile wetlands, where the C4 

advantage might result from the associated nitrogen-use efficiency (Li et al., 1999; Stock et al., 

2004). On the other hand, a high maximum rate of growth may be critical for sedges of fertile 

wetlands (Muthuri et al., 1989), highlighting the diversity of ecological strategies enabled by the C4 

syndrome.

In summary, phylogenetic analyses show that contingency has played an important role in shaping 

the ecological niche of C4 plants. This is classically illustrated by island colonists, like the C3 

Scaevola and C4 Euphorbia lineages of Hawaii. Each is likely derived from a single island colonist, 

but has radiated into a similar diversity of habitats ranging from wet, closed forest to dry, open 

scrub, irrespective of the difference in their photosynthetic pathway (Robichaux & Pearcy, 1984). 

However, ecological diversification into the vacant niches offered by volcanic islands represents a 

special case. Generally, the ecological preferences inherited from C3 ancestors have been affected 

by C4 physiological novelty in subsequent diversification. This process of diversification is 

exemplified by the large C4 group of Paniceae, which evolved from a C3 ancestor inhabiting tropical

seasonal forests but came to colonize diverse conditions after the evolution of C4 physiology 

(Figure 5). Despite similar evolutionary times (Figure 5, left panel), the C3 species in this group 

remained in a relatively small portion of the environmental space, with the exception of members of

the Dichanthelium genus, which adapted to cold habitats (Figure 5). The transitions between C3 and

C4 photosynthesis (blue branches leading to red branches in Figure 5) are associated with a slight 

shift to drier habitats in the same temperature range. This shift has already been reported and 

interpreted as a migration from forests in the aseasonal moist tropics to more open habitats in the 

seasonal subtropics, such as woodlands and savannas (Edwards & Smith, 2010; Figure 5). 

Following this shift, the C4 species from this group rapidly dispersed into habitats ranging from dry 
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and hot deserts to temperate grasslands and deciduous forests, and tropical rainforests (Figure 5). 

This pattern highlights the niche-opening effect of C4 photosynthesis, which enables adaptation to 

new environments, probably through the adaptive integration of other attributes of the plants with 

the C4 syndrome.

7. Conclusions

The evolutionary history of each C4 taxon is rich and unique. It starts with the acquisition by its 

ancestors of characters that are required to build a C4 system, but which evolve for completely 

unrelated reasons. Once all the characters exist in a given plant, these can be co-opted to create a 

weak C4 cycle following an increase of PEPC activity. This key event creates new selective 

pressures toward the optimization of the C4 pump, but it is not the end of the evolutionary process. 

The ecological preference of each C4 group initially depends on the attributes inherited from its C3 

ancestors, but changes that happened during and after the transition to C4 physiology allow plants to

escape this heritage. The ecological strategies of specific C4 plants are best understood by 

considering their whole evolutionary history, including the characters that were present in the C3 

ancestors, the way the C4 apparatus was assembled, and the modifications to this apparatus that 

happened during the diversification of the C4 group.
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Box 1. Phylogenetic analyses and the evolution of complex phenotypes

Comparisons among groups of species that differ in specific traits is complicated by two factors: i) 

other attributes of each species alter the effects of the traits; and ii) species are not statistically 

independent, because of their shared evolutionary history. These problems can be partially solved 

by taking the evolutionary history into account in comparative analyses. Phylogenetic trees are 

primarily used to reconstruct the relationships among species, but have also become important in 

comparative analyses. Their integration into statistical tests of differences among species can 

remove the variance due to shared evolutionary history, and thus identify properties that are 

associated with given traits independently of this history (Freckleton et al., 2002). In the case of C4 

photosynthesis, this approach can differentiate attributes that are directly conferred by the C4 

physiology from those that are usually associated with it, but might be inherited from their C3 

ancestors (Edwards & Smith, 2010). The origin of a trait on a phylogenetic tree can be mapped 

through different ancestral reconstruction methods, which estimate the character state for each 

speciation event, represented by each node in a phylogenetic tree (Figure 6). For instance, 

parsimony methods identify scenarios that minimize the number of transitions between character 

states, and methods based on likelihood estimate the most likely scenario given a set of assumptions

(Figure 6). While these are powerful for testing specific hypotheses, such as the statistical 

association between sets of traits (e.g. Pagel, 1994; Osborne and Freckleton, 2009; Kadereit et al., 

2012), the inferred ancestral states are dependent on the underlying model (Maddison, 2006; 

Christin et al., 2010). This problem can be partially solved by decomposing a complex trait into its 

constituents, so that the modelled entities are relatively simple properties and not complex 

phenotypes that result from multiple underlying characters (Christin et al., 2010; Roalson, 2011). 

Changes in discrete or quantitative characteristics can be estimated with different methods (Christin

et al., 2013b; Figure 6). The timing of these changes can then be estimated either relative to each 

other, by comparing the order of nodes (Figure 6), or in absolute terms, based on the age associated 

with the branch on which they happened (Figure 6). In addition, phylogenetic analyses of DNA 

sequences encoding genes of interest can identify past episodes of adaptive evolution (Zhang et al., 

2005), and their positioning on phylogenetic trees can highlight periods of protein adaptation linked

to an adaptive shift (Figure 2). Each of these methods comes with caveats, and considering multiple 

sources of information is crucial when inferring the evolutionary history of complex traits.
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Table 1: Hierarchical deconstruction of the C4 syndrome into different phenotypic levels, from

the cell or enzyme to the whole organism.

Term Definition Examples

Niche Environmental conditions in which the 

organism grows naturally

Warm and open environments

Physiology Attribute of the whole organism that is 

generated by a combination of functions

C4 photosynthesis, growth rate, water-use

efficiency

Function Action at the cellular or tissue level that is 

enabled by a combination of underlying 

characters

Rapid transport of C4 intermediates, 

fixation of atmospheric carbon by CA + 

PEPC

Character Emergent property of one component that is 

determined by multiple characteristics

Distance between consecutive bundles, 

activity of PEPC in the mesophyll

Characteristic Property of one component that is theoretically 

independent from the others

Length of bundle-sheath cells, expression

level of PEPC

Component One cellular or enzymatic element Bundle-sheath cell, PEPC
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Figure captions

Figure 1. Schematic of the C4 cycle.

(a) Simplified diagram representing the functional properties of the C4 cycle (Table 1), which is 

consequently applicable to all C4 plants. The main biochemical steps are indicated by circled letters.

Atmospheric CO2 enters the first compartment (dashed grey line) by diffusion. It is fixed into the C4

cycle (a), which results in C4 acids (in red) that are transformed and transported (b) to the second 

compartment (grey line), where CO2 is released (c). The C4 cycle is completed by the regeneration 

of the resulting C3 acid (d). (b) One of the realizations of the C4 cycle, with the example of the grass

Zea mays, based on Tausta et al. (2014). As in most C4 species, reactions are segregated between the

mesophyll and bundle-sheath tissues of the leaf. The C4 acids are in red, and the circled numbers 

represents enzymes. The black circles indicate enzymes that are involved in all C4 types. Ala = 

alanine, Asp = aspartate, mal = malate, OAA = oxaloacetate, PEP = phosphoenolpyruvate, pyr = 

pyruvate, 1 = carbonic anhydrase (CA), 2 = PEP carboxylase (PEPC), 3 = NADP malate 

dehydrogenase, 4 = NADP-malic enzyme (NADP-ME), 5 = alanine aminotransferase (ALA-AT), 6 

= pyruvate, phosphate dikinase (PPDK), 7 = aspartate aminotransferase (ASP-AT), 8 = 

phosphoenolpyruvate carboxykinase (PCK), 9 = Rubisco and the C3 cycle (Calvin-Benson cycle).

Figure 2. Gradual accumulation of C4 characters inferred for grasses.

The dated phylogenetic tree for grasses was obtained from Christin et al. (2013b), with the time 

scale in million years ago (Ma). All groups containing only C3 or C2 species are compressed and in 

black. Monophyletic C4 groups are compressed in red, with their numbering on the right following 

GPWGII (2012). The two main grass clades are delimited on the right (BEP and PACMAD). 

Important changes in anatomical characters are reported based on Christin et al. (2013b). Episodes 

of adaptive evolution of C4 enzymes are based on Christin et al. (2007, 2009a, 2009b). The changes 

shown here represent only a fraction of all changes linked to C4 evolution and their positioning is 

approximate because the species sampling was not identical in the different studies. The grey box 

represent the last 30 million years, when atmospheric CO2 stayed below 500 ppm. OS = outer 

bundle sheath, BSD = distance between consecutive bundle sheaths.

Figure 3. Changes inferred during the transition from a C3 ancestor to the C4 species Flaveria 

trinervia. 

Six different variables were reconstructed on the time-calibrated phylogeny for Flaveria from 

Christin et al. (2011a). The values inferred for each node between the root of the tree and Flaveria 

trinervia are plotted against the estimated age of the node. Dashed lines indicate the 95% 
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confidence interval for the reconstructed ancestral values. The coloured background indicates the 

estimated photosynthetic state through time, with C3 in white, C3-C4 intermediate in yellow, C4-like 

in orange and C4 in red. The vein density values (in mm/mm2) come from McKown et al. (2007), 

the PEPC activities (in μmol/mg Chl*h) come from Bauwe (1984) and Sudderth et al. (2007) for F. 

kochiana, the percentages of carbon fixed to C4 acids were summarized from various sources by 

Vogan & Sage (2011), the CO2 compensation points come from Ku et al. (1991) and Sudderth et al. 

(2007) for F. kochiana, and the photosynthetic water-use efficiency (PWUE; in mmol CO2/mol 

H2O) and photosynthetic nitrogen-use efficiency (PNUE; in μmol CO2/mmol N*s) come from 

Vogan and Sage (2011).

Figure 4. Ecological distribution of some C4 taxa compared to their C3 relatives.

For two distantly related groups that contain C4 taxa (grasses and Molluginaceae), the mean annual 

temperature  (MAT; in ºC) is plotted against the mean annual precipitation (MAP; in mm year-1). 

For grasses, environmental variables were extracted from Edwards & Smith (2010), with one point 

per species. For Molluginaceae, environmental variables were taken from Edwards & Ogburn 

(2012), with multiple localities per species.  Grey points represent localities for C3 species that 

belong to the sister-group of the clade with C4 species (the BEP clade of grasses and the 

Portulacineae clade, respectively). Localities for C3 species that are closely related to C4 taxa are in

black (C3 grasses from the PACMAD clade and C3 Molluginaceae, respectively), and those C4 taxa 

in each group are in red.

Figure 5. Ecological diversity in C3 and C4 Paniceae. 

The mean annual temperature (MAT; in ºC) and mean annual precipitation (MAP; in mm year-1) 

were extracted from the ecological dataset of Edwards & Smith (2010) for those members of the 

grass tribe Paniceae that were also present in the time-calibrated phylogeny of Christin et al. 

(2013b). In the phylogenetic tree on the left, dots at the tips are coloured according to the species 

means for MAT on the left and MAP on the right. Branches are coloured based on photosynthetic 

types, with C4 clades in red and C3 branches in blue. The phylogenetic relationships are projected 

into climatic space on the right. For clarity, the lower part of the tree that includes the C4 clades 

Echinochloa and Alloteropsis is presented independently from the upper part of the tree that 

includes the C4 clade 'MCP' (Melinidinae, Cenchrinae and Panicinae; GPWGII, 2012). In the 

righthand panels, each segment connects the values estimated for two consecutive nodes in the 

phylogenetic tree (see Box 1). The blue point indicates the root (also indicated on the phylogeny), 

while tips are indicated by blue arrows when C3 and red arrows when C4. The major biomes are 

approximately delimited with dashed grey lines. They follow Ricklefs (2008), and are numbered in 
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the lower panel; 1 = temperate rain forest, 2 =  temperate deciduous forest, 3 = temperate grassland 

and desert, 4 = tropical rainforest, 5 = tropical seasonal forest, 6 = savanna, 7 = subtropical desert.

Figure 6: Examples of phylogenetic inference.

A. Hypothetical time-calibrated phylogenetic tree for a group of C4 species nested within a C3 clade.

B. Hypothetical quantitative character mapped onto the tree using a maximum likelihood method. 

The estimated value for each node comes with confidence intervals, but only the optimum is 

presented as the dot size. C. Hypothetical binary character mapped on the tree using a maximum 

likelihood method. The likelihood of each state at each node is represented by pie charts. In the 

most parsimonious scenario, the origin of C4 photosynthesis in this group could be estimated 

between time units 4 and 3 (bold branch, Figure 6A). The increase in the quantitative trait happened

between time units 6 and 4 (bold branch, Figure 6B), before the change in the binary trait, which 

would be estimated between time units 4 and 3 based on a maximum likelihood model (bold dashed

branch, Figure 6C) or between time units 3 and 1 based on a maximum parsimony approach (bold 

solid branch, Figure 6C).
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