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Abstract

Our recognition of familiar faces is excellent, and generalises across viewing conditions.

However, unfamiliar face recognition is much poorer. For this reason, automatic face recog-

nition systems might benefit from incorporating the advantages of familiarity. Here we put

this to the test using the face verification system available on a popular smartphone (the

Samsung Galaxy). In two experiments we tested the recognition performance of the smart-

phone when it was encoded with an individual’s ‘face-average’ – a representation derived

from theories of human face perception. This technique significantly improved performance

for both unconstrained celebrity images (Experiment 1) and for real faces (Experiment 2):

users could unlock their phones more reliably when the device stored an average of the

user’s face than when they stored a single image. This advantage was consistent across a

wide variety of everyday viewing conditions. Furthermore, the benefit did not reduce the re-

jection of imposter faces. This benefit is brought about solely by consideration of suitable

representations for automatic face recognition, and we argue that this is just as important as

development of matching algorithms themselves. We propose that this representation

could significantly improve recognition rates in everyday settings.

Introduction

Face recognition remains a significant challenge for the cognitive sciences. Our understanding

of human face perception extends across a wide range of signals, such as facial expression,

speech, eye-gaze and attractiveness [1]. Despite this, rather slower progress has been made in

understanding the processes involved in recognising a person’s identity [2 3]. In computational

approaches to face recognition there has been greater progress, and systems now exist which

can out-perform unfamiliar human observers on some face recognition tasks [4 5]. However, it

is well-established that human observers are considerably more accurate in recognising famil-

iar than unfamiliar faces, and this holds whether they are asked to remember photos [6 7], to

match two simultaneously-presented images [8–10], or to match a live person to a photo-ID

[11 12]. To date, no automatic face recognition system approaches the levels of accuracy and

generalizability observed in human observers presented with familiar faces.
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If computational approaches to face recognition are to become truly useful, then they should

incorporate those aspects of familiar face recognition that allow for high levels of performance.

How might these be characterised? One key component is that familiar face recognition is able

to operate over huge variations in image, within the same person [13] (see Fig. 1). A person’s

face can vary considerably as a result of changes in lighting, camera characteristics, pose, ex-

pression and age. Given this variability, two images of the same person can easily be less similar

than two images of different people [14]. One way to tackle this variability is to propose that fa-

miliar viewers actually store many different images of the same person in memory [15]. How-

ever, an alternative proposal by Burton, Jenkins, Hancock andWhite [16] is that familiar

viewers form an abstract representation that retains aspects of the face that are common across

different images, while discarding those aspects which vary. One candidate for such a represen-

tation is a facial average, in the sense of morphing together many different images of the same

person [17].

Facial averages have been shown to be useful in computer-based face recognition [16]. In

order to improve the performance of automatic recognition systems, developers have typically

focused on creating the best image matching algorithm [18]. However, employing an average-

based approach is independent of the matching technique used. Instead, this approach focuses

on what is to be matched. Burton et al [16] propose that research on the stored representation

itself is just as important as research on matching, and in particular that a focus on representa-

tion may provide a route to understanding the impressive levels of accuracy human viewers

can achieve with familiar faces.

In a test of the real world utility of face averages, Jenkins and Burton [19] assessed the accu-

racy of an online version of the (then) industry standard recognition system FaceVACS. This

system contained a large database of celebrity face photographs (over thirty thousand images,

and over three thousand celebrities) which varied considerably in illumination, pose, facial ex-

pression, age, and image quality. In response to a probe photo, the system would return the

closest matching image in its database. Jenkins and Burton [19] tested 20 different images of

each of 25 different celebrities, and found that on 54% of occasions, an image of the same celeb-

rity was returned—quite an impressive hit rate, given the number of people in the database.

However, when they tested average images, built from each of the 20 images for each person,

the hit rate rose to 100%. Performance of 80% was achieved even when the averages were con-

structed entirely from individual photos that the system had previously failed to recognise.

The findings of Jenkins and Burton [19] established the effectiveness of face averaging as a

means of improving face recognition in a commercially available algorithm, used for large-

scale security applications such as airports. However, automatic face recognition has now

reached consumer-level products. In particular, several smartphones currently on the market

use faces for security. We store a significant quantity of important personal information on our

phones [20], and this personal information is at risk of unauthorised access if the device is lost

or stolen. Alphanumeric password systems have known vulnerabilities, such as shoulder-surf-

ing [21] and analysis of the oily residue from fingers [22]. For these reasons, there is growing

interest in biometric security, including face recognition.

In the studies presented below, we examine the accuracy of face recognition security soft-

ware in the currently popular Samsung Galaxy range of smartphones (S3, S4, S5). This is used

to unlock phones using the owner’s face, as an alternative to alphanumeric passwords. Howev-

er, we should note that this is currently marketed as a low-security feature, and can be over-rid-

den with a password. We should also note that the details of the face recognition algorithm are

proprietary, and therefore not open to public examination. Nevertheless, it is interesting to es-

tablish how accurate this system actually is. In the following experiments, we test this system

using standard face-matching (image to image comparison), and also average-based matching
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(image to average). In the first experiment, we do this using photos of celebrities, for whom

there are many varying images available. In Experiment 2, we test face-matching with phone

users, replicating the conditions in which face-based security is normally used with these

smartphones. To anticipate the results, we find quite high levels of face recognition, but these

are significantly improved by the use of averages. Once again, this supports the proposal that

there is much to be gained by focussing on ‘what is to be matched’, as well as the more common

approach of studying matching algorithms themselves.

Experiment 1: Celebrity Images

In this experiment we examined celebrity recognition using a smartphone. Facial security

works by storing an image of the user (the ‘target’) for subsequent comparison with images

captured during unlocking attempts. Here, we compared recognition performance for a target

image comprising a photo (the normal usage) with performance using a target image compris-

ing an average, derived from many photos of the target person.

Materials and Methods

Smartphone Specifications. A Samsung Galaxy S4 smartphone (model GT-19505) with

an Android operating system (v.4.4.2) was used in the present experiment. The face authentica-

tion security feature is part of the standard software package installed on the device. Through-

out the experiment, the phone was placed in ‘flight mode’, a feature which disables all wireless

functions while retaining full use of the camera. To capture the live face of the user, the recog-

nition algorithm relies on a front-facing two megapixel camera/video recorder (30 frames/s).

Stimuli and Apparatus. Ten different celebrity identities (5 male/5 female) were used in

this experiment. For each identity, 35 large colour face photographs were downloaded from

Google Images. We chose the first 35 images which met the following criteria: (i) no part of the

face should be obscured (e.g. by clothing, glasses, or a hand); (ii) pose should be very broadly

full-face in order to allow the placement of facial landmarks; and (iii) pose should be standing

or sitting, but not lying down, in order to limit the angle of the head to a relatively upright posi-

tion. The images varied with respect to environmentally generated parameters (e.g. lighting)

and face-based parameters (e.g. pose, facial expression, hair style). All of the selected images

were cropped to a size of 380 x 570 pixels.

Individual average faces were derived from the first 30 images of each person (see Fig. 1 for

examples). Images were marked up using 82 hand-placed anatomical landmarks. The average

‘shape-free’ texture component was derived by morphing the 30 images to a standard face tem-

plate and calculating the mean RGB values for each pixel. Each celebrity’s average texture was

then morphed onto their average shape to produce their face average (for a more detailed de-

scription of the averaging process, see Burton et al [16]).

All images were presented on an 18 inch Dell PC Monitor (1440 x 900 screen resolution, 60

Hz refresh rate) using E-Prime 2.0. The smartphone was securely affixed to a chinrest with the

front of the device facing the PC screen. A distance of 24.5cm was maintained between the

screen and the smartphone during testing; this ensured that each face image would fill the oval

face capture space provided by the authentication software.

Design and Procedure. Five images of each celebrity were used as test images throughout.

These were used to try to unlock the phone that had been encoded with targets that were either

(i) a celebrity average, or (ii) a celebrity photo. Average targets were derived from 30 images,

not including the five test photos (see above). Individual image targets were five randomly cho-

sen photos from the set of 30 used to construct the average (we used five different individual-

photo targets in order to avoid bias which may be induced by chance selection of a particularly
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good or particularly poor likeness of an individual). Targets were encoded into the phone by

photographing images from the computer screen, and the same method was used to test images

for unlocking.

Each average celebrity target was tested against the five test items, and against five random-

ly-selected same-sex test items of other celebrities (‘imposter images’). Similarly, each individu-

al-photo target was tested against these test and imposter images. For each combination, we

simply recorded whether or not the phone was unlocked by the test image. In summary each

celebrity was tested 60 times as follows: 25 single-image ‘user’ trials (5 individual-image targets

x 5 different test images of the same person); 25 single-image ‘imposter’ trials (5 individual-

image targets x 5 different test images of different people); 5 average-image ‘user’ trials (aver-

age-target x 5 test images of the same person); and 5 average-image ‘imposter’ trials (average-

target x 5 test images of different people).

Results

Mean performance level across the ten celebrities is shown in Table 1, this shows that user rec-

ognition is considerably better for average-image targets, than for individual-image targets,

and analysis shows that this advantage is significant (Wilcoxon signed-rank test, two-tailed:

Fig 1. Experiment 1 example stimuli. Rows A and C show celebrity face averages. Rows B and D show
examples of individual images. (For copyright reasons, we are not able to present the individual images used
in the experiment—which were chosen mechanically on the basis of a selection rule. The individual images
shown in rows B and D are legally reproducible, and are a close approximation of the actual stimuli. See
S1 File for celebrity names and image licence and attribution information).

doi:10.1371/journal.pone.0119460.g001
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W = 2, p< .05). There were no imposter errors, with both types of target giving

perfect performance.

These results show a large benefit of using average-image targets over individual images.

This is a promising finding, because it suggests that a change in the stored representation of a

user’s face (in this case an average) can bring large performance improvements—a benefit

which does not require any change to the underlying matching algorithm. Furthermore, the

large benefit in ‘user’ recognition carries no cost in terms of imposter rejection. The smart-

phone rejected all imposters on this test—whether encoded with individual or average-image

representations of the face.

Despite the clear average-advantage in this preliminary experiment, this use of the phone is

somewhat unusual. In order to retain control over extraneous variables, this experiment used a

lab-based set up, in which all images were derived from photographing a computer screen. In

the next experiment, we test the phone in the common setting—where users encode their own

target images, and use these to unlock the phone live.

Experiment 2: Real Faces

In this experiment we test whether the face average advantage reported in Experiment 1 gener-

alises to normal use with real faces. To this end, we encoded the phone either with individual

photos or the face average of a participant, who was then asked to unlock the phone using their

face. To examine the generalizability of the face recognition system, we conducted recognition

trials in six different contexts. We used five indoor locations with variable lighting conditions:

an office, a corridor, a staff room, an atrium and the driver’s seat of a stationary car. This ma-

nipulation aims to recreate the variety of indoor environmental conditions that a smartphone

user would typically encounter. Additionally, in daily life we also require regular access to our

phone when outdoors (e.g. reading e-mails while traveling to work). The development of a face

recognition algorithm which is as effective outdoors as it is indoors, is one of the major chal-

lenges facing developers [23], and so here we also test the potential for an average advantage in

an outdoor setting (next to an office block on a university campus).

When constructing average target faces for this experiment, we reduced the number of im-

ages contributing from 30 (in Experiment 1) to 7. As well as examining any theoretical advan-

tage for average photos over individual photos, we are also interested to establish whether this

technique might lead to a realistic improvement in day-to-day use. For this purpose, it seemed

too onerous to request participants to take a large number of photos of themselves, and so we

chose just seven here. In line with the findings from Experiment 1, we predict that real face rec-

ognition rates will be greater when the stored target is a face average, rather than an individual

photo.

Table 1. Performance levels for the individual and average-image targets.

Individual-Image Target Average-Image Target

User Recognition 45% (22) 68% (37)

Imposter Rejection 100% (0) 100% (0)

Note. For each celebrity, individual-image targets were tested 50 times (5 targets x 5 test images for both

‘users’ and ‘imposters’), while average-image targets were tested 10 times (average target x 5 test images

for both ‘users’ and ‘imposters’). The table shows mean performance by condition across all celebrities (SD

in parentheses).

doi:10.1371/journal.pone.0119460.t001
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Materials and Methods

Ethics Statement. This study was approved by the Ethics Committee of the School of Psy-

chology, University of Aberdeen, acting under the auspices of the College of Life Sciences and

Medicine, University of Aberdeen. All participants provided written informed consent and ap-

propriate photographic release.

Participants. Ten participants (5 male/5 female) with a mean age of 31.0 years (SD = 9.9,

Range = 23–55) were recruited from the University of Aberdeen’s School of Psychology.

Stimuli and Apparatus. The same smartphone was used as in Experiment 1. Each partici-

pant was asked to provide seven self-taken face photos (‘selfies’) to be used as their stimulus

set. Consistent with the manufacturer’s instructions, we asked them to take these photos hold-

ing the phone at eye-level, in an adequately lit indoor location. We also requested that partici-

pants maintain a forward facing pose and a neutral expression.

Participants took one ‘selfie’ per day for seven consecutive days, with each photo being

taken in a different indoor location of their choice, on their own cell phones. All face images

were then cropped to a size of 380 x 570 pixels. Each person’s set of seven photos were used to

create their face average. Examples of the averages and individual images are shown in Fig. 2.

Design and Procedure. The smartphone was encoded with a different target image of the

participant on eight occasions using each of their seven individual ‘selfies’ and their face aver-

age. The order in which these eight images were encoded as targets was randomised across

Fig 2. Example stimuli used in Experiment 2. Rows A and C shown the male and female face averages
respectively. Rows B and D show five examples of the self-face-photos taken by the participants.

doi:10.1371/journal.pone.0119460.g002
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participants. At no point during the recognition trials did the individual know which of their

face images had been encoded. On each of the eight occasions, participants were asked to try to

unlock the phone using their face in six different locations (see Fig. 3). Participants were in-

structed to hold the phone at a comfortable distance from their face (ensuring all of their face

was visible in the camera capture space), at which point they should press the power button on

the device to activate the authentication program. The order of the locations was fixed (office,

corridor, staff room, atrium, car, outdoors), with the eight testing cycles taking approximately

1 hour to complete.

Results

Fig. 4 shows mean recognition rates for individual photo targets and for average targets. In

three locations, the average-image target performed perfectly (i.e. consistently at 100% accura-

cy, across all participants). A comparison pooled across all locations shows a highly significant

advantage for average-image targets (Wilcoxon signed-rank test, two-tailed:W = 88, p< .001).

Testing at individual locations showed significant advantages for average-images in Office,

Atrium, Car and Outdoor locations (W = 0, 0, 1, 1 respectively, all ps< .05), while the numeri-

cal advantages in the Corridor and Staff Room locations failed to reach significance.

These results show a clear performance advantage for average targets over individual pho-

tos. Furthermore, this is consistent across locations. Overall, these findings extend the face av-

erage advantage to the recognition of the real smartphone users. Encoding a face average

provides a significant and large benefit to the performance of these systems. It is interesting to

note that the overall recognition rates are rather better in this setting than in Experiment 1.

The results from standard indoor usage of the smartphone vary from about 50% to about 90%.

However, in every case, the average faces do better. In fact, in three of our indoor environ-

ments, the office, staff room and atrium settings, the average elevates performance to perfect

levels. This is quite an impressive jump, given that the averages are taken from 10 different peo-

ple, and each average comprises only seven contributing images.

Fig 3. Images of the six different locations used in Experiment 2. Five indoor testing locations and one outdoor location.

doi:10.1371/journal.pone.0119460.g003
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In general, a comparison across locations shows that the environments with good indoor

lighting (Office, Staff Room, Atrium) out-perform outdoor or poorly-lit locations (e.g. Corri-

dor—see Fig. 3). However, the average advantage holds very clearly for the more challenging

outdoor setting. This is particularly impressive as the target images were all taken indoors (and

the average is composed of these) while the test is performed outside. Outdoor performance

with a single image is relatively low, as expected—and comparable only to the indoor in-car

condition. However, the use of averages seems to go quite a long way to alleviating the well-

known problems with outdoor face recognition, and provides the possibility that the system

can reach a level of performance which makes it practical to use.

Discussion

In two experiments we tested the recognition performance of the Samsung Galaxy face authen-

tication system when it was encoded either with an individual face target or a face average tar-

get. We found significant average-face advantages in each experiment, despite the fact that the

procedures (photographing screens vs real people) and settings (different physical locations

and environmental lighting) were so widely varied. The improvement in authentication perfor-

mance did not affect the system’s ability to reject images of an imposter (100% correct rejection

rate in Experiment 1). In short, the use of averages improves user recognition in all settings,

and in some (particularly outdoors) it renders the system practically useful, against a back-

ground of relatively poor baseline performance.

These findings extend the face average advantage reported by Jenkins and Burton [19] to

another current and widely available commercial algorithm. Interestingly, while Jenkins and

Burton used averages which were created from twenty photos of an individual, here we show

that the effect can be replicated for real faces using an average created from just seven instances.

Of course, we have tested only a single device here, the Samsung Galaxy smartphone. This

seems a good candidate, since it is currently the world’s largest selling device which has an in-

Fig 4. Mean user recognition rates for Experiment 2. Each participant was tested against seven different
individual-image targets, and one average-image target, and these tests were repeated in each of the six
locations. The figure shows mean performance by condition across all participants (SD in parentheses).

doi:10.1371/journal.pone.0119460.g004
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built face recognition system (programs with similar functionality are available for other

phones, but for this model, the recognition system forms part of the core operating software).

The fact that this provides a similar average-advantage to earlier tests using a different algo-

rithm [19], suggests that this is a general property of face matching—though of course it will be

necessary to examine this for particular cases. At the very least, our results suggest that devel-

opers should focus on the images used for matching, as well as the more traditional approach

of focussing on matching algorithms themselves.

In fact, recent research has shown that developers are continuing to focus on improving the

algorithm that matches a stored face to a novel image [18]. The Facebook affiliated DeepFace

system [24] recently produced an accuracy rate of 97.25% when matching unconstrained pho-

tos, the highest yet recorded in a benchmark test. This system has been designed for face image

recognition in social media contexts (e.g. automatically tagging people in uploaded photos)

and its ability to reach similar levels of performance for real faces in everyday contexts has not

been assessed. However, in line with previous systems which have approached such levels of ac-

curacy on benchmark image matching tests, it is possible that it would produce a poorer level

performance for real world face recognition (see Jenkins & Burton [25] for examples). In this

paper, we demonstrate that, through no alterations to a commercial algorithm, we are able to

improve the recognition of real faces in everyday conditions, simply by encoding a stable

face representation.

It would be relatively straightforward to build this advantage directly into devices such as

smartphones. We envisage that a new system might operate as follows: (i) Users would select

seven digital images which provide an unobstructed view of their face. This is a relatively trivial

requirement which could be accomplished through the user providing access to the image gal-

leries in their Facebook or photo sharing applications; (ii) An automatic facial landmarking

system would, for each image, mark the anatomical features required for averaging; (iii) Soft-

ware would then create the person’s average and encode it as the stored representation of

their face; (iv) On each occasion authentication occurs, an image of the user’s face would be

captured and incorporated into their average. In this way, the average is being updated regular-

ly, and will come implicitly to weight more recent photos more, while the updating procedure

continues.

The only current constraint on the development of such a system is the lack of a reliable au-

tomatic face landmarking system. If the problem of automatic landmarking was resolved and

the proposed system was implemented in smartphones, it could re-cast the face-based authen-

tication system as a reliable security feature. Moreover, the fact that the effect was retained for

outdoor recognition means that this method could also be applied to home and business site

entry systems in which the user would be outdoors during the verification process.

Finally, we observe that the intention here is to reconcile what is known about human and

automatic face recognition. Human perception of familiar faces is remarkably good—and re-

mains much more robust across image conditions than even the best automatic recognition

systems. Our approach here has been to incorporate a theory of human face familiarity into an

automatic system. There may, of course, be better ways to do this. However, it does seem clear

that automatic face recognition would benefit from an acknowledgement of the differences be-

tween familiar and unfamiliar faces, and from some emulation of familiar viewers.
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