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Incomplete global coverage is a potential source of bias in global temperature reconstructions if

the unsampled regions are not uniformly distributed over the planet’s surface. The widely used

HadCRUT4 dataset covers on average about 84% of the globe over recent decades, with the unsampled

regions being concentrated at the poles and over Africa. Three existing reconstructions with near-

global coverage are examined, each suggesting that HadCRUT4 is subject to significant bias due to its

treatment of unobserved regions.

Two alternative approaches for reconstructing global temperatures are explored, one based on an

optimal interpolation algorithm and the other a hybrid method incorporating additional information

from the satellite temperature record. The methods are validated on the basis of their skill at

reconstructing omitted sets of observations. Both methods provide superior results than excluding

the unsampled regions, with the hybrid method showing particular skill around the regions where no

observations are available.

Temperature trends are compared for the hybrid global temperature reconstruction and the raw

HadCRUT4 data. The widely quoted trend since 1997 in the hybrid global reconstruction is two and a

half times greater than the corresponding trend in the coverage-biased HadCRUT4 data. The impact

of coverage bias in the HadCRUT4 data leads to an overestimation of global temperature during

the late-1990s and an underestimation of global temperatures over the past decade. Trends starting

in 1997 or 1998 are therefore maximally misleading with respect to the global trend. The issue is

exacerbated by the strong El Niño event of 1997-1998, which also tends to suppress trends starting

during those years. Copyright c© 0000 Royal Meteorological Society
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1. Introduction

The instrumental temperature record, based on land-based

weather station readings and sea surface temperature

readings from ships and buoys, forms a vital source of

information concerning climate over the last century and

beyond. Time series of local monthly average temperatures

(gridded datasets) and global averages are produced by

several organisations, with the HadCRUT product of the

Hadley Center and Climatic Research Unit being one of

the most widely cited (Morice et al. 2012). The GISTEMP

product from NASA’s Goddard institute (Hansen et al.

2010) and the NCDC product (Smith et al. 2008) are also

widely used. A new land-only product from the Berkeley

Earth ‘BEST’ project (Muller et al. 2012) has introduced a

number of statistical improvements in the handling of data

homogenisation and coverage.

All these temperature reconstructions are based on in

situ readings using thermometers. While the production

and calibration of reliable thermometers has been well

established for several centuries, how the thermometers

are used to obtain meteorological data can significantly

influence the results. The introduction of the Stevenson

screen provided a significant step towards the collection of

reliable air temperature data from land stations, however

some biases remain in both the land and sea surface

temperature data.

Most of the biases have been studied at length

and addressed by both data-only approaches (i.e. using

just the temperature observations) and meta-data based

approaches (i.e. including additional information such as

time of observation and measurement methodology, see

for example Peterson and Vose 1997). The most widely

studied sources of measurement bias in the land temperature

record are the time of observation (Karl et al. 1986),

instrumentation type, and the ‘Urban Heat Island’ (UHI)

effect (Hausfather et al. 2013).

Two recent results are particularly noteworthy. A

comprehensive study of US stations by Williams et al.

(2012) compared pairs of stations and correlated differences

in the data with metadata analysis to conclude that time of

observation and instrumentation location and type were the

principal sources of bias in the weather station data. The

BEST analysis (Muller et al. 2012) addresses these two

source of bias in a different way, using a data-only approach

to divide each station record into segments which show no

discontinuity with respect to consensus local climatology.

The agreement between the data-only approach of BEST

and the metadata based approach of NCDC provides strong

support for the reliability of the resulting record.

Practices for measuring sea surface temperatures have

also changed over time, leading to biases in the

resulting data. Early measurements were performed using

uninsulated buckets to bring sea water on deck, while

more recent measurements have used insulated buckets,

engine room intake temperatures, and anchored or free-

floating buoys (Kennedy et al. 2011). Measurements

using uninsulated buckets tend to be biased cool due to

evaporation from the bucket, while engine room intake

temperatures tend to be biased warm due to heating of

the water by the ship infrastructure. A discontinuity in

the raw temperature record due to a transition from the

use of uninsulated buckets to engine room intakes at the

beginning of the second world war was quantified by

Folland and Parker (1995) and is addressed by a ‘bucket

correction’ in the widely used versions of the instrumental

temperature record. More recently, a second discontinuity

was identified by Thompson et al. (2008) by comparison

of the instrumental temperature record with climate model

outputs. Kennedy et al. (2011) conducted a detailed

metadata analysis which has led to further corrections
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Coverage bias in the HadCRUT4 temperature series 3

to the SST data, addressing the discontinuity at the end

of WWII. This work also introduced a smaller upward

adjustment to recent temperatures due to a transition away

from warm-biased engine room sensors to measurements by

buoys. These corrections are currently only present in the

Hadley/CRU temperature record (Morice et al. 2012).

Other sources of temperature data include reanalysis

data, which are determined by using a weather model

to reconstruct a global temperature field on the basis

of multiple sources of data (e.g. Kalnay et al. 1996),

and the satellite temperature record (Spencer 1990; Mears

and Wentz 2009). The satellite temperature record is of

particular interest because it provides a uniform sampling

with near-global coverage. However the satellite microwave

sounding units measure lower troposphere rather than

surface temperatures and so are not directly comparable

to the in situ temperature record. Furthermore there

are temporal uncertainties in the satellite record arising

from satellite failure and replacement and the numerous

corrections required to construct a homogeneous record.

Contamination of the microwave signal from different

surface types is also an issue, particularly over ice and at

high altitude (Mears et al. 2003).

1.1. Coverage bias

A further important source of bias arises from the estimation

of a global mean temperature from the incompletely

sampled gridded dataset. Weather stations coverage is best

in the temperate latitudes and particularly in developed

nations. Coverage of the polar regions is particularly poor,

with no coverage of Antarctica before the 1950’s, and

limited coverage of the Arctic to this day. Poor sampling

of the fastest warming parts of the planet leads to an

underestimation of the global trend in the instrumental

temperature record (Met Office 2009). This problem is

exacerbated by the use of equal-angle (5 degree) grids by

the Hadley/CRU record (Stokes 2011). Since equal-angle

grid cells become smaller at higher latitudes, more stations

are required to achieve full coverage when in practice fewer

stations are available.

Coverage bias becomes an issue when different parts of

the planet are changing temperature at different rates. As a

result it is a particular issue over recent decades, owing to

the different rates of warming between the tropics and poles,

and between land and ocean (Hansen et al. 2006). Changes

in the Arctic and Antarctic are particularly problematic

because the coverage is poor in these regions.

While short term trends are generally treated with a

suitable level of caution by specialists in the field, they

feature significantly in the public discourse on climate

change (e.g. Global Warming Policy Foundation 2012;

Daily Mail 2012; The Telegraph 2013), and have also been

the subject of scholarly studies into the possible impact of

both aerosol emissions (Kaufmann et al. 2011) and ocean

heat uptake in climate models (Meehl et al. 2011) on short

term trends. A common factor in all these works is an

attempt explain or draw conclusions from the comparatively

slow warming seen in some versions of the instrumental

temperature record over the past decade and a half. However

to do so without first addressing the issue of coverage bias

is to ignore a very significant confounding factor in the

analysis.

NASA’s GISTEMP temperature record (Hansen et al.

2010) attempts to address the coverage issue by extrapo-

lating temperatures into unmeasured regions by means of

kernel smoothing using a conical kernel of radius 1200km.

The Berkeley Earth (BEST) project have adopted an optimal

interpolation method (kriging), although only for land tem-

peratures at this stage (Muller et al. 2012). A recent memo

from this project (Rohde 2013) suggests that the simple

kernel smoothing method used by GISTEMP gives results

which are close to the optimal method. However each of
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4 K. Cowtan and R. Way

these approaches assumes that the unobserved high latitude

temperature field varies in a similar way to the observed

temperatures at lower latitudes.

The potential impact of coverage bias may be estimated

by use of three (near) global temperature reconstructions:

The extrapolated GISTEMP data, the UAH satellite data,

and the NCEP/NCAR reanalysis data (the NCEP/DOE

AMIP-II Reanalysis-2 gives similar results). Figure (1)

shows temperature trend maps for the period 1997/01-

2012/12 for HadCRUT4 and each of these three series (the

significance of the start date will become clear shortly).

Note that GISTEMP, UAH and NCEP/NCAR all show

significantly faster warming in the Arctic than over the

planet as a whole, and GISTEMP and NCEP/NCAR also

show faster warming in the Antarctic. Both of these regions

are omitted in the HadCRUT4 data. If the other datasets are

right, this should lead to a cool bias due to coverage in the

HadCRUT4 temperature series.

A preliminary estimate of the size of the bias may be

calculated from the three global temperature series. For each

series the coverage of the temperature field for each month

is reduced to match that of the HadCRUT4 data for that

month. Global mean temperature estimates are calculated

for both the full- and reduced-coverage temperature fields.

The difference between these values gives an estimate of

the coverage bias. The bias estimate can vary dramatically

from month to month as weather systems move in and out of

the omitted regions, however a 60 month moving average,

shown in Figure (2), shows long term variations. All the

global series show a shift from a warm to a cool bias over the

past two decades, with the sharpest decline starting around

1998. The GISTEMP and UAH estimates for HadCRUT4

coverage bias are very similar, providing some support for

the GISTEMP extrapolation approach. The NCEP/NCAR

data show a much faster transition to a cool bias followed by

a plateau, raising a question over the GISTEMP assumption

that temperatures at high latitudes vary similarly to those at

lower latitudes.

The timing of this change in bias after 1998 is significant

because it also corresponds to a strong El Nino event

(leading to a warm year) and is often suggested as the start

of a hiatus in global warming (e.g. Meehl et al. 2011).

However the consensus of the three global temperature

series is that short term trends starting around 1997-

1998 will be maximally misleading in the estimation of

underlying trends, because they are distorted by the full

effect of both coverage bias and the strong 1997-1998 El

Nino event.

The purpose of this work is to address the issue of

coverage bias through the development of new methods

for global temperature reconstruction building on the

HadCRUT4 data.

2. Global temperature reconstruction

In order to construct a global surface temperature series,

either surface temperature observations or proxies which

allows their estimation are required. No static weather

station observations are available for the central Arctic,

and thus a proxy is the only option. Hansen et al.

(2006) used the UAH satellite data to argue that a warm

Arctic anomaly responsible for the GISTEMP temperature

record in 2005 was genuine. The satellite data has near

global coverage, and the global distribution of satellite

temperatures for any given month is correlated with the

surface temperatures, with a mean (Pearson) correlation of

0.61 between GISTEMP and UAH when using the same

baseline period. Therefore the satellite data will be used as a

proxy for surface temperature to construct a geographically

complete hybrid temperature record.

The UAH satellite data is used in preference to data

from RSS because RSS omits the critical high latitude

temperature data, which is most impacted by the surface
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Coverage bias in the HadCRUT4 temperature series 5

contamination issue. This work aims to mitigate surface

contamination bias by use of the in situ data. The UAH

data is also interpolated at latitudes above 85◦, however

the interpolated region is small compared to the unobserved

region of the in situ data.

The use of the satellite temperatures as a proxy rather

than a direct measurement of surface temperature brings

additional requirements. Firstly, the satellite and in situ

observations must be on a common baseline. Secondly, an

appropriate method for mapping satellite observations of

lower troposphere temperatures onto surface temperatures

is required. Thirdly, the method must be validated to ensure

that it has skill in predicting unobserved temperature values.

The validation step will also serve as a check on the possible

issues identified so far such as the mismatch between

surface and lower troposphere temperatures and surface

contamination of the MSU signal.

The mapping and validation steps will make use of

the optimal interpolation algorithm known as kriging. For

the mapping, kriging will be used to estimate a slowly

varying function of grid coordinates corresponding to the

offset between the satellite and surface temperatures. For

the validation step, kriging will provide a baseline against

which to compare the skill of the hybrid method.

2.1. The impact of the baseline period

The surface temperature calculation is usually performed

using temperature anomalies, which represent the deviation

of the current temperature from the mean over a chosen

baseline period. For the HadCRUT4 data, the station data

are normalised so that the mean over the period 1961-

1990 for a given month of the year is zero for each station

with sufficient records. The UAH map data uses a similar

approach with the mean for each map cell normalised to

zero over the period 1981-2010 for a given month of the

year.

A problem arises when coverage changes over time.

Because the Arctic has warmed significantly since the

end of the HadCRUT4 baseline period, a drop in Arctic

coverage leads to a cool bias in the mean of the observed

cells. This effect increases as conditions diverge from the

baseline period. To obtain realistic short term trends, the

baseline period should be as similar to the trend period as

possible. For similar reasons, when constructing a hybrid

temperature series, the two source map series should have

the same baseline period.

The HadCRUT4 map series was therefore renormalised

to match the UAH baseline period of 1981-2010. For each

map cell and each month of the year, the mean value of that

cell during the baseline period was determined. If at least 15

of the 30 possible observations were present, an offset was

applied to every value for that cell and month to bring the

mean to zero; otherwise the cell was marked as unobserved

for the whole period.

Renormalization is not a neutral step - coverage is

very slightly reduced, however the impact of changes in

coverage over recent periods is also reduced. Coverage

of the renormalized HadCRUT4 map series is reduced by

about 2%.

2.2. Kriging

Kriging (Cressie 1990) is an linear approach to interpo-

lation/extrapolation in which the values of the field are

determined in accordance with a given covariance structure,

where the covariance structure is usually a radial function

which is determined from the covariance of those observa-

tions which are present. The radial function is usually a sim-

ple function, such as an exponential, although Muller et al.

(2012) use the exponential of a higher order polynomial.

Kriging is an important method in geophysics, offering

the following benefits:
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6 K. Cowtan and R. Way

1. The reconstructed values vary smoothly and match

the observed values at the coordinates of the

observations.

2. For well behaved covariance functions the recon-

structed values approach the global mean as the dis-

tance from the nearest observation increases, i.e. the

method is conservative with respect to poor coverage.

3. When a reconstructed value is produced based on

a cluster of observation in one direction and a

single observation in another, the cluster values

are downweighted in accordance with the amount

of independent information they contribute to the

reconstructed value. Area weighting is an emergent

property of the method, with observations being

weighted by cell size in densely sampled regions,

and by the region over which the observation is

informative in sparse regions.

The kriging calculation is described in detail in Appendix

A, however in outline the steps are as follows:

• Determine the radial covariance function from the

observations which are available.

• Construct a covariance matrix for the observed

coordinates.

• Construct a vector of covariances between the

observed coordinates and some coordinate at which

an estimate of the field is desired.

• Solve the resulting system of equations for the to

obtain a vector of weights. The estimated value of

the field at the target coordinate is given by the dot

product of vectors of weights and the observations.

There are differences between the method employed here

and that of Muller et al. (2012). Muller et al. used simple

kriging, which assumes that the expectation of the unknown

field is zero - this was a valid approach for that work since

the expectation of the field had already been subtracted out

in the form of a time varying climate term. In this work, the

expectation of the field (i.e. the global mean temperature) is

to be determined so ordinary kriging, which makes no such

assumption, is required. Ordinary kriging introduces an

additional constraint that the weights must sum to unity, and

thus the applying a constant offset to all the observations

leads to a corresponding offset in every extrapolated value.

In this work the kriging calculation will be applied

to the reconstruction of gridded temperature values using

the grid cells for which observations are available, in

contrast to Muller et al. who use individual stations as the

observations. This will enable a correspondence between

the gridded satellite data and the surface data, and also

makes it computationally realistic to construct a full matrix

of cell covariances rather than the sparse matrix used by

Muller et al., allowing a global reconstruction from any

starting data. In a 5 degree sampled grid there are 2592

cells, and so the correlation matrix can contain up to 8.7m

(25912) elements. The covariance function was modelled

by a simple exponential function of distance, ensuring

a strongly diagonal covariance matrix and a numerically

stable calculation.

Kriging the gridded data also has some significant

disadvantages: Information about station position within a

cell is lost, cells with a single station receive the same

weight as cells with many, and (equivalently) no account is

taken of the uncertainty in a cell value. The acceptability of

these compromises will become apparent in the validation

step.

Grid cells for which observations are available are

assumed to be exact, and are therefore unmodified by the

calculation. This is not a necessary assumption of kriging,

but for the purposes of estimating global mean temperatures

it is a convenient simplification and means that the resulting

temperature fields will preserve the features of the source

data.
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2.3. The hybrid calculation

The hybrid surface-satellite temperature calculation is

extremely simple in form:

Thybrid
x = krig(T surf − sT sat)x + sT sat

x (1)

where T surf
x is the surface temperature of the grid cell

at coordinate x, T sat
x is the satellite temperature, and s

is a scale factor applied to the satellite temperatures. The

difference between the surface and satellite temperatures

may only be calculated for cells where surface temperatures

are available, so the result has incomplete coverage, which

is completed by the kriging operator. The resulting global

coverage field is added to the scaled satellite temperatures

to produce the hybrid temperature field. The scale factor s

serves to allow for a difference in scale between surface and

lower troposphere (LT) temperatures.

The krigged difference field has the following properties:

1. Where a surface temperature observation is present,

it is the difference between the surface and satellite

temperatures.

2. Near a surface temperature observation the value of

the field will be similar to the difference at the nearest

observed coordinate.

3. Far from any surface temperature observation the

value of the field will approach the difference

between the global means of the surface and satellite

fields.

These properties translate to the following properties for

the hybrid field:

1. Where a surface temperature observation is present,

the hybrid field is equal to the surface temperature.

2. Near a surface temperature observation the value

of the field will be similar to the nearest observed

coordinate.

3. Far from any surface temperature observation the

value of the field will approach the value of the

satellite field, adjusted by the difference in global

mean between the surface and satellite fields.

The hybrid field around an isolated surface observation will

match the satellite data in gradient and curvature, with a

constant offset to fit the surface observation at the grid

centre.

In other words the behaviour is what one would

intuitively expect from a hybrid temperature reconstruction,

with the distances over which a surface observation can

dictate local temperatures determined by the autocorrelation

of the difference field itself.

Any temporal inhomogeneity in the satellite data

is eliminated, because the satellite data is tied to

the surface temperature observations on a month-by-

month basis. Spatial inhomogeneity, for example due to

surface contamination of the tropospheric temperature

observations, remains an issue only if inhomogeneity varies

over distances significantly shorter than the range of the

kriging calculation.

2.4. Validation

The satellite data does not provide direct surface

temperature observations, and thus must be treated as a

proxy dataset. Also the kriging calculation implemented

here does not account for uncertainties in the observations,

or even the number of observations in a grid cell. Each

of these factors mean that the method can not be assumed

to be valid, and therefore the skill of the method must be

proven by reconstructing temperature observations which

have been hidden from the calculation. For the following

tests, the HadCRUT4 ensemble median and UAH data

were used over the period 1979/01-2012/12. The UAH

data were upscaled to a 5x5 degree grid. Two methods
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8 K. Cowtan and R. Way

will be employed; the first being a 36-fold cross validation

approach modified to deal with the spatial autocorrelation

of the data.

In the cross validation calculation, a contiguous group

of either 1, 3, or 5 latitude bands are omitted from the

temperature map data for a given month. The central latitude

band of the omitted region is then reconstructed by one of

the following methods:

• Null reconstruction - the target cells are set to the

(area weighted) mean of the rest of the map.

• Kriging - the target cells are reconstructed using the

kriging calculation.

• Hybrid - the target cells are reconstructed using

the hybrid method. This approach is repeated for

different values of the satellite scale factor s.

The calculation is repeated 36 times, omitting the latitude

bands bracketing each of the 36 latitude bands in turn.

The 36 reconstructed bands are then combined to create a

composite map in which every cell has been reconstructed

using only cells more than a certain distance from that cell.

The three extrapolation ranges are illustrated in Figure (3).

The skill of the temperature reconstruction methods may

be measured in terms of the RMS difference between the

reconstructed and original map over all the months in the

reconstruction - the results are shown in Figure (4). Maps

are shown for the for the null reconstruction, kriging, and

the hybrid method with s = 1.0 for the three extrapolation

ranges. For the null reconstruction the range makes no

difference to the results and so only the range 1 case is

shown.

The null reconstruction provides surprisingly good

predictions over the oceans (apart from the El Nino region),

which reflects the fact that sea surface temperatures vary

much less from the global mean that land temperatures. The

agreement over land however is poor, as expected.

The kriging reconstruction is better over both land and

oceans for ranges or 1 and 2 cells. At longer ranges the

North Pacific SST reconstructions begin to be distorted by

land temperatures from Siberia and Alaska, however the

reconstructed land temperatures remain superior to the null

reconstruction.

The hybrid reconstructions show a significantly different

behaviour. For a range of 1 cell, the results are very similar

to kriging, but as the range increases the land and SST

reconstructions deteriorate at high latitudes at a uniform

rate over land and ocean. Thus the land reconstruction is

significantly better, while the SST reconstruction is worse

than either the kriging or null reconstructions.

These results suggest that a combined method in which

the hybrid method is used for land temperatures and kriging

(or hybrid with a low weight) for SST reconstructions.

Such an approach would ideally be implemented as part

of the Hadley calculation using the unmerged land and

SST data for each of the 100 ensemble members. A crude

approximation based on the merged data is possible, but will

suffer from land-ocean contamination in coastal cells.

The reconstructions are compared numerically in Table

1, which shows the RMS difference between the original

and reconstructed maps averaged over all the months in

the temperature series. Results are given for the null and

kriging reconstructions, and for the hybrid calculation with

s varying from 0.2 to 1.4. Best results are obtained for

s ≈ 0.6, representing a compromise between the improving

land reconstruction and deteriorating SST reconstruction.

The value of the RMS difference is bounded by the noise

level in the grid values.

Of more interest in this work are the accuracy of the

global temperature reconstructions. The previous results

do not directly address this question because the regions

of the globe affected by poor coverage are not uniformly

distributed. Since no observations are available for these
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Coverage bias in the HadCRUT4 temperature series 9

regions, an estimate must be made on the basis of the

error in reconstructing temperatures at the boundaries of the

unobserved regions.

Three test cases are therefore constructed by further

reducing the coverage of the HadCRUT4 data at the edges

of the unobserved regions. A mask is applied to remove the

values from cells whose centres are within 600, 1150 or

1700km of a cell with no observations. The masked cells

will be reconstructed by the three methods used earlier, and

the reconstructed values compared to the observations. The

coverage of the original and reduced coverage datasets is

illustrated in Figure 5. The 600km dataset involves omitting

an additional 16% of the globe from the observed data,

comparable to the 18% already missing from that data.

Two tests are used for comparing the results:

1. A difference map is calculated between the original

and reconstructed temperatures for the masked cells.

The mean and RMS of this map give a measure

of the bias and error in reconstructing cells in the

geographical regions of interest over a range of

distances from the nearest observation.

2. The differences for the masked cells are extrapolated

into the regions of the map where no observations

are available, using inverse distance interpolation

(weighted by distance−4). All cells for which

observations are available are then set to zero. This

gives an estimate of how the global mean temperature

estimate would be biased if the unobserved cells

were reconstructed with the same error as the closest

available reconstructed cells.

For each test the bias (measured by the area weighted

mean of the difference between the original and recon-

structed values), and the error (measured by the area

weighted RMS difference between the original and recon-

structed values) are presented for the period from 2005 on

when bias is expected to be critical.

The results of reconstructing the omitted cells are shown

in Table (2). Kriging gives a lower RMS error over the

masked region than the null reconstruction in every case,

although its performance degrades as the extrapolation

range increases, and the bias is variable. The hybrid

method gives both a better mean bias and RMS error

than Kriging, and the results degrade more slowly with

increasing extrapolation range. The optimal scale factor s

for the satellite data is in the range 0.8-1.2 in each case.

The month-by-month error for the 600km test using null,

kriging and hybrid (s = 1) reconstructions is shown in

Figure (6) for the years 1997-2012. The reduced error of

the kriging and hybrid reconstructions is apparent, and the

hybrid reconstruction also avoids the significant cool bias in

the other reconstructions over the period 2009-2011.

The results of projecting of the reconstructed values into

the unobserved region are shown in Table (3). This presents

a harder challenge, since the unobserved region is being

reconstructed primarily from those cells most remote from

any included observation, and the fragmentary coverage

means that the effective extrapolation range for such cells

is much larger than the quoted figure. Accordingly, for the

600km calculation kriging is only marginally better than no

reconstruction and at longer ranges it provides no benefit.

However the hybrid method shows a significant benefit at

all ranges with only limited degradation with range.

These results indicate that reconstruction of the regions

of the globe where coverage is poor is best achieved with

the hybrid method, using a scale for the satellite data in

the region of 1.0. This is in contrast with the result for the

globe in general, where optimal results are achieved by a

combination of the kriging and hybrid methods to cover
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land and ocean, or failing that a hybrid calculation with the

satellite data down-weighted.

What is the reason for this difference? The largest

coverage holes are over Antarctica, Africa and the Arctic.

Antarctica and Africa are land, where the hybrid method

performs best. The unobserved region of the Arctic is

primarily sea ice. From the point of view of the atmosphere,

snow covered ice is similar to snow covered land.

More importantly the additional heat transfer mechanism

provided by the mixing of surface water is not present

(Barry and Chorley 2009), so there is reason to suspect that

the Arctic may behave more like land and thus be better

predicted by the hybrid method. However it is also possible

that this result arises from Arctic temperature measurements

coming primarily from land stations, e.g. Alert, Canada and

Tikhaya Bay, Russia.

3. Global reconstruction results

The kriging and hybrid methods have been applied to the

full HadCRUT4 ensemble median data to obtain global

temperature reconstructions. A global mean temperature

estimate is then calculated using an area weighted mean

of the map cells. The results are compared over the period

of the satellite data in Figure (8) using 12 and 60 month

moving averages. The kriging and hybrid reconstructions

are compared to the null reconstruction, which corresponds

to the HadCRUT4 data except in that the baseline period has

been adjusted and a global mean is calculated instead of the

Hadley practice of calculating the mean of the hemispheric

means.

The kriging and hybrid reconstructions give very

consistent results over most of the satellite era, but show

divergence from the null series over parts of the record.

Of particular interest are the periods 2005-present when

the new reconstructions show warmer temperatures than the

null series, and 1997-2000 when the new reconstructions are

cooler than the null series, with the hybrid results showing

cooler temperatures than kriging. The 60 month moving

average shows the impact of coverage, both on the 1998

peak and more significantly on recent temperatures.

How do different regions of the planet contribute to

coverage bias? The difference between the null and hybrid

reconstructions is calculated for three latitude bands. The

mean of the resulting maps provides a measure of coverage

bias due to limited coverage in each band in turn. The

results are shown in Figure (7) using 12 and 60 month

moving averages. Incomplete coverage of the rapidly

warming Arctic is the principal cause of coverage bias since

2005, despite the comparatively limited area affected. The

Antarctic shows much more variability on short time scales

owing to the larger area affected, however there is less

trend. Notable however is a large warm bias spanning the

period 1997-2000. The rest of the world (of which central

Africa is the primary region of poor coverage) contributes

comparatively little temperature bias. The 60 month smooth

gives a clearer picture of the effect of bias on longer term

trends. The sum of these contributions is comparable to the

results in Figure (1).

Trends from 1997 to the present are particularly impacted

by coverage bias (and have also been the subject of

significant media coverage, see for example The Telegraph

2013). The trends over this period have therefore been

calculated for the three series and are given in Table

(4), along with corresponding trends for the HadCRUT4,

NCDC, GISTEMP and NCEP/NCAR temperature data.

Both the kriging and hybrid series yield similar trends and

both show faster warming than GISTEMP. The difference

in trend between the original HadCRUT4 data and the null

reconstruction is apparent, and arises from the reduction in

bias due to changes in coverage over the trend period as

discussed in section (2.1).
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The NCEP/NCAR trend is higher than for the

observational records. Most of this difference comes from

mid-latitudes and from ocean rather than land data (see

supplementary information), however the high latitude

trends are in good agreement with the hybrid reconstruction.

The increased trend in the kriging reconstruction in

comparison to GISTEMP is probably related to the

additional corrections in the HadSST3 data.

The trends in the global series do not reach the 2σ

significance level primarily because inter-annual variability

due to the El Niño southern oscillation (ENSO) inflates the

uncertainty. Foster and Rahmstorf (2011) find that removing

the ENSO influence and other natural influences reduces the

trend uncertainty sufficiently to make the remaining trend

statistically significant.

The coverage bias in the HadCRUT4 data estimated using

the hybrid data is shown in Table (5). It is notable that the

trend bias is maximised for starting dates around 1998, and

then again around 2003. Also of interest is the effect on the

statistical significance of the trend, which increases as the

number of months raised to the power 3/2. A rough estimate

of this impact may be calculated from the ratio of the bias

trend to the uncertainty in the temperature trend. By this

metric temperature trends starting in 1997 are maximally

misleading with respect to the statistical significance of the

resulting trend.

The impact of coverage bias on the 1997-2012 trend is

greatest in the winter and smallest in the summer: The

estimated bias in the trend is -0.087◦C decade−1 (DJF), -

0.049◦C decade−1 (MAM), -0.028◦C decade−1 (JJA) and

-0.055◦C decade−1 (SON).

3.1. Uncertainty in the global temperature reconstruction

The uncertainty in the HadCRUT4 global temperature

reconstruction arises from a number of sources and is

discussed in detail by Morice et al. (2012). Since the

reconstructions presented here preserve the map cell values

for cells where HadCRUT4 has data, most of those

uncertainties are unaffected by this analysis.

The principal difference comes in the coverage uncer-

tainty term. Morice et al. (2012) estimate this by reducing

the coverage of the NCEP/NCAR data to match the Had-

CRUT4 data for every available month from the reanalysis

and determining the error in the resulting global temperature

estimate. A similar approach may be applied for the kriging

method, however the hybrid method is problematic in that

it is dependent on the satellite temperature observations,

which in turn contribute to the reanalysis data.

Currently the best available estimate of the coverage

uncertainty is therefore that obtained in the validation tests

in section 2.4, and presented in tables (2) and (3). The

600km coverage reduced data leaves an additional area

of the globe unobserved which is comparable to the area

uncovered in the HadCRUT4 data, however extrapolation to

a radius of 1200km is required to achieve global coverage.

On this basis the uncertainty due to coverage bias is

estimated at between 0.028 and 0.049◦C for the kriging

results and between 0.018 and 0.033◦C for the hybrid

results. These values must be combined with the other

uncertainties as outlined by Morice et al. (2012).

4. Discussion

This study raises the following issues:

1. Global temperature reconstructions from diverse

sources all suggest significant coverage bias in the

HadCRUT4 record over the past decades or two.

2. A method for producing a global temperature

reconstruction from incomplete data must pass

rigorous validation tests. Several such tests are

proposed.

3. A hybrid reconstruction using satellite data as a

proxy for surface temperatures has been tested,
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and outperforms conventional extrapolation for the

regions of interest.

4. The impact of coverage on recent temperature trends

leads to trends starting around 1997 being particularly

misleading.

The Arctic has experienced a very rapid temperature

change over recent years through some combination of

polar amplification of greenhouse warming, albedo change

due to both black carbon and snow/ice loss and possibly

some contribution of multidecadal variability (AMAP 2011;

Semenov et al. 2010). The pace of this change means

that Arctic coverage has dominated bias in the global

temperature estimates, despite the unobserved region being

rather smaller than in the Antarctic. On this basis the

problem of coverage bias may exist whenever the Arctic

has experienced rapid warming (or cooling) in the past.

However, given the magnitude of recent Arctic warming and

polar amplification relative to global trends, it is expected

those previous periods of warming (or cooling) in the Arctic

are unlikely to bias the record to a greater extent than the

bias recorded in recent decades by this study.

The main benefit of the hybrid method is to bring

observational data to bear on the question of coverage

bias. However the method is dependent on the satellite

data and so only applicable from 1979. Given that the

hybrid results are not very different from the kriging

results, simple extrapolation appears to be justified for

current levels of global coverage. In practice the choice

of extrapolation method makes little difference once the

Antarctic stations are available: Kriging, the GISTEMP

kernel smoothing method, inverse distance weighting and

even basic nearest neighbour give very similar results,

especially used in combination with a 1200km cutoff as

employed by GISTEMP (see supplementary information).

For periods prior to the establishment of the Antarctic

stations when coverage is less complete, coverage bias

remain an issue.

The impact of coverage bias on trends starting around

1997-1998 is particularly unfortunate, given that the strong

El Nino event of 1997-1998 (and a string of La Nina

events over recent years) has also impacted trends over

the same period (Foster and Rahmstorf 2011). As a result,

the widespread reporting of HadCRUT4 temperature trends

starting in 1997 or 1998 is doubly misleading with respect

to the underlying temperature trend.

The NCDC temperature series has similar coverage

issues around the poles to the HadCRUT4 data, although

coverage at low latitudes is better. The mean coverage above

60N since 1979 is 63% for the NCDC data compared to 65%

for HadCRUT4. Since most of the bias comes from higher

latitudes, recent trends in the NCDC data are expected to be

similarly impacted to the HadCRUT4 trends.

A station-by-station investigation of the skill of the

reconstruction methods across the Arctic and Antarctic

would be of interest in further characterizing the behaviour

of the two reconstruction methods described here. The

possibility of separate methods or satellite scale factors

for land and ocean data is interesting, although it raises

the issue of whether sea ice should be treated as land or

ocean. It is hoped that the preliminary global temperature

reconstructions presented here, by highlighting the potential

scale of the bias in the short-term temperature trends,

will provide an impetus for other groups to look at the

problem using more sophisticated tools such as climate and

reanalysis models.

Data and methods for this paper are available at

http://www-users.york.ac.uk/˜kdc3/

papers/coverage2013.
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A. Ordinary Kriging

Ordinary kriging is applied to reconstruct a field for which

the covariance function as a function of distance is known,

but the mean of the field is unknown. Values of the field at

a coordinate ~x are estimated using a linear combination of

the observed values at coordinates ~xi, i = 1...N . For a field

T :

T (~x) =

N
∑

i=1

λi(~x)T (~xi) (2)

λi is the weight given to the observation at coordinate ~xi.

The weights are determined to minimize the variance of the

estimate at each position, and are determined from the by

solving the following matrix equation:


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
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...

C(~x, ~xN )

1

















(3)

C(~x, ~y) is the covariance of observations located at

coordinates ~x, ~y. It is usually approximated as a function

of the distance between ~x and ~y, which is in turn calculated

using the available observations.

The use of kriging with gridded rather than station data

limits the number of observations available, so a parsi-

monious parameterisation is adopted. A single exponential

term provides a reasonable fit to the semivariogram, using a

function of the following form.

C(~x, ~y) = α exp(−(|~x− ~y|)/d) (4)

α and d are the parameters of the covariance function.

For the purposes of this work, α is irrelevant, however d

provides a scale length for the extrapolation function in

kilometres.

d is determined from the semivariogram of the observed

data, by calculating the square of the difference between

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–28 (0000)

Prepared using qjrms4.cls



Coverage bias in the HadCRUT4 temperature series 15

every pair of observed temperatures in every month of the

data and averaging the results in 300km radial bins.The

resulting values are subtracted from the RMS difference for

cells more than 5000km apart to give a covariance estimate.

The analytic approximation C is fitted to this data. For the

HadCRUT4 data d has a value of approximately 830km, and

for the hybrid data 680km.

Muller et al. (2012) calculate inter-station correlations

directly instead of using the variogram, and use the

correlations instead of covariances. This approach was

tested with the gridded data and gave rise to values of d

about 25% larger than the variogram method, however the

resulting temperature series were essentially the same.
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Table 1. RMS difference between original and reconstructed cell

temperatures calculated over all observed cells when omitting one

or more rows of data and reconstructing the central row from rows

separated by the specified distance.

Method RMS error in reconstruction (◦C)
1 cell/550km 2 cells/1100km 3 cells/1650km

Null 1.07 1.08 1.08
Krig 0.68 0.90 1.03
Hybrid 0.2 0.67 0.86 0.96
Hybrid 0.4 0.67 0.84 0.91
Hybrid 0.6 0.67 0.83 0.89
Hybrid 0.8 0.67 0.84 0.90
Hybrid 1.0 0.68 0.87 0.94
Hybrid 1.2 0.69 0.92 1.02
Hybrid 1.4 0.70 0.97 1.12

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–28 (0000)

Prepared using qjrms4.cls



Coverage bias in the HadCRUT4 temperature series 17

Table 2. Mean bias and RMS error between original and reconstructed

global temperatures calculated over the omitted cells using the

reconstructed values for the omitted cells. Results are for the period

2005/01-2012/12 and are given for the three reduced coverage maps

described in Figure (5).

Mean bias (◦C) RMS error (◦C)
Method 600km 1150km 1700km 600km 1150km 1700km

Null -0.021 -0.027 -0.022 0.043 0.074 0.091
Krig -0.002 -0.026 -0.023 0.023 0.064 0.085
Hybrid 0.2 -0.002 -0.022 -0.013 0.021 0.055 0.069
Hybrid 0.4 -0.014 -0.017 -0.010 0.023 0.047 0.054
Hybrid 0.6 -0.011 -0.013 -0.012 0.021 0.040 0.054
Hybrid 0.8 -0.002 -0.008 -0.007 0.017 0.035 0.050
Hybrid 1.0 -0.007 -0.003 -0.005 0.018 0.033 0.051
Hybrid 1.2 -0.002 0.001 -0.001 0.017 0.035 0.056
Hybrid 1.4 -0.001 -0.004 0.003 0.017 0.047 0.064
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Table 3. Mean bias and RMS error between original and reconstructed

global temperatures calculated over the unobserved cells by extrapolat-

ing the reconstructed values for the omitted cells into the unobserved

region. Results are for the period 2005/01-2012/12 and are given for the

three reduced coverage maps described in Figure (5).

Mean bias (◦C) RMS error (◦C)
Method 600km 1150km 1700km 600km 1150km 1700km

Null -0.032 -0.033 -0.032 0.070 0.071 0.071
Krig -0.033 -0.033 -0.032 0.068 0.073 0.073
Hybrid 0.2 -0.005 -0.028 -0.028 0.055 0.063 0.063
Hybrid 0.4 -0.026 -0.024 -0.008 0.052 0.055 0.051
Hybrid 0.6 -0.022 -0.019 -0.019 0.046 0.049 0.048
Hybrid 0.8 -0.019 -0.015 -0.009 0.042 0.045 0.043
Hybrid 1.0 -0.016 -0.004 -0.010 0.042 0.043 0.044
Hybrid 1.2 -0.007 -0.006 -0.006 0.041 0.047 0.047
Hybrid 1.4 -0.010 0.000 -0.002 0.049 0.050 0.052
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Table 4. Temperature trend in ◦C decade−1 in the GISTEMP, NOAA

and HadCRUT4 temperature series and in the null, kriging and hybrid

reconstructions. The standard error in the trend is calculated according

to the method of Foster and Rahmstorf (2011) assuming an ARMA(1,1)

error model.

Dataset Trend ± σ

NCEP/NCAR 0.178± 0.107
GISTEMP 0.080± 0.067
NOAA 0.043± 0.062
HadCRUT4 0.046± 0.063
Null reconstruction 0.064± 0.078
Kriging 0.108± 0.073
Hybrid s = 1.0 0.119± 0.076
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Table 5. Bias in HadCRUT4 temperature trends running from various

dates to the present, estimated using the hybrid data (s = 1.0), in units

of ◦C decade−1. The impact of the bias on the significance of the trend

is given in the third column.

Start year Trend bias Significance bias

1990 -0.020 -0.39
1991 -0.020 -0.38
1992 -0.027 -0.47
1993 -0.030 -0.50
1994 -0.034 -0.54
1995 -0.036 -0.52
1996 -0.039 -0.51
1997 -0.055 -0.70
1998 -0.058 -0.67
1999 -0.056 -0.60
2000 -0.055 -0.54
2001 -0.057 -0.53
2002 -0.056 -0.46
2003 -0.083 -0.58
2004 -0.081 -0.48
2005 -0.045 -0.22
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HadCRUT4 land/ocean

GISTEMP land/ocean

UAH satellite

NCEP/NCAR reanalysis

Figure 1. Temperature trends for the 16 year period 1997/1-2012/12
in ◦C decade−1 for HadCRUT4 and three near global reconstructions:
GISTEMP extrapolated surface temperatures, UAH satellite data and
NCEP/NCAR reanalysis data. Areas with no coverage are shown with
hatching. Note that the cylindrical projection exaggerates the missing area
at high latitudes.
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Figure 2. Potential coverage bias in the HadCRUT4 data estimated using
three global temperature series. A 60 month moving average has been
applied to the data.
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Figure 3. Illustration of the 36-fold cross validation tests, in which 1,
3 or 5 rows are omitted and the central row reconstructed, requiring
extrapolation over different ranges.
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Null reconstruction

Range = 1 cell/550km
Kriging Hybrid

Range = 2 cells/1100km
Kriging Hybrid

Range = 3 cells/1650km
Kriging Hybrid

Figure 4. RMS difference in ◦C between observed temperatures and 36-fold cross validated reconstruction, omitting different numbers of latitude bands
to control the minimum extrapolation range as illustrated in Figure (3).
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Figure 5. Original and reduced coverage datasets used in testing skill in
reconstructing temperatures at the edges of the unobserved regions. Maps
are for 2000/01. Coverage percentages in the legend are averages over the
period 1979/01-2012/12.
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Figure 6. Error in the reconstruction of the mean temperature of the
observed region of the HadCRUT4 data using only data from a map whose
coverage has been reduced by 600km around every unobserved grid cell.
Error in ◦C are shown by month on the period 1997/01-2012/12 for the
null, kriging and hybrid (s = 1.0) resconstructions.
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a)

b)

Figure 7. Coverage bias in the HadCRUT4 global mean (rather than
mean of the hemispheric means) estimated using the hybrid (s = 1.0)
reconstruction. Contributions are shown for three latitude bands and for
the whole globe. The data are shown with (a) a 12 month moving average
and (b) a 60 month moving average.
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a)

b)

Figure 8. Comparison of null, kriging and hybrid reconstructions of the
HadCRUT4 data over the period 1979/1-2012/12. The data are shown with
(a) a 12 month moving average and (b) a 60 month moving average.
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