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Gene expression meta-analysis reveals
immune response convergence on the
IFNγ-STAT1-IRF1 axis and adaptive immune
resistance mechanisms in lymphoma
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Abstract

Background: Cancers adapt to immune-surveillance through evasion. Immune responses against carcinoma and
melanoma converge on cytotoxic effectors and IFNγ-STAT1-IRF1 signalling. Local IFN-driven immune checkpoint
expression can mediate feedback inhibition and adaptive immune resistance. Whether such coupled immune
polarization and adaptive resistance is generalisable to lymphoid malignancies is incompletely defined. The host
response in diffuse large B-cell lymphoma (DLBCL), the commonest aggressive lymphoid malignancy, provides an
empirical model.

Methods: Using ten publicly available gene expression data sets encompassing 2030 cases we explore the nature of
host response in DLBCL. Starting from the “cell of origin” paradigm for DLBCL classification, we use the consistency of
differential expression to define polarized patterns of immune response genes in DLBCL, and derive a linear classifier of
immune response gene expression. We validate and extend the results in an approach independent of “cell of origin”
classification based on gene expression correlations across all data sets.

Results: T-cell and cytotoxic gene expression with polarization along the IFNγ-STAT1-IRF1 axis provides a defining
feature of the immune response in DLBCL. This response is associated with improved outcome, particularly in the
germinal centre B-cell subsets of DLBCL. Analysis of gene correlations across all data sets, independent of “cell of
origin” class, demonstrates a consistent association with a hierarchy of immune-regulatory gene expression that places
IDO1, LAG3 and FGL2 ahead of PD1-ligands CD274 and PDCD1LG2.

Conclusion: Immune responses in DLBCL converge onto the IFNγ-STAT1-IRF1 axis and link to diverse potential
mediators of adaptive immune resistance identifying future therapeutic targets.

Background
Emergence of clinically detectable malignant disease is
associated with escape from tumour immune surveil-
lance [1]. Two principal mechanisms may operate: on
the one hand the immune systems loses the ability to
detect the neoplastic population through changes in
antigen presentation or editing of the antigen receptor
repertoire; on the other hand initially effective immune
responses may be rendered ineffective through

development of an immune suppressive environment
[2]. In the latter scenario, local expression of immune
checkpoint components can be viewed as subversion of
a physiological mechanism, which acts during chronic
infections to balance effective immunity with immune-
mediated tissue damage [3].
In a range of cancers the density, location and functional

polarization of tumour infiltrating lymphocytes are of
prognostic value [4], providing evidence that the nature of
immune evasion remains of importance after clinical
detection. This is particularly relevant in the context of
novel therapeutic strategies aimed at re-invigorating the
“exhausted” anti-tumour immune response through
immune checkpoint blockade [5, 6]. Gene expression
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analysis of bulk tumour tissue integrates expression pro-
files from multiple cellular sources, often allowing global
assessment of the predominant vector of functional
immune polarization. A paradigm has been proposed in
which cancer-associated immune responses converge on a
common “immunologic constant of rejection” character-
ized by a pattern of cytotoxic and T-cell immune
responses and a dominant IFNγ-STAT1-IRF1 signalling
axis [4, 7]. Linking the polarized pattern of interferon
(IFN)γ-driven immune responses to the expression of
immune checkpoints is the concept of “adaptive immune
resistance” [5, 8]. In this model IFNγ signalling drives local
feedback inhibition through the transcriptional regulation
of ligands for the inhibitory receptor PD1 [5, 8]. The com-
mon association between cytotoxic responses and expres-
sion of IFN signatures and potential mediators of adaptive
immune resistance has been further supported by analysis
of solid tumour gene expression data from The Cancer
Genome Atlas [9]. Importantly, such feedback may be
mediated both at the immediate interface between tumour
cell and cytotoxic lymphocyte, and by the establishment of
a wider immune suppressive milieu in the tumour
microenvironment.
The combination of convergent IFN-polarized im-

mune responses [4, 7], coupled to IFN-driven adaptive
immune resistance [5, 8], provides a powerful model
with which to explain common pathologic associations
in carcinoma and melanoma. The recent success of ther-
apies targeting CTLA4 and PD1 immune checkpoints
[10–12], combined with an extended range of other
therapeutic options [6], means that evidence to support
prioritization of therapeutic combinations in different
tumour settings is required. Lymphoma, which com-
prises immune system malignancies, provides an in-
stance in which these pathways are incompletely studied.
Classical Hodgkin lymphoma is the archetype in which
host response elements dominate to the point of obscur-
ing the neoplastic B-cell clone [13], and in classical
Hodgkin lymphoma PD1 pathway blockade has recently
been described as a promising therapeutic approach
[14]. Diffuse large B-cell lymphoma (DLBCL) is the
commonest form of nodal lymphoma in the western
world and represents an aggressive malignancy that fre-
quently remains incurable. It is well established that this
lymphoma type is associated with a varied extent of host
response at diagnosis, which can include elements of
IFN signalling [15]. Since several large data sets are pub-
licly available [15–25], this malignancy represents an
empirical human model in which to test the association
between immune polarization and adaptive immune
resistance mechanisms.
The “cell of origin” (COO) classification provides the

dominant paradigm for our current understanding of
DLBCL [24, 26]. This classification relates the gene

expression profiles in DLBCL to those of germinal
centre B cells (GCBs) or activated B cells (ABCs), the
latter representing the initial stage of B-cell terminal
differentiation to plasma cells. Although the COO classi-
fication allows the division of DLBCL based on expres-
sion of a restricted set of classifier genes into the two
principal classes [24], a subset of cases show patterns of
classifier gene expression that do not allow confident as-
signment to either GCB or ABC subsets. Such cases are
referred to as “type 3” [24, 26], or “unclassified” [27, 28].
To avoid ambiguity we refer to these cases as COO-
unclassified DLBCL in the following. In a parallel
“consensus cluster” classification developed by Monti et
al. [15], it was shown that DLBCL could be divided into
three categories characterized by preferential expression
of genes linked to proliferation and B-cell receptor signal-
ling, metabolic oxidative phosphorylation, or host re-
sponse. The latter included multiple elements attributable
to components of the immune system and supporting
stromal cell types. It was noted that a greater proportion
of COO-unclassified DLBCL belonged to the host/
immune response cluster, which had increased numbers
of intra-tumoral T cells and macrophages and a relative
decrease in neoplastic B cells [15].
We reasoned that the potential association of COO-

unclassified DLBCL with intense host responses pro-
vided a starting point for a meta-analysis of immune
response elements in DLBCL. In originating from a pre-
vailing paradigm this provided a wider biological and
clinical context. Furthermore, by asking whether evi-
dence supporting a common polarized immune response
could be discovered from within the construct of the
COO paradigm, we sought to avoid bias that might have
arisen by focusing ab initio on components of the polar-
ized immune response or immune checkpoints. With this
approach we identify a distinct signature characterised by
a pattern of cytotoxic T-cell and IFNγ-polarized immune
response genes as a dominant pattern across ten DLBCL
data sets encompassing 2030 cases. Using components of
this polarized pattern we then explore the immune con-
text of DLBCL in a fashion independent of COO class.
We demonstrate the strong association with an IFNγ-
STAT1-IRF1 axis and an expression hierarchy of immune
checkpoints/modulators, consistent with adaptive im-
mune resistance as a common feature operating in
DLBCL.

Methods
Data sets
Ten DLBCL data sets were downloaded from the Gene
Expression Omnibus (GEO) [29] [GEO:GSE4475, GSE
10846, GSE12195, GSE19246, GSE22470, GSE22895, GS
E31312, GSE32918, GSE34171 and elsewhere [15–25].
GSE10846 was split according to treatment groups
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(CHOP [cyclophosphamide, doxorubicin hydrochloride
(hydroxydaunomycin), vincristine sulfate (Oncovin),
prednisone]/R-CHOP [rituximab-CHOP]), which were
treated independently for analysis, thus giving a total of
11 data sets.

Normalisation and re-annotation of data
For each data set the probes were re-annotated with the
latest version of HUGO Gene Nomenclature Committee
(HGNC)-approved symbols [30]. The complete HGNC
list was downloaded (on 1 October 2014). Each probe
was re-annotated to the latest approved symbol if an
unambiguous mapping (i.e. single symbol mapping to
approved symbol) could be determined, else the original
gene name was maintained.
Each data set was quantile normalised using the R

Limma package [31]. The probes for each gene were
merged by taking the median value for probe sets with a
Pearson correlation ≥0.2 and the maximum value for
those with a correlation <0.2 [15].

COO classifications
We used the COO classifications assigned by the
DLBCL automatic classifier (DAC) classifier in our pre-
vious work [32].

Meta-profile generation
See Additional file 1 for an outline of meta-profile
generation using COO classification.
For each of the 11 data sets a linear model was fitted

to the gene expression data using the R Limma package.
Differentially expressed genes between the three classes
were gauged using the Limma empirical Bayes statistic
module, adjusting for multiple testing using Benjamini
and Hochberg correction.
The absolute fold changes for all genes per data set

were normalised between 0 and 1. The results were
merged across data sets retaining only genes with an
adjusted p value (false discovery rate, FDR < 0.05. A
meta-profile was created for each contrast (e.g.
upABC_GCB) by retaining all genes differentially
expressed in six or more data sets. These were then used
to draw Wordles [33] with each gene’s score set to
(NumDataSets3) × NormalisedFoldChange.

Signature enrichment analysis
A data set of 14,104 gene signatures was created by mer-
ging signatures downloaded from SignatureDB [34],
MSigDB v.4 (MSigDB C1–C7) [35], Gene Signature
Database v.4 (GeneSigDB) [36] and the work of Monti
et al. [15] and others [37–40]. Enrichment of meta-
profiles against signatures was assessed using a hyper-
geometric test, where the draw is the meta-profile genes,

the successes are the signature genes and the population
is the genes present on the platform.

Gene ontology analysis
Meta-profile gene lists were assessed for gene ontology
(GO) enrichment using the Cytoscape BiNGO tool [41].
GO and annotation files were downloaded from [42] (13
June 2014). The background reference was set to a non-
redundant list of the genes present in the 11 data sets.
The FDR rate (Benjamini and Hochberg) was set to ≤0.1.

Signature enrichment visualisation
See Additional file 2 for an outline of the process for
integrating and visualizing analysis of gene signature and
ontology enrichments.
The results from gene signature and gene ontology

enrichment were used to create heatmap visualisations.
For each meta-profile the top 100 most enriched signa-
tures and 100 most enriched GO terms were used to
construct a matrix of signatures against genes. This is a
binary matrix with 1 s depicting an assigned signature/
GO annotation. Using Python a row-wise (gene correl-
ation) and column-wise (signature correlation) phi coef-
ficient was calculated. These were then hierarchical
clustered using GENE-E [43] with complete linkage.

Focus gene analysis
See Additional file 3 for an outline of the focus gene
approach.
Per data set the genes were ordered by their variance

across the patient samples, and the top 80 % were used
to calculate Spearman’s rank correlations per row using
the Python scipy.stats package. The resultant p value
and correlation matrices were merged across the 11 data
sets by taking the median values (across the sets in
which the gene was contained), giving a final matrix of
length 20,121. For a given focus gene the median rho
and p values were reported along with a breakdown of
the correlations and relative expression levels across the
data sets (Additional file 4). For select focus genes a cor-
related gene set was created by taking all genes with a
p > 0.45 present in six or more data sets. These corre-
lated gene sets were then used for signature enrichment
analysis and visualisation.

Survival analysis
The Survival library for R was used to analyse right-
censored survival data. Overall survival was estimated
using the Kaplan-Meier method, modelled with Cox
Proportional Hazards technique. Survival analysis was
restricted to data sets of cases treated with the currently
standard immunochemotherapy regimen R-CHOP.
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Results
Shared meta-profiles for COO-unclassified and
COO-classified DLBCL
Given the importance of the COO paradigm to both the
biological and clinical assessment of DLBCL, we an-
chored our initial analysis on this classification. We pre-
viously developed a COO classifier implementation that
allows the robust classification of multiple DLBCL data
sets [32], which is currently in clinical usage in the
context of a phase 3 clinical trial [44]. Applying this to
the 11 largest publicly available DLBCL data sets
(GSE10846 was split according to treatment into CHOP
and R-CHOP components), encompassing 2030 cases
[15–25], provided a resource for gene expression meta-
analysis. To determine genes consistently linked to COO
class we used both the consistency of differential expres-
sion between data sets as well as absolute level of differ-
ential expression to identify and rank genes associated
with each class. We restricted the gene lists by applying
a threshold of differential expression in 6 out of 11 data
sets; we refer to these as meta-profiles. To explore the
relationship of COO-unclassified DLBCL to each of the
principal COO classes, we employed sequential pairwise
comparisons (Additional file 1). From the initial
comparison, we identified 127 genes associated with
COO-unclassified DLBCL relative to both ABC- and
GCB-DLBCL, while 209 genes were associated with both

COO classes relative to COO-unclassified DLBCL
(Additional file 5; Fig. 1). The extent of overlap was
highly significant (p = 1.32E-157 and p = 2.09E-200 for
genes associated with COO-unclassified DLBCL or
COO class, respectively). We subsequently refer to these
sets of overlapping genes as COO-unclassified and
COO-classified meta-profiles, respectively.

COO-unclassified DLBCL is enriched for features of a
polarized immune response
To assess underlying biology in the COO-classified and
COO-unclassified meta-profiles we developed an ap-
proach for integrated analysis of GO and gene signature
enrichment (Additional file 2) which applies hierarchical
clustering to reciprocally assess the relationships of
enriched ontology and signature terms and associated
genes contributing to enrichments (Additional file 6).
The results are displayed as heatmaps of the hierarchic-
ally clustered correlations.
In the COO-classified meta-profile a striking represen-

tation of genes linked to cell proliferation resulted in
multiple distinct clusters of enriched terms reflecting a
wide range of processes associated with cell proliferation
(Fig. 2a; Additional file 7). In addition to this, distinct
enrichment of signatures of the B-cell lineage was evi-
dent. From the gene perspective this was reflected in
one main branch associated with cell cycle and cell

Fig. 1 Consistent gene expression differences separate COO-unclassified DLBCL from either principal COO class. The overlap of genes consistently
associated with either COO-classified DLBCL (left Venn diagram and Wordle) or COO-unclassified DLBC (right Venn diagram and Wordle) are shown.
Left: the Venn diagram shows genes up-regulated in ABC (yellow) or GCB (blue) relative to COO-unclassified. Right: the Venn diagram shows genes
up-regulated in COO-unclassified relative to ABC-DLBCL (brown) or GCB-DLBCL (turquoise). For the Wordles, word size is given by differential expression
(between contrasts) to the power of median-fold change
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proliferation, and the second including two principal
subclusters associated on the one hand with RNA bind-
ing and processing, and on the other with core B-cell-
associated genes (Fig. 2b; Additional file 8).
In contrast the COO-unclassified meta-profile was

linked to terms related to T-cell populations, T-cell re-
ceptor signalling and T-cell activation. While the second
principal branch of ontology/signature terms was linked
to additional more diverse immune response elements
(Fig. 3a; Additional file 9). Hierarchical clustering from
the gene perspective (Fig. 3b; Additional file 10) gener-
ated a principal branch related to T cells composed of a
cluster of genes representing core elements of the T-cell

state (CD2, CD3D, CD3E, CD3G, CD28 and TRBC1) and
another cluster of genes with T-cell associations, includ-
ing BCL11B, GZMA, GZMK, MAF and STAT4. The sec-
ond principal branch of the hierarchical tree included
genes derived from monocytes and other immune/host
response signatures. This also included a subcluster
comprising IFNG, and interferon responsive genes GBP1
and IFITM1, as well as the chemokine receptors CCR5,
CXCR3 and CXCR6, which are linked to Th1 polarized
T-cell populations [45, 46]. We therefore conclude that
COO-unclassified DLBCL is generally distinguished
from COO-classified DLBCL by a predominant T-cell
immune response with skewing toward IFNG gene

A B

Fig. 2 Integrated gene signature and ontology enrichment analysis demonstrates association of the COO-classified meta-profile with cell proliferation
and B-cell signatures. a The top gene signature and ontology terms enriched in the COO-classified meta-profile, clustered according to
the correlation of signatures given their gene membership. b The corresponding clustering of genes contributing to signature and ontology term
enrichments for the COO-classified meta-profile, clustered according to correlation of genes given their signature membership. To the right general
categories corresponding to major correlation clusters are illustrated. Corresponding high resolution versions are available in Additional files 7 and 8

A B

Fig. 3 Integrated gene signature and ontology enrichment analysis demonstrates association of the COO-unclassified meta-profile with polarized
immune response. a The top gene signature and ontology terms enriched in the COO-unclassified meta-profile, clustered according to
the correlation of signatures given their gene membership. b The corresponding clustering of genes contributing to signature and ontology term
enrichments for the COO-unclassified meta-profile, clustered according to correlation of genes given their signature membership. To the right general
terms corresponding to major correlation clusters are illustrated (NOS not otherwise specified). Corresponding high resolution versions are available in
Additional files 9 and 10
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expression. Furthermore the paucity of both prolifera-
tion and B-cell gene expression is indicative of a rela-
tively low representation of neoplastic B cells.

A cytotoxic and interferon polarized immune response as
an independent molecular feature of DLBCL
We next addressed to what extent the identified polar-
ized pattern of immune response was selective for
COO-unclassified DLBCL or whether equivalently in-
tense expression of polarized immune response genes
might be detectable amongst some DLBCL cases that
could be assigned to a principal COO class. As noted
above, the COO-unclassified meta-profile separated on
hierarchical clustering from the gene perspective into
two branches, one of which was more strongly linked to
core T-cell and cytotoxic genes (Fig. 4). To examine the
relative ranking of genes belonging to these two
hierarchical clustering branches within the COO-
unclassified meta-profile we superimposed the cluster
membership onto scatter plots of differential expression
ranking. We first ranked and then plotted genes

belonging to the meta-profile by median fold differential
expression in the comparison of COO-unclassified with
ABC- or GCB-DLBCL. This demonstrated a significant
overall correlation in the differential expression of
COO-unclassified meta-profile genes relative to either
principal COO class. Furthermore, genes belonging to the
“T-cell cluster” (cluster 1) were significantly skewed to-
ward most consistent association with COO-unclassified
DLBCL (Additional file 11). To address whether the
consistency of differential detection between data sets
would alter this conclusion we ranked genes by a measure
derived from both the number of data sets (consistency of
differential expression) in which a gene was differentially
expressed and the normalised median fold differential
expression (Additional file 12). This again showed a
significant overall correlation and a skewing of the T-cell
cluster toward most consistent association with COO-
unclassified DLBCL (p = 6.57E-06, hypergeometric test;
Fig. 4). However, using either approach IFNG was identi-
fied as amongst the cluster 2 genes most consistently
linked to COO-unclassified DLBCL.

Fig. 4 Genes most consistently associated with COO-unclassified DLBCL are related to a polarized immune response. The two principal branches
of the gene-centred hierarchical clustering tree of the COO-unclassified meta-profile are illustrated on the left. Colour-coding identifies: red cluster
1, corresponding to the T-cell cluster; black cluster 2, IFN and monocyte/immune NOS (not otherwise specified). On the right the relative rank of
differentially expressed genes contributing to the COO-unclassified meta-profile is plotted using a differential expression ranking, derived from the
number of data sets with differential expression to the power of normalized median fold change; the x-axis indicates differential expression rank
in the comparison COO-unclassified versus ABC-DLBCL; the y-axis indicates differential expression rank in the comparison COO-unclassified versus
GCB-DLBCL. Cluster membership is superimposed on the scatter plot of differential expression rank according to the colour coding shown (red
cluster 1, black cluster 2). The 16 genes most consistently separating COO-unclassified DLBCL from either ABC- or GCB-DLBCL are illustrated below
with cluster membership and mean differential expression rank shown. See corresponding Additional file 11
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To examine the contribution of polarized immune re-
sponse genes associated with COO-unclassified DLBCL
across all data sets on a case-by-case basis we developed
a linear additive classifier. For this we employed the 16
genes most strongly linked to COO-unclassified DLBCL
derived from analysis using both the consistency/data
set number and median fold differential expression.
Given the contribution of core T-cell elements, cyto-
toxic genes and IFNG, we consider this to represent
an integrated assessment of a polarized immune re-
sponse. We ranked all cases in each data set by this
linear score and plotted the incidence of cases classi-
fied as ABC, GCB and unclassified on this ranking.
Overall, individual COO-unclassified DLBCL cases
showed a stronger association with the polarized
immune response score relative to either ABC- or
GCB-DLBCL (Fig. 5a; Additional file 13). This was
particularly evident in the larger data sets GSE31312,
GSE22470 and GSE10846. However, ABC- and GCB-
DLBCL cases with high levels of expression of the
polarized immune response score were present in all
data sets.

To assess whether the 16-gene score also reflected the
expression of other genes associated with the immune
response in COO-unclassified DLBCL we added further
components of the meta-profile. Expression of these
genes followed the overall pattern of expression of the
16-gene score across all DLBCL data sets (Fig. 5b;
Additional file 13). Thus, the 16-gene score provides a
tool with which to identify the overall pattern of this
polarized immune response in DLBCL.
Since some COO-unclassified DLBCL cases in all data

sets showed low polarized immune response scores, we
examined the pattern of T-cell gene expression further
by hierarchical clustering within each COO class. This
demonstrated, particularly in the larger data sets such as
GSE31312 and GSE22470, that COO-unclassified
DLBCL could be segregated into principal groups with a
subset of cases characterized both by weak expression of
COO-classifier genes and weak expression of polarized
immune response genes (Fig. 6; Additional file 14).
Within the ABC- and GCB-DLBCL subsets there was a
common concordance between expression of core T-cell
genes and components of the polarized immune

A

B

Fig. 5 The polarized immune response is a dominant feature across DLBCL, independent of COO class. a The incidences of individual cases
across all data sets (note GSE10846 is subdivided into CHOP and R-CHOP treated components) ranked according to polarized immune response
score. The top and bottom 25 cases for each data set are illustrated with colour coding for COO class shown in the top bar (yellow ABC, blue
GCB, green unclassified), class confidence assigned during classification shown in the middle bar (blue low confidence to red high confidence),
and polarized immune response score shown in the bottom bar (blue low polarized immune response score to red high polarized
immune response score). b Complete results for data sets GSE10846 R-CHOP and GSE31312, showing all cases ranked by polarized immune response
score. Each heatmap displays class assignment, classification confidence and polarized immune response score summary as in (a) followed by
COO-classifier gene expression (yellow and blue bars), the 16 genes of the polarized immune response score (green bar), and the extended set of
COO-unclassified meta-profile genes (black bar). A corresponding high-resolution figure comprising equivalent representation for all data sets is
provided in Additional file 13
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response. Only a few cases, particularly in the GCB-
DLBCL subset, could be identified in which core T-cell
genes were co-expressed in the absence of other
elements of the polarized response. These cases were,
however, too few to allow meaningful analysis (data not
shown). Thus, across all DLBCL data sets the expression
of core T-cell genes is paralleled by the expression of
genes linked to functional polarization irrespective of
COO class.

Polarised immune response and COO-unclassified DLBCL
do not overlap significantly with signatures of primary
mediastinal B-cell lymphoma
COO-unclassified DLBCL cases lacking both polarized
immune response and COO-classifier gene expression
are distinct from the subset of cases in which the extent
of the polarized immune response obscures the
characterization of the neoplastic B-cell population. At
least two principal explanations could be considered for
this subgroup: on the one hand these might include
cases in which gene expression was technically challen-
ging with poor representation of tumour cell RNA; alter-
natively, they might include a subset of large B-cell
lymphoma which fails to express COO-classifier genes at
significant levels. Primary mediastinal B-cell lymphoma
(PMBL) is a biologically distinct subgroup of large B-cell
lymphoma, more common in women, with a mediastinal
localization, distinct molecular genetics and possible
derivation from a thymic B-cell population [47]. This
lymphoma class can be associated with a pattern of gene
expression distinct from either GCB- or ABC-DLBCL.
While many PMBL cases would be excluded on the basis
of diagnosis from conventional DLBCL gene expression

data sets, it was possible that some PMBL cases might
contribute to the COO-unclassified DLBCL cases, in
particular those lacking a polarized immune response
signature. To address this we used the 23-gene PMBL
signature described by Rosenwald et al. [40], and first
tested for enrichment within the COO-classified and
COO-unclassified meta-profiles, but this showed no
evidence of significant enrichment, nor was a signature
separating PMBL from Hodgkin lymphoma enriched
(Additional file 6). We next used the 23-gene PMBL
signature in place of the extended immune response
gene list to reanalyse the DLBCL data sets by hierarch-
ical clustering (Additional file 15). We found no evi-
dence of distinct clusters of cases identifiable with the
23-gene PMBL signature amongst COO-unclassified
DLBCL, although a few elements of the 23-gene signa-
ture, most notably PDCD1LG2, CD274 and BATF3, do
correlate with the polarized immune response. In con-
trast, in several data sets small clusters of cases were
identifiable with coordinated high expression of the 23
genes of the PMBL signature, but such cases were classifi-
able as GCB-DLBCL, suggesting a greater overlap of
PMBL signature gene expression amongst cases otherwise
classifiable as GCB-DLBCL rather than ABC-DLCBL or
COO-unclassified DLBCL. Thus, we found no gene
expression-based evidence for a significant contribution of
PMBL-like gene expression patterns amongst COO-
unclassified DLBCL in the data sets analysed. Inclusion of
PMBL-like cases does not have a major impact on the
detection of the polarized immune response signature,
nor provide an explanation for the subset of COO-
unclassified DLBCL that lacks both COO-classifier and
polarized immune response gene expression.

Fig. 6 The polarized immune response subdivides COO-unclassified DLBCL and identifies subsets of cases within ABC- and GCB-DLBCL classes.
Heatmaps illustrate data for GSE10846 R-CHOP and GSE31312 hierarchically clustered according to all genes shown, and constrained by COO class
assignment. Assigned COO class is shown above each heat map by the blue (GCB), green (COO-unclassified) and yellow (ABC) bars. To the right is
shown the corresponding general category of genes: yellow ABC-classifier genes, blue GCB-classifier genes, green polarized immune response
score genes, and black extended COO-unclassified meta-profile. A corresponding high-resolution figure comprising equivalent representation for
all data sets is provided in Additional file 14
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A polarized immune response is associated with
improved outcome in DLBCL
Across several cancer types the extent of tumour infil-
trating lymphocytes, and their polarization toward cyto-
toxic T/natural killer (NK) cell gene expression linked to
an IFNγ-STAT1-IRF1 signalling axis has been identified
as a feature associated with good prognosis [4]. We
therefore asked whether the expression of the polarized
immune response signature, alone or taken in conjunc-
tion with COO class, was associated with differences in
overall survival. Currently DLBCL is treated with an
immunochemotherapy regimen, R-CHOP, which com-
bines the anti-CD20 therapeutic monoclonal antibody
rituximab with cyclophosphamide, hydroxydaunorubicin,
vincristine (Oncovin), and prednisolone. Based on the
success of the R-CHOP regimen, current treatment and
future therapeutic trials in DLBCL will be based on
immunochemotherapeutic approaches encompassing
rituximab or related therapeutic antibodies. Therefore,
only those data sets (GSE10846, GSE31312 and
GSE32918) encompassing R-CHOP-treated cases associ-
ated with appropriate survival data were considered.
This analysis demonstrated a consistent trend toward a
reduced hazard ratio of death with increasing polarized
immune response score across all three R-CHOP-treated
DLBCL data sets. This reached statistical significance
when considered independently of COO class in data
sets GSE32918 and GSE31312, the latter representing
the largest data set of R-CHOP-treated DLBCL [23].
However, in these two data sets the polarized immune
response score was also significantly associated with
lower age. When considered according to COO classifi-
cation a consistent trend toward better outcome with
high polarized immune response score was observed
across all three categories. This trend was most pro-
nounced for GCB-DLBCL, and reached statistical signifi-
cance for improved outcome associated with high
polarized immune response score in the largest data set
GSE31312 (Additional file 16; Fig. 7). We conclude, there-
fore, that the presence of a polarized and IFNγ-associated
immune response shows an association with good out-
come which is modified by consideration of COO class,
such that in the context of current R-CHOP therapy a
polarized immune response is most consistently linked to
improved outcome in patients with GCB-DLBCL.

Polarization along an IFNγ-STAT1-IRF1 axis is a defining
feature of the DLBCL immune response
While the above analysis pointed to a common conver-
gence onto a cytotoxic and IFNγ-polarized immune
response in DLBCL, not all components of the IFNγ-
STAT1-IRF1 axis were sufficiently differentially expressed
between COO-classified and COO-unclassified DLBCL to
be identified by this approach. In order to explore the

DLBCL-associated immune response in a fashion which
was not constrained by the COO paradigm we re-
analyzed the DLBCL data sets, assessing the consistency
and degree of correlated gene expression across all data
sets relative to a selected “focus gene” (Fig. 8a; Additional
files 3 and 4). We followed this by applying the integrated
signature and GO enrichment analysis (Additional file 17).
As focus genes we selected two components of the 16-

gene polarized immune response signature, TRAT1 and
FGL2, to reflect origin from the two branches of the
COO-unclassified meta-profile (Fig. 8b; Additional files
18 and 19). TRAT1 was selected as the most highly cor-
related gene from cluster 1 (Fig. 4), while FGL2 was
selected as the second most highly correlated gene in
cluster 2, and of more established immunologic interest
than TC2N and less overt connection to immune
response polarization than IFNG, the other two genes
derived from cluster 2 that contribute to the 16-gene
polarized immune response classifier.
Genes correlating with TRAT1 could be assigned to

clusters of signatures and GO terms related to T-cell
state, and T-cell signal transduction, cell motility and
interferon response. For FGL2 as the focus gene a simi-
lar pattern emerged, including an expanded cluster of
signature enrichments related to interferon responses,
including some derived from models of viral infection,
and an additional association with monocyte/macro-
phage-derived signatures.
To examine the strength of correlation with IFN-

responsive genes we ranked genes by median correlation,
plotted rank against median gene correlation for each
focus gene context and assessed the distribution of se-
lected IFN signature genes (derived from the previous
analysis) on the resulting correlation curves. We applied
this approach using TRAT1 and FGL2 as focus genes,
but observed similar results with all 16 genes of the
polarised immune response classifier (Fig. 9; Additional
files 20). In either context IFN pathway genes were con-
sistently present within the leading edge of most corre-
lated genes, including IFNG, STAT1, IRF1, GBP1, GBP5
and IDO1. These genes were also consistently present
within the leading edge when considering a more gen-
eric T/NK cell-associated gene, CD2, as focus gene.
Components of the IFNγ-STAT1-IRF1 axis therefore
emerge as a consistent and dominant feature of the
DLBCL immune environment linked to expression of a
wider complement of IFN-responsive genes.

IFNγ-STAT1-IRF1 axis and adaptive immune regulatory
pathways in DLBCL
In the model of adaptive immune resistance IFNγ-driven
expression of PD1 ligands CD274 and PDCD1LG2 on
tumour cells and the microenvironment limits local T-cell
responses [5, 8]. We reasoned that the hierarchy of gene
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Fig. 7 A high polarized immune response score is associated with improved outcome in R-CHOP-treated GCB-DLBCL. The figure illustrates Kaplan–
Meier plots of overall survival derived from R-CHOP-treated DLBCL cases from data sets GSE10846, GSE31312 and GSE32918. Illustrated is the overall
survival for the top and bottom 25 % of cases divided by polarized immune response score. The left graphs illustrate results independent of COO class
and the right graphs results for cases assigned to the GCB-DLBCL class. CI confidence interval, HR hazards ratio
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expression correlations would allow a ranking of immune
checkpoint/modulatory gene expression linked to the
IFNγ-STAT1-IRF1 polarized response in DLBCL. In this
pathway STAT1 and IRF1 encode the transcriptional regu-
lators; we therefore selected these along with CD2 as a
generic representative of the T/NK cell response for ana-
lysis (Fig. 10; Additional file 4). When considering
immune modulatory/checkpoint genes a consistent cluster
of three genes, LAG3, IDO1 and FGL2, emerged as most
highly ranked and amongst the leading edge in all three
focus gene contexts. In contrast, CD274 and PDCD1LG2
showed significantly weaker correlations with each focus
gene, but nonetheless remained well correlated in com-
parison with all genes tested (rank <1000 out of 20,121
tested). To further confirm this pattern we extended the
analysis to all 16 genes of the polarized immune response
classifier, and observed similar patterns of gene correlation
ranking (Additional file 21). Since the relative contribution
of immune modulatory/checkpoint gene expression in
tumour cells themselves relative to the wider microenvir-
onment cannot be determined from these analyses, we
conclude that, in addition to CD274 and PDCD1LG2, a
wider complement of immune modulators provides a
potentially high degree of redundancy in adaptive immune
resistance in DLBCL. Amongst these components IDO1,
FGL2 and LAG3 are particularly strongly correlated with
IFNγ polarized immune responses.

Discussion
The common convergence of cancer immune responses
onto patterns of cytotoxic and IFNγ-dominated path-
ways has been summarised in the concept of an “im-
mune constant of rejection” [4, 7]. In parallel the model
of adaptive immune resistance argues for the control of
such immune responses via local feedback driven
through IFN-mediated upregulation of immune check-
points [5, 8]. Our analysis here provides extensive empir-
ical evidence across currently available large DLBCL
data sets that this combination of IFNγ polarisation and
induction of adaptive immune resistance mechanisms is
a feature of the immune response to DLBCL. Unbiased
analysis of gene expression correlations moreover sug-
gests a hierarchy of IFN-associated immune modulatory
gene expression with LAG3, IDO1 and FGL2 as key

elements in this context. Thus, adaptive immune resist-
ance is likely to provide an important component of
immune evasion in DLBCL.
Other mechanisms of immune evasion have been pre-

viously identified as playing an important role in the
pathogenesis of DLBCL, including mutation and deletion
of B2M and CD58, and amplification of genomic regions
encompassing genes encoding PD1 ligands [48, 49]. Fur-
thermore previous studies have demonstrated the pres-
ence of PD1 expression on infiltrating T-cell populations
and PD-L1(CD274) on tumour cells and in the micro-
environment of DLBCL and related neoplasms [50, 51].
In the context of gene expression profiling, morpho-
logically defined T-cell and histiocyte-rich large B-cell
lymphoma, which represents a relatively rare subcat-
egory, has been characterized by evidence of an IFN-
associated immune response, linked on the one hand
with over-expression of PD1 (PDCD1) on infiltrating T
cells when compared with classical Hodgkin lymphoma
[52], or the expression of IDO1 when compared with
nodular lymphocyte predominant Hodgkin lymphoma,
another relatively rare lymphoma subtype [53]. Indeed,
expression of IDO1 has been defined as a feature associ-
ated with poor outcome in generic DLBCL in one
patient series [54]. Thus, the involvement of several
pathways of immune modulation in large B-cell lymph-
omas is supported by prior studies.
Using the 16-gene polarized immune response score

we have ranked DLBCL cases across multiple data sets,
and demonstrate that a substantial fraction of cases
regardless of COO class are linked to a polarized im-
mune response. In the context of the COO classification,
the dominance of this immune response at the expense
of proliferating B cells provides the most common
explanation for DLBCL cases that are “unclassifiable” as
originally suggested by Monti et al. [15]. Equally import-
ant is the identification of a distinct group of DLBCL
characterized by an absence of host response elements,
which is consistent with “immunological ignorance”, a
feature which in other cancers is associated with poor
response to immune checkpoint blockade [12]. These
cases are also consistent with a model of host tissue
“effacement” proposed by Scott and Gascoyne [49] as
distinguishing subsets of aggressive lymphomas. Immune

(See figure on previous page.)
Fig. 8 A focus gene analysis independent of COO class verifies the dominant polarized immune response in DLBCL. a An outline of the focus
gene analysis (high resolution version in Additional file 3). Upper panel: the approach within each data set, with initial selection of the 80 % most
variable genes, and subsequent generation of linked matrices of gene correlation values and associated p values. Middle panel: the merging of all
data sets (11 data sets; data set GSE10846 subdivided by treatment type) is shown to give matrices of median correlations and p values. Lower
panel: the selection of an individual focus gene for downstream analysis. b Results of integrated gene signature and ontology analysis for two
focus genes (left panel TRAT1) and (right panel FGL2) displaying the clustering of enriched signature and GO terms. General terms corresponding
to major correlation clusters are illustrated to the right of each heatmap. Corresponding high resolution versions are available in Additional files
18 and 19, which also include the corresponding heatmaps clustered from the gene perspective
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evasion in DLBCLs can be associated with loss of MHC
class I expression consequent on mutation and/or dele-
tion of B2M, which may be further accompanied by
inactivation of CD58 [48], and a prediction might be that
such cases would be enriched in the subset characterized
by apparent immunological ignorance. However, analo-
gous lesions affecting B2M were recently identified as
recurrent events positively associated with cytotoxic
gene signatures in solid tumours [9]. This suggests a
model in which adaptive immune resistance mechanisms
may be followed by somatic genetic alterations that
further enhance tumour immune escape. Whether a
similar positive association between cytotoxic response
and B2M or CD58 mutation status exists in DLBCL is,
to our knowledge, not established.
Across several cancer types the intensity of tumour

infiltrating lymphocytes and their functional polarization
has proved to be of prognostic significance in the absence
of specific immune checkpoint blockade [4, 55–57]. Our
analysis indicates that a trend toward an improved out-
come in association with a more intense polarized im-
mune response is generally maintained in the context of
DLBCL treated with the current immunochemotherapy
regimen, R-CHOP. However, this benefit is not equivalent
across all DLBCL when considered in relation to COO
class, and is most pronounced for GCB-DLBCL. Indeed,
in the largest available data set of R-CHOP-treated
DLBCL, GSE31312 [23], a substantial group of patients
with both a GCB-DLBCL classification and a high polar-
ized immune response score appeared curable with
current therapy. As a statistically significant association is
not consistently observed across all three data sets of
DLBCL treated with R-CHOP, and there is a potentially
confounding association with young age, the overall prog-
nostic value of this association remains uncertain in the
context of current therapy. Additional features of the host
response, which did not emerge as principal discriminants
between COO-classified versus COO-unclassified DLBCL,
such as contributions from macrophage/monocyte lineage
cells, may add value to immune response classifiers. These
will need to be considered alongside the polarized im-
mune response signature in future work. Nonetheless, the
analysis presented here demonstrates a graded pattern of
immune response in DLBCL, with one extreme character-
ized by minimal cytotoxic immune response signature and
tendency to poor outcome, and another extreme charac-
terized by intense polarized immune response and a

tendency toward better outcome which is modified by
COO class. In other settings the pattern of pre-existing
immune response prior to immune checkpoint therapy
has proved to be of predictive value [11, 12, 58, 59]. Based
on this evidence, it is the subset of DLBCL cases with pre-
existing polarized immune response which is most likely
to benefit from immune checkpoint/modulatory therapy,
and is readily identifiable in a quantitative fashion from
gene expression data.
Immune checkpoint inhibitors are already under evalu-

ation in the context of large cell lymphomas [60, 61].
Recent clinical trials with PD1 pathway blockade have
shown substantial promise in Hodgkin lymphoma [14], as
in other tumour types [11, 12, 62]. Combining immune
checkpoint inhibitors may hold particular promise, and
both LAG3 and IDO1 are therapeutic targets with novel
agents in current clinical evaluation. Our analyses support
these as high priority candidates for therapeutic evaluation
in DLBCL alongside PD1 blockade. In addition to direct
interventions specifically targeting immune checkpoints,
signalling pathways that mediate survival of neoplastic B
cells, and are the targets of novel therapeutic agents in
lymphoma, overlap with pathways controlling T-cell re-
sponses. Such agents have the potential to de-repress
cytotoxic T-cell populations and promote anti-tumour im-
munity [63]. Thus, companion biomarkers evaluating the
potential association between pre-existing immune re-
sponse at diagnosis and treatment response should argu-
ably also be included in the setting of lymphoma clinical
trials where agents targeting lymphocyte signalling path-
ways are being evaluated.
A notable element of the DLBCL immune response is

the consistent association with FGL2 expression. This
encodes fibrinogen-like 2 prothrombinase, a protein that
has dual roles as a pro-coagulant and immune modula-
tor. FGL2 has been shown to act as an immune respon-
sive coagulant in settings such as foetal loss driven by
Th1 polarized immune responses [64] and fulminant
hepatitis [65]. Subsequently, FGL2 has been implicated
as a repressor of T-cell activation both in the ability of
recombinant FGL2 to block graft rejection [66] and in the
context of Fgl2 knockout mice developing autoimmune
glomerulonephritis [67]. In several experimental models
FGL2 has been associated with suppression of cytotoxic
and Th1-polarized immune responses [67–69]. FGL2
effects in DLBCL could relate to both pro-coagulant and
immune modulatory functions. In DLBCL FGL2

(See figure on previous page.)
Fig. 9 IFN-responsive genes and the IFNγ-STAT1-IRF1 axis are amongst the leading edge of highly correlated DLBCL immune response genes. Correlation
curves were generated from the focus gene analysis by ranking genes according to median correlation, and then plotting the gene correlation rank
(x-axis) against the corresponding median gene correlation (y-axis, median Rho). This illustrates both the relative strength of correlations for each focus
gene and identifies a leading edge of genes with most significant correlations. The position of a set of IFN-associated genes was plotted for each focus
gene context as indicated in the figure. Note only the top 2000 of 20,121 genes tested are illustrated. See corresponding Additional file 20
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expression correlates with multiple elements of the IFNγ-
STAT1-IRF1 axis; supporting direct regulation, FGL2
expression has previously been shown to be responsive to
IFNγ in T cells [70, 71], and was shown to act downstream
of IRF1 in Th1-driven foetal loss [64]. Thus, the relation-
ships in DLBCL suggest that FGL2 may provide an
additional element of negative feedback and adaptive
immune resistance, which is potentially suitable for thera-
peutic targeting [72, 73].
We note that some DLBCL cases with a prominent

immune response may be associated with Epstein-Barr
virus (EBV) infection and oncogenic drive. In the meta-
analysis approach taken here the contribution of EBV
cannot be systematically assessed from available data
since EBV status is incompletely annotated, and not
necessarily assessed using both immunohistochemistry for
EBV LMP1 and RNA-FISH for EBERs. Immune surveil-
lance is known to contribute to the control of EBV-
mediated tumours [74], and the presence of high EBV
loads can contribute to the establishment of an exhausted
cytotoxic response [75]. Indeed, there are significant over-
laps between the gene expression profiles of the immune
response in EBV-associated large cell lymphomas occur-
ring in the post-transplant setting [76] and the polarized
IFNγ-associated gene expression that is evident from our
DLBCL meta-analysis. However, while the frequency of
EBV infection in generically diagnosed DLBCL has been
established at close to 10 % [77], significant expression of
genes linked to the polarized immune response is more
frequent across DLBCL data sets. An overlap of gene
expression profiles between the immune response target-
ing EBV-driven and EBV-independent lymphomas is con-
sistent with the model of convergent patterns of “immune
rejection” across diverse immune contexts [4, 7]. It is
arguable that the principal predictive factor of response to
immune checkpoint inhibition will be the presence of a
pre-existing polarized immune response and the mecha-
nisms controlling its chronic activation/exhaustion rather
than the nature of the initial triggering antigens whether
viral or cancer-associated.

Conclusions
The analysis presented here supports the central import-
ance of convergent patterns of immune response linked
to the IFNγ-STAT1-IRF1 axis, coupled to IFN-driven
feedback pathways in DLBCL. This argues for the gener-
alisable nature of these interconnected mechanisms, and
implicates a hierarchy of immune modulators, known to

promote the establishment of an immunosuppressive
microenvironment [2], in the process of IFNγ-driven
adaptive immune resistance.

Additional files

Additional file 1: Figure S1. Outline of meta-profile generation using
COO classification. Upper panel: the data sets used. Please note one data
set, GSE10846, is divided into two component parts reflecting underlying
differences in treatment (CHOP versus R-CHOP), giving a total of 11 separate
data set components. Illustrated are all cases for each data set, subdivided
by COO classification established using the DAC classifier [32] and ranked by
classification confidence, with classifier genes illustrated on the right (yellow
bars ABC classifier genes and cases, blue bars GCB classifier genes and cases,
green bars COO-unclassified cases). Middle panels: the pairwise comparisons
of differentially expressed genes between three classes, and the
integration of differentially expressed genes across data sets. Bottom
panels: the resulting meta-profiles of differentially expressed genes
for both components of the three possible pairwise comparisons are
shown as Wordles for illustrative purposes (complete details provided
in Additional file 5). (PDF 2024 kb)

Additional file 2: Figure S2. Outline of the process for integrating and
visualizing analysis of gene signature and ontology enrichments. The flow
diagram illustrates the process for integrating gene signature and ontology
enrichments. The initial assessment of overlap between meta-profiles
derived from the comparison of ABC-DLBCL versus COO-unclassified (CU)
DLBCL and GCB-DLBCL versus COO-unclassified (CU) DLBCL is shown at the
top of the figure, followed by the parallel analysis of gene ontology
(BiNGO) and hypergeometric testing of signature enrichments. Next
a matrix is illustrated showing the occurrence of genes versus enriched
signatures (green fill), followed by analysis of correlations (Phi coefficient) by
column (signature/ontology terms) or by row (genes) and hierarchical
clustering. (PDF 1658 kb)

Additional file 3: Figure S11. An outline of the focus gene approach,
and a high resolution image to accompany Fig. 8a. Upper panel: the
approach within each data set with initial selection of the 80 % most
variable genes, and subsequent generation of linked matrices of gene
correlation values and associated p values. Middle panel: merging of all
data sets (11 data sets; data set GSE10846 subdivided by treatment type)
to give gene by gene matrices of median correlations and p values.
Lower panel: the selection of an individual focus gene for downstream
analysis. (PDF 1375 kb)

Additional file 4: Table S5. Lists of correlated genes for selected focus
genes. (XLSX 16708 kb)

Additional file 5: Table S1. Lists of Meta-profile genes differentially
expressed between DLBCL COO classes. (XLSX 2318 kb)

Additional file 6: Table S2. Lists of enriched gene signature and gene
ontology terms for COO-classified and COO-unclassified meta-profiles.
(XLSX 2848 kb)

Additional file 7: Figure S3. High resolution image corresponding to
Fig. 2a. Integrated gene signature and ontology enrichments for COO-
classified meta-profile clusters from signature and ontology term perspectives.
The figure represents the hierarchical clustering of enriched gene signature
and ontology terms related to the COO-classified meta-profile. Correlations
are illustrated in heat maps on a blue (least) to red (most) scale as indicated
at the top of the figure. Along the edges of the heatmap the signature terms
are provided (and correspond to terms listed in Additional file 6). The FDR-
corrected p value for enrichment of the signature is illustrated as a bar on
either side of the heatmap, along with an indication of the type of term

(See figure on previous page.)
Fig. 10 Immune-modulatory and checkpoint gene expression is strongly correlated with elements of the IFNγ-STAT1-IRF1 axis in DLBCL. IRF1 and STAT1
along with CD2 were analysed as focus genes, and resultant correlation curves are illustrated. Genes were plotted according to correlation rank (x-axis)
against median gene correlation (y-axis, median Rho). The position of immune checkpoint/modulatory genes on the resulting curves was plotted for
each focus gene as indicated in the figure. Note only the top 2000 of 20,121 genes tested are illustrated. See corresponding Additional file 21
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(signature versus ontology) and the origin of the terms as indicated in the
figure. (PDF 283 kb)

Additional file 8: Figure S4. High resolution image corresponding to
Fig. 2b. Integrated gene signature and ontology enrichments for COO-
classified meta-profile clustered from the gene perspective. The figure
represents the hierarchical clustering of meta-profile genes contributing
to signature and ontology term enrichments, and clustered according
to the correlation of enriched signature/ontology term membership.
Correlations are illustrated in the heatmap on a blue (least) to red (most)
scale as indicated at the top of the figure. Along the edges of the
heatmap official gene symbols are provided. (PDF 251 kb)

Additional file 9: Figure S5. High resolution image corresponding to
Fig. 3a. Integrated gene signature and ontology enrichments for COO-
unclassified meta-profile clusters from signature and ontology term
perspectives. The figure represents the hierarchical clustering of enriched
gene signature and ontology terms related to the COO-unclassified
meta-profile. Correlations are illustrated in heat maps on a blue (least) to
red (most) scale as indicated at the top of the figure. Along the edges of
the heatmap the signature terms are provided (and correspond to terms
listed in Additional file 6). The FDR-corrected p value for enrichment of
the signature is illustrated as a bar on either side of the heatmap, along
with an indication of the type of term (signature versus ontology) and
the origin of the terms as indicated in the figure. (PDF 518 kb)

Additional file 10: Figure S6. High resolution image corresponding to
Fig. 3b. Integrated gene signature and ontology enrichments for COO-
unclassified meta-profile clustered from the gene perspective. The figure
represents the hierarchical clustering of meta-profile genes contributing
to signature and ontology term enrichments, and clustered according
to the correlation of enriched signature/ontology term membership.
Correlations are illustrated in the heatmap on a blue (least) to red (most)
scale as indicated at the top of the figure. Along the edges of the
heatmap official gene symbols are provided. (PDF 126 kb)

Additional file 11: Figure S7. Relates to Fig. 4. Genes most consistently
associated with COO-unclassified DLBCL are related to a polarized immune
response. As in Fig. 4, the two principal branches of the gene-centred
hierarchical clustering tree of the COO-unclassified meta-profile are
illustrated on the left. Colour-coding above identifies: red cluster 1,
corresponding to the T-cell cluster; black cluster 2, IFN and monocyte/
immune NOS (not otherwise specified). On the right the relative rank of
differentially expressed genes contributing to the COO-unclassified meta-
profile is plotted using the median normalized fold change for gene
ranking; the x-axis indicates differential expression rank in the
comparison COO-unclassified versus ABC-DLBCL; the y-axis indicates
differential expression rank in the comparison COO-unclassified versus
GCB-DLBCL. Cluster membership is superimposed on the scatter plot of
differential expression rank according to the colour coding shown (red
cluster 1, black cluster 2). The 18 genes most consistently separating
COO-unclassified DLBCL from either ABC- or GCB-DLBCL are illustrated
below with cluster membership and mean differential expression rank
shown. (PDF 275 kb)

Additional file 12: Table S3. Ranked list of genes contributing to
shared meta-profiles of COO-classified and COO-unclassified DLBCL.
(XLSX 38 kb)

Additional file 13: Figure S8. Relates to Fig. 5. Ranking by the 16-gene
polarized immune response score demonstrates common occurrence of
a polarized T-cell response across DLBCL from all data sets. Shown are
all DLBCL data sets used with cases ranked by the 16-gene polarized
immune response score. The data set number is shown above each heat
map, followed by three bars: top bar COO class (yellow ABC, blue GCB, green
unclassified); middle bar class confidence assigned during classification (blue
low confidence to red high confidence); bottom bar polarized score
(blue low polarized immune response score to red high polarized
immune response score). These are followed by case-by-case gene
expression values (illustrated as z scores) which are broken down into
components identified by coloured bars on the right of each heatmap.
The contributing genes are shown in the grey expanded box to the right
of the figure with corresponding colour code: yellow bar ABC COO-classifier
genes; blue bar GCB COO-classifier genes; green bar polarized immune

response score; black bar extended COO-unclassified meta-profile and
immune response genes. (PDF 1073 kb)

Additional file 14: Figure S9. Relates to Fig. 6. Clustering within COO
classes demonstrates subdivision of unclassified DLBCL by polarized
immune response score, and occurrence of immune response-rich cases in
each principal COO class. Shown are all DLBCL data sets used, hierarchically
clustered by all genes shown, and constrained by COO class. The data
set number is shown above each heatmap, followed by three bars: top bar
COO class (yellow ABC, blue GCB, green unclassified); middle bar class
confidence assigned during classification (blue low confidence to red
high confidence); bottom bar polarized score (blue low polarized immune
response score to red high polarized immune response score). These are
followed by case-by-case gene expression values (illustrated as z scores),
which are broken down into components identified by coloured bars on
the right of each heatmap. The contributing genes are shown in the grey
expanded box to the right of the figure with corresponding color code:
yellow bar ABC COO-classifier genes; blue bar GCB COO-classifier genes;
green bar polarized immune response score; black bar extended COO-
unclassified meta-profile and immune response genes. (PDF 1168 kb)

Additional file 15: Figure S10. Clustering of COO classes and PMBL
signature genes. Shown are all DLBCL data sets used, hierarchically
clustered by all genes shown, including the 23-gene PMBL signature, and
constrained by COO class. The data set number is shown above each
heatmap, followed by three bars: top bar COO class (yellow ABC, blue
GCB, green unclassified); middle bar class confidence assigned during
classification (blue low confidence to red high confidence); bottom bar
polarized score (blue low polarized immune response score to red high
polarized immune response score). These are followed by case-by-
case gene expression values (illustrated as z scores), which are
broken down into components identified by coloured bars on the
right of each heatmap. The contributing genes are shown in the
grey expanded box to the right of the figure with corresponding
color code: yellow bar ABC COO-classifier genes; blue bar GCB COO-
classifier genes; green bar polarized immune response score; black
bar PMBL 23-gene signature. (PDF 1002 kb)

Additional file 16: Table S4. Details for survival/outcome data related
to the linear score. (XLSX 17 kb)

Additional file 17: Table S6. Signature and ontology enrichments for
the leading edge of most correlated genes for each focus gene context.
(XLSX 2731 kb)

Additional file 18: Figure S12. Relates to Fig. 8b. Integrated gene
signature and ontology enrichments for TRAT1 focus gene analysis. Upper
panel: the hierarchical clustering of enriched gene signature and GO
terms related to genes correlating with TRAT1 in focus gene analysis.
Correlations are illustrated in the heatmap on a blue (least) to red (most)
scale as indicated at the top of the figure. Along the edges of the
heatmap the signature terms are provided (and correspond to terms
listed in Additional file 17). The FDR-corrected p value for enrichment of
the signature is illustrated as a bar on either side of the heatmap, along
with an indication of the type of term (signature versus ontology) and the
origin of the terms as indicated in the figure. Lower panel: the hierarchical
clustering of genes correlating with TRAT1 in focus gene analysis. Genes
shown are clustered according to the correlation of enriched signature/GO
term membership. Correlations are illustrated in the heatmap on a blue
(least) to red (most) scale as indicated at the top of the figure. Along the
edges of the heatmap official gene symbols are provided. (PDF 1104 kb)

Additional file 19: Figure S13. Relates to Fig. 8b. Integrated gene
signature and ontology enrichments for FGL2 focus gene analysis. Upper
panel: the hierarchical clustering of enriched gene signature and GO
terms related to genes correlating with FGL2 in focus gene analysis.
Correlations are illustrated in the heatmap on a blue (least) to red (most)
scale as indicated at the top of the figure. Along the edges of the
heatmap the signature terms are provided (and correspond to terms
listed in Additional file 17). The FDR-corrected p value for enrichment of
the signature is illustrated as a bar on either side of the heatmap, along with
an indication of the type of term (signature versus ontology) and the origin
of the terms as indicated in the figure. Lower panel: the hierarchical clustering
of genes correlating with FGL2 in focus gene analysis. Genes shown are
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clustered according to the correlation of enriched signature/GO term
membership. Correlations are illustrated in the heatmap on a blue (least) to
red (most) scale as indicated at the top of the figure. Along the edges of the
heatmap official gene symbols are provided. (PDF 1772 kb)

Additional file 20: Figure S14. Relates to Fig. 9. IFN-responsive genes
and the IFNγ-STAT1-IRF1 axis are amongst the leading edge of highly
correlated DLBCL immune response genes. Correlation curves were
generated from the focus gene analysis for all 16 genes used in the
polarized immune response signature by ranking genes according to
median correlation, and then plotting the gene correlation rank (x-axis)
against the corresponding median gene correlation (y-axis, median Rho).
This illustrates both the relative strength of correlations for each focus gene
and identifies a leading edge of genes with most significant correlations.
The position of a set of IFN-associated genes was plotted for each focus
gene context as indicated in the figure. Note only the top 2000 of 20,121
genes tested are illustrated. (PDF 145 kb)

Additional file 21: Figure S15. Relates to Fig. 10. Immune-modulatory
and checkpoint gene expression is strongly correlated with elements of the
polarized immune response signature. Correlation curves were generated
from the focus gene analysis for all 16 genes used in the polarized immune
response signature by ranking genes according to median correlation, and
then plotting the gene correlation rank (x-axis) against the corresponding
median gene correlation (y-axis, medianRHO). The position of immune
checkpoint/modulatory genes on the resulting curves was plotted for each
focus gene as indicated in the figure. Note only the top 2000 of 20,121
genes tested are illustrated. (PDF 140 kb)
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