
Sequence analysis

fqtools: an efficient software suite for modern

FASTQ file manipulation

Alastair P. Droop*

MRC Medical Bioinformatics Centre, University of Leeds, Clarendon Way, Leeds, LS2 9NL, UK

Associate Editor: Inanc Birol

*To whom correspondence should be addressed.

Received on September 23, 2015; revised on January 15, 2016; accepted on February 11, 2016

Abstract

Summary: Many Next Generation Sequencing analyses involve the basic manipulation of input se-

quence data before downstream processing (e.g. searching for specific sequences, format conver-

sion or basic file statistics). The rapidly increasing data volumes involved in NGS make any dataset

manipulation a time-consuming and error-prone process. I have developed fqtools; a fast and reli-

able FASTQ file manipulation suite that can process the full set of valid FASTQ files, including those

with multi-line sequences, whilst identifying invalid files. Fqtools is faster than similar tools, and is

designed for use in automatic processing pipelines.

Availability and implementation: fqtools is open source and is available at: https://github.com/alas

tair-droop/fqtools.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: a.p.droop@leeds.ac.uk

1 Introduction

The FASTQ format has become the de facto standard for storage of

next-generation sequencing read data (Cock et al., 2010). Based ori-

ginally upon the FASTA sequence format (Pearson and Lipman,

1988), FASTQ stores nucleotide sequences and associated base qual-

ities (Ewing and Green, 1998) for multiple named reads in a four-

field human-readable ASCII format. Although there is no defined

standard for FASTQ files, Cock et al. (2010) provide a good over-

view of the format, and provide as close to a ‘standard’ as is

available.

Many analysis pipelines involve initial data manipulation (e.g.

reformatting, viewing or overview statistics) before downstream

processing (e.g. quality control, adapter removal and alignment).

Seemingly simple tasks like viewing the first few reads in a file or

checking the distribution of read lengths often require scripting or

loading the data in tools that are quite slow for large datasets. These

file manipulations are much more frequent when data are being re-

used in novel analyses. Frequently, individual researchers will write

scripts (e.g. in Python, Perl or AWK) to perform these tasks. Many

tools are available for FASTQ processing such as the fastx-toolkit,

bio-awk, fastq-tools, fast, seqmagick and seq-tk (see the

Supplementary Materials for the URLs of these tools). None of these

provide a comprehensive set of common manipulations that would

be required for most analyses.

Most FASTQ processing tools fail to process reads with sequence

data split across multiple lines. As read lengths from modern

sequencing technologies are constantly increasing (Schneider and

Dekker, 2012), this is likely to become problematic as human read-

ability is vastly reduced by extremely long lines.

Detecting invalid input is extremely important, as bioinformatics

pipelines are often automated; thus significant computation and

analysis time can be wasted if input errors are not detected early.

For this reason, a trustworthy FASTQ manipulation tool should re-

port invalid files. Similarly, tools should be able to correctly process

the full range of valid inputs.

The fqtools suite was written to address this need for efficient

and reliable viewing, manipulation and summarization of FASTQ

data before it is pre-processed (with e.g. FastQC [http://www.bio

informatics.babraham.ac.uk/projects/fastqc/) or cutadapt (Martin,

2011)]. Both compressed and plain FASTQ can be processed, as can

VC The Author 2016. Published by Oxford University Press. 1883
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 32(12), 2016, 1883–1884

doi: 10.1093/bioinformatics/btw088

Advance Access Publication Date: 18 February 2016

Applications Note

 at U
niversity of L

eeds on June 20, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

https://github.com/alastair-droop/fqtools
https://github.com/alastair-droop/fqtools
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw088/-/DC1
Deleted Text: (Cock <italic>et<?A3B2 show $146#?>al.</italic>, 2010)
Deleted Text: ,
Deleted Text: for example
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw088/-/DC1
Deleted Text: s
Deleted Text: for example
Deleted Text: (
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Deleted Text:)
http://www.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

SAM and BAM-formatted data. Paired-end sequence data is handled

either as file pairs or in interleaved format (Table 1).

2 Implementation

I have developed a fast and memory-efficient state machine for

parsing FASTQ files. The use of a state machine (as opposed to a line-

based approach) obviates the difficulties with line breaks in sequence and

quality data. As read order must be identical for both paired-end files,

manipulations that re-order reads process both pairs simultaneously.

The fqtools suite has been written to allow input and output

from either files or standard streams. Both files and streams can con-

tain either plain or gzip-compressed data. By using streams, the

fqtools suite can be easily incorporated into computational

pipelines.

The commands contained in the fqtools suite are listed in

Table 2, along with a brief description of their purpose.

3 Performance

I tested several common sequence manipulation tools against four

criteria:

i. The ability to process the full range of valid FASTQ files;

ii. The ability to detect the full range of FASTQ errors;

iii. The ability to read and write compressed data; and

iv. The processing speed.

To evaluate the ability of the fqtools suite to correctly process

valid files and to reject invalid ones, I used the test set provided by

Cock et al. (2010). The performance of the fqtools suite was tested

against several similar tools using a sample file containing 100 000

reads generated using ART (Huang et al., 2012). Table 2 shows

these results. For all tools, the closest option to parsing the file with-

out further processing was used. The lowest time score over 50 re-

peats was taken. Speed results for printing the files on the bash

terminal are supplied for a ‘maximum speed’ reference, although

these commands make no attempt to parse the FASTQ data within

the file. Full data are available in the supplementary information.

Of the tools tested, only three (fqtools, fast and seqmagick) cor-

rectly processed the full test set. Of these three, fqtools is by far the

fastest when processing both uncompressed and compressed files.

Although several of these tools are designed to be extendable,

data processing speed for basic FASTQ manipulation is becoming

increasingly important. For these tasks, the flexibility of interpreted

tools (such as seqmagick and fast) is unnecessary.

4 Summary

Here, I describe fastqc, a suite of FASTQ manipulations tools that

efficiently handles the full range of valid FASTQ, whilst detecting in-

valid files. The suite can process both compressed and uncompressed

files. fqtools is freely available on Github at https://github.com/alas

tair-droop/fqtools.

Acknowledgements

I would like to thank the Epidemiology and Biostatistics group in the Leeds

Institute of Cancer and Pathology for their invaluable assistance when de-

veloping this software.

Funding

This work has been supported by the Leeds MRC Medical Bioinformatics

Centre [MR/LO1629X] and the Cancer Research UK Leeds Centre [infra-

structure award C37059/A18080].

Conflict of Interest: none declared.

References

Cock,P.J.A. et al. (2010) The Sanger FASTQ file format for sequences with

quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res.,

38, 1767–1771.

Ewing,B. and Green,P. (1998) Base-calling of automated sequencer traces

using phred. II. Error probabilities. Genome Res., 8, 186–194.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet.J., 17, 10–12.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence

comparison. Proc. Natl. Acad. Sci. USA, 85, 2444–2448.

Schneider,G.F. and Dekker,C. (2012) DNA sequencing with nanopores. Nat.

Biotechnol., 30, 326–328.

Table 1. Commands present in the fqtools suite

Description

view View FASTQ files

head View the first reads in FASTQ files

count Count FASTQ file reads

header View FASTQ file header data

sequence View FASTQ file sequence data

quality View FASTQ file quality data

header2 View FASTQ file secondary header data

fasta Convert FASTQ files to FASTA format

basetab Tabulate FASTQ base frequencies

qualtab Tabulate FASTQ quality character frequencies

lengthtab Tabulate FASTQ read lengths

type Attempt to guess the FASTQ quality encoding type

validate Validate FASTQ files

find Find FASTQ reads containing specific sequences

trim Trim reads in a FASTQ file

qualmap Translate quality values using a mapping file

Commands present in the fqtools suite. The supplementary information

contains a full description of each command.

Table 2. FASTQ processing tools overview

Valid Invalid Process

.gz

Plain

(reads/s)

Compressed

(reads/)

fqtools Y Y RþW 701 375 444 648

bash — — RþW 2 605 421 934 331

bioawk Y N R 434 632 312 708

seqtk Y N R 1 122 355 545 865

fast Y Y — 2984 —

fastx-toolkit N N — 69 762 —

seqmagick Y Y RþW 25 325 4000

Benchmark data for various FASTQ processing tools. All tools were in-

stalled locally, and run against the complete test set (Cock et al., 2010). Valid

shows if all the valid test set were processed correctly. Invalid shows if the

tool identified all the invalid files. Process .gz shows if the tool can natively

read (R) and write (W) gzip-compressed files. The speed columns show the

speed in reads per second.

1884 A.P.Droop

 at U
niversity of L

eeds on June 20, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

Deleted Text: &hx0026;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw088/-/DC1
Deleted Text: are
https://github.com/alastair-droop/fqtools
https://github.com/alastair-droop/fqtools
Deleted Text: (
Deleted Text:)
Deleted Text: (
Deleted Text:)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw088/-/DC1
http://bioinformatics.oxfordjournals.org/

	btw088-TF1
	btw088-TF2

