
Research Article
Architecting the IoT Paradigm: A Middleware for
Autonomous Distributed Sensor Networks

George Eleftherakis,1 Dimitrios Pappas,2 Thomas Lagkas,1

Konstantinos Rousis,2 and Ognen Paunovski2

1Computer Science Department, The University of Sheffield International Faculty, CITY College, 54622 Thessaloniki, Greece
2South-East European Research Centre (SSERC), The University of Sheffield International Faculty, CITY College,
54622 Thessaloniki, Greece

Correspondence should be addressed toThomas Lagkas; tlagkas@city.academic.gr

Received 31 May 2015; Revised 6 November 2015; Accepted 17 November 2015

Academic Editor: Davide Brunelli

Copyright © 2015 George Eleftherakis et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Actualizing Internet of Things undoubtedly constitutes a major challenge of modern computing and is a promising next step
in realizing the unification of all seamlessly interacting entities, either human users or participating machines, under a shared,
coherent architecture. While it has now become common belief that the related solutions should be based on compatible network
infrastructure employing widely accepted communication schemes, the specifics of the intermediate system that would act as global
interface for all involved “things” are yet to be determined. A rising trend to define such machine-based entities is through cyber-
physical systems, in terms of collaborating elements with physical input and output. Certainly, sensor networks constitute the
most representative realization of such systems. Taking these issues and opportunities under consideration, this work proposes a
bioinspired distributed architecture for an Internet ofThings that exhibits self-organization properties to enable efficient interaction
between entities modeled as cyber-physical systems, mainly focusing on sensor networks. Furthermore, a middleware has been
implemented according to the proposed architecture, which serves the role of the backbone of this network as a multiagent and
autonomous distributed system.The evaluation results demonstrate the self-optimization properties of the introduced scheme and
indicate global network convergence.

1. Introduction

The extensive use of the Internet and its phenomenal pen-
etration worldwide, along with the massive trends of social
networking mobile computing, have created a demand
for unprecedentedly complex applications. Heterogeneous
platforms and services often require seamless integration
with each other and intuitive sharing of information. Such
demands were undoubtedly a decisive factor on the success
of decentralized architectures during the last decades. The
need to connect everything on the Internet under a com-
mon vision of the Internet of Things (IoT), a network of
uniquely identifiable and interacting objects, the introduc-
tion of Cyber-Physical Systems (CPS), and the ambition for a
“smart” planet, necessitates architectures that enable scalable,
autonomous, and robust solutionswhich should be capable of
exhibiting extremely dynamic behaviors.

Modern sensor networks require a flexibility that will
allow them to operate in a decentralized manner and often
without requiring a well-defined infrastructure. There is
an increased demand for solutions that work in extremely
dynamic environments and enable creation of an infrastruc-
ture of a sensor network in a dynamic and autonomous way,
especially in situations that well-defined and well-designed
infrastructures do not exist or are not preferable. Studies, as
well as simple observation of natural systems, have shown
how self-∗ properties can lead to seamless ways of forming
highly robust and dynamic systems. This dictated a research
trend over the last decades towards nature-inspired solutions
in artificial systems and especially artificial distributed net-
works.

This work proposes an architecture for building a self-
organizing overlay network of CPS, with a particular focus

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 139735, 17 pages
http://dx.doi.org/10.1155/2015/139735

2 International Journal of Distributed Sensor Networks

on sensor networks. This architecture is heavily inspired
by nature, and specifically the fact that innovative design
of individual nodes (microscopic level) can lead to the
emergence of desired global properties (macroscopic level). It
aims to offer an IoT solution of interacting CPS in the form of
a middleware that facilitates interaction and interconnection
of things in a distributed manner, providing scalability, self-
adaptation, and self-organization. The applicability of the
proposed architecture is validated with a realistic design and
an implementation solution that could support real-world
scenarios.

The following section presents the state of the art on
architectural paradigms of the IoT, different approaches on
CPS, and autonomous systems. In Section 3 the proposed
architecture is described and justified in different levels
of abstraction. Section 4 details the design of the pro-
posed architecture and offers a thorough description of the
proposed implementation solution. Finally, the preliminary
results and the evaluation strategy are presented in Section 5,
after which we conclude the paper and present future plans
for the middleware.

2. Background and Related Work

In this section, we discuss the current status of those
issues that are taken into account for the formulation of
the proposed solution. Specifically, the important architec-
tural aspects of IoT are provided, key characteristics and
approaches for CPS and autonomous systems are presented,
and we also elaborate on concerns and solutions for modern
sensor-based architectures.

2.1. Architectural Issues in the Internet ofThings. The vision of
the IoT represents an assortment of interconnected, interact-
ing objects, which could be an overlay network that utilizes
the Internet itself but is not limited to this solution alone.
Although identifying eachnetwork peer can be challenging, it
is not the primary concern when realizing the IoT. According
to Ashton, the most crucial aspect is the interaction among
humans and objects or among objects alone [1]. As the type
of interactions is dependent on the type of network and the
needs it was designed to fulfill, aiming for a single architecture
that fits every scenario is practically impossible and it leads to
a multitude of standardization issues [2–4].

The types of interactions within a network may define
the functionality of each peer, as well as the purpose of the
network itself, but the virtual representation of these objects
is of utmost importance in realizing the vision of an IoT.
Such representations have an architectural impact on ADS
and they also affect the node representation in the network,
as well as the manner in which information flowing between
humans and devices is being represented [5].

An important architectural differentiation is the approach
taken towards communication, with the two general cate-
gories being synchronous and asynchronous communication.
In an IoT implementation, a synchronous communication
would introduce a large overhead which could defeat its
purpose of guaranteeing delivery in a timely fashion [6, 7].

Thus, an asynchronous mode of communication is deemed
more appropriate for such scenarios.

In a network with the size and interconnection charac-
teristics of an IoT, it is expected that an immense amount
of information is being generated which should be collected
only when this is requested or when a real-world object is
capable of providing that data [7, 8].This implies that there is
no need for processing unless an event is triggered, although
other solutions could be implemented such as utilizing agents
and agent-basedmessaging. Equally important to such imple-
mentations is how themessages are processed andprioritized;
if they are processed in a first-come, first-servedmanner, that
would simulate an undesired synchronous communication
model. Apart from an event-driven approach with a properly
structured messaging protocol, the agent-based program-
ming paradigm has a lot to offer to the IoT. Specifically,
the capacity for intelligence that agents inherently possess
enables the opportunity for achieving autonomy and self-
management for complex systems such as those that serve as
the backbone of an IoT implementation [9–11].

Finding solutions to IoT issues in the agent-based pro-
gramming paradigm hints at the possibility of opportunities
to be found in other popular programming paradigms. In
particular, the most relevant one may be that of Service-
Oriented Architecture (SOA). A SOA-compliant middleware
would be eligible to provide any valuable information or
functionality possessed by the real-world objects to end-users
in the formof services.Themost important property, in terms
of value to the IoT, that can be found in software complying
with a SOA is, unarguably, interoperability. Interconnect-
ing heterogeneous devices and allowing for interoperability
through a SOA are possible through the use of standardized
protocols and semantics [7, 9, 12]. Nonetheless, developing a
SOA for a middleware which aims to realize an IoT is posing
various research challenges including heterogeneity,mobility,
scalability, adaptiveness, adaptability, awareness, security, and
privacy [13].

One of the important architectural concerns pertains
to the problem of discovery strategies for services in a
SOA-compliant middleware. The two fundamental aspects
of service discovery have been shown to correspond to the
following: (a) how services are organized within a system and
(b) how they are locatedwithin a system.The former is shown
to be best achieved by storing information about services in
the form of a localized registry (i.e., a repository on each
node), which describes what services can be provided by this
node [13]. Notwithstanding, the crucial issue of locating them
inside the network still remains; to this end, the state of the art
dictates two particular approaches: (a) centralized repository
of registries and (b) distributed discovery.

Centralized approaches are most commonly adopted
by the industry, including well-established solutions such
as EPCglobal, Afilias, ID@URI, and the BRIDGE project
[8]. A centralized implementation necessitates the service
consumer to connect to a remote registry, with an interaction
in the manner of the client-server paradigm and a user
querying a database. Centralized solutions are undoubtedly
practical but there are several concerns that need to be taken
under consideration. Specifically, the larger the repository

International Journal of Distributed Sensor Networks 3

becomes the more expensive (resource-wise) it is for a
single administrator to manage. At the same time, service
availability becomes more problematic, since it constitutes a
single point of failure and attack.

Distributed discovery, on the other hand, is much more
diverse and a single best approach is lacking. Different
strategies have been developed to solve different problems
with various trade-offs. Biologically inspired [14], traditional
P2P [8], DNS-based solutions [15], and Web-based solutions
[16] are few of the most popular approaches.

A recurring theme on most approaches for realizing an
IoT architecture is the use of Web services. Inherently, the
design of Web services has the power to provide unique
identification to the service providers and exceptional, if
not unparalleled, ease of access to the service consumers
(i.e., the things in both cases). Their immense popularity
showcases how they are virtually everywhere in this era of
cloud computing and attests to their power to contribute to
a different perspective at the vision of the IoT, that of the
Web of Things (WoT). Once more, it is essential to stress the
difference between the IoT and the WoT: the former is about
interconnection and interaction of the devices and users in
general (which could be the Internet itself or any other type
of network), whereas the latter focuses on achieving these
goals through the World Wide Web (WWW) and the Web
services in particular (which is always an overlay above the
Internet) [17].

Accessing a Web service is fairly uncomplicated as long
as its URI is known, along with the type of the requests it can
respond to. This holds true whether this is a RESTful service
(adhering to the Representational State Transfer architec-
tural constraints) or a Web Services Description Language
(WSDL) service utilizing the Simple Object Access Protocol
(SOAP), the two predominant approaches to the realization
of Web services [18, 19]. Therefore, the virtual representation
of any device or user comes in the form of either a service
consumer or a service provider, bringing ever closer the
fields of IoT and SOA, along with the formidable advantages
the latter has to offer. In fact, interoperability is achieved
seamlessly through theWeb services and SOA, although there
still exists the challenge of abstracting the functionality of the
things as services.

2.2. Cyber-Physical and Autonomous Distributed Systems.
With the advances in the field of wireless sensor networks
and the popularity they enjoy nowadays, not discounting a
heavy investment in that field towards encompassing IoT for
the much-discussed benefits, Cyber-Physical Systems (CPS)
and robotics or sensors have come to be almost synonymous
terms for several practitioners and researchers [20]. On the
other hand, some claim that the term of CPS indicates
the next step in the evolution of wireless sensor networks
[21]. Despite wireless sensor networks being the prevalent
CPS family, significant work has begun towards most other
families and generally most devices that have integrated with
embedded systems [22]. The modern smart car, for example,
is one of the most frequent examples of a CPS.

Architecturally, CPS are composed of varied subsystems,
or parts, each of which can be represented at an abstract level
by a component, thereby proving the meaningful application
of component-based software engineering (CBSE) on this
particular area. The Dependable Emergent Ensembles of
Components (DEECo) is an example middleware that has
evolved into a fully fledged solution for CPS design by
improving interaction among subsystems with minor strain
and effort on development, all the while being applicable
to a variety of scenarios [23]. Programming Temporally
Integrated Distributed Embedded Systems (PTIDES) model
is another example, a programming model that succeeds in
simplifying and enhancing the development of distributed,
real-time CPS by resorting heavily to software components
and model-based design [24]. To summarize, the literature
signifies the capacity of SOA to solve most issues concerning
the exchange of information among distinct and even hetero-
geneous interconnected CPS systems.

All approaches presented so far require from the system
to operate within its life cycle to its fullest potential with
minimal to virtually no human intervention at all, which
requirement actually matches the concept of autonomy in
computing. It was initially introduced by IBM in 2001 in an
attempt to integrate heterogeneous devices and environments
[25]. As a means of evaluating whether a system was exhibit-
ing autonomy or not, it was decided that the system should
possess several properties known as self-∗: self-configuration,
self-healing, self-optimization, and self-protection [26, 27].

MAS are often found in the center of discussions about
autonomy and particularly for autonomous ADS. This is
attributed to the fact that their interactions have been shown
to lead to the emergence of beneficial properties in these
systems, such as robustness, scalability, and adaptability by
using partial views, feedback, and self-evaluation functions
[28].

Services and a SOA are also capable of providing some
degree of autonomy to ADS. Services can handle the task
of communication or information sharing, and focusing on
lightweight services with descriptions based on standardswill
definitely contribute to enhancing the awareness aspect of
autonomy [29, 30]. In addition to borrowing from the field
of SOA, principles fundamental to the CBSE can be utilized
for ADS towards autonomy, offering as much as they do to
CPS, if not more.

Additionally, architectures such as the Organic Grid,
where agents attempt to colonize resources they discover in
the ADS much like an array of biological organisms would
(humans included), achieve self-organization and hence a
satisfying degree of autonomy [31]. On the other end of the
spectrum, a system may exhibit emergent properties that
differ from those envisioned by its designers and that could
prove to be harmful to the system. Thus, modeling such
solutions requires careful and extensive evaluation of the final
system [32].

2.3. Sensor Network Architectures. It is apparent that archi-
tectural efforts on sensor networks face the same chal-
lenges of identification, distribution, and autonomy that were

4 International Journal of Distributed Sensor Networks

previously discussed. The emergence of unified entities with
behavioral patterns arising from the individual participating
devices has inspired similar architectural ideas for sensor
networks. A representative example is BiSNET [33], a sensor
network architecture inspired by bee movement patterns,
which includes amiddleware andmultiple agents that behave
according to biological principles.

From an architectural point of view, the most crucial and
well-researched part is the middleware as it establishes the
roles and the connectivity aspects of the whole system. A
flexible, plug-and-play type ofmiddleware has been proposed
in [34], named Global Sensor Networks (GSN). It specializes
in sensors and on how users can access their information.
The GSNmiddleware utilizes a directory for interconnecting
the sensors and users accessing the network, while it employs
the IEEE 1451 standard for drawing data from the sensors.
GSN nodes communicate directly with each other in a P2P
fashion, without any intelligence behind the query processing
[34]. Consequently, an implementation through the GSN
middlewarewill not lead to a system that can adapt to changes
to its expected operational environment.

Another middleware with an interesting architectural
approach on interconnecting different types of sensors is
SenaaS, which utilizes the adapter software design pattern
[6]. Examples of middleware that exploit the agent-based
paradigm for realizing sensor network architectures include
Flexeo, an intelligent wireless sensor network [35], and Cog-
nitive Office, a middleware for intelligent environments [10].
Both of them offer a decentralized approach to intelligence
[11]. Introducing, however, intelligence in the lower layers of
the considered architecture is highly questionable, as it could
potentially hinder flexibility. This criticism stems from the
fact that a flexible middleware for an IoT model should be
agnostic of what things should or are capable of doing. Rather,
such a middleware should focus on facilitating adaptive
interconnection (encompassing all of its aspects) ofmachines
and users, in the meantime achieving adaptiveness through
intelligent agents in the middle layers.

Undoubtedly, wireless sensor networks have given rise
to the usability and effectiveness of agents in distributed
systems. In particular, the employment of mobile devices
in such networks has strengthened the arguments for the
efficacy of mobile software agents in dynamic architectures
[36]. This type of agents are autonomous and able to adapt to
the environment. In contrast, a stationary agent provides to
the sensor node it is associated with information originated
from its adjacent nodes.They can be embedded in the sensing
devices executing their process and then moving between
network sensors. The agent functionality heavily depends
on the specific architecture. For instance, in hierarchical
sensor networks, the agents can be created in higher order
nodes, whereas in flat topologies typically the sink node is
the one that instantiates the agents. In a standard scenario,
the mobile agents traverse the sensor network collecting
monitoring information from each one of the involved
devices and eventually delivers it to the sink. In that manner,
significant portion of the available bandwidth and energy can
be conserved; however, there are important issues related to

sensor hardware limitations and other significant practical
constraints.

Typically, such implementations employ agent-based
middleware solutions to realize communications inside a
sensor network. One of the most known middleware frame-
works for wireless sensor networks is Agilla [37]. Agilla
can be run on TinyOS in order to control mobile agents
over a sensor network. The agents are programmed to act
towards the achievement of a common goal while their
movement is regulated by the middleware. Another similar
middleware for wireless sensor networks is SensorWare [38].
Although SensorWare does not employ agents, it provides
similar capabilities through the use of scripts. AgentScape
is an agent-based, multilayer, sensor network architecture
introduced in [39]. Agents are situated in predefined locations
and can communicate with external systems. Finally, Deluge
[40] and Impala [41] are representative examples of platforms
which allow code distribution over wireless sensor networks.
However, they assume that some code is installed in advance
to all participating nodes as they are not agent-based.

The employed data sampling technique can have a sig-
nificant impact in the sensor network architecture as well.
Efficiently scheduling the collection of information from
sensors is crucial for the effectiveness and the lifetime of
the network. A well-designed architecture facilitates the data
collection process, allowing regular updates while keeping
the usage of resources to a minimum. A widely adopted idea
is the use of a portion of the available sensors, since there
are often overlaps and not all nodes are always required.
The backcasting algorithm proposed in [42] is based on
this concept. SORA (Self Organizing Resource Allocation)
[43] is adopting principles of market-oriented programming
to define a penalty scheme for data forwarding, that way
reducing resource and energy consumption. A combination
of adaptive sampling and effective routing is proposed in
USAC (Utility-Based Sensing and Communication model)
[44], in an effort to save energy by adapting observations.

A major concern in such adaptive systems regards the
entity that is actually performing the decision making. An
efficient and flexible solution should allow individual entities
to make local decisions on the sampling schedule. In [45],
for example, binary integer programming techniques are
employed to assign tasks to nodes, allowing them to reach
decisions based on their observations.

2.4. Discussion on Findings. The IoT focuses primarily on
the interconnection of and interactions among the enti-
ties connected to it, whether they are human end-users
or machines. Event-driven, service-oriented approaches to
interaction, along with an overlay network of uniquely
identifiable entities, are essential to the vision of an IoT.
Furthermore, centralized approaches to discovery of services
are preferred in the industry due to high performance;
nonetheless, they have difficulty supporting volatile, ad hoc
networks and overcoming disaster scenarios. The entities
in an IoT nowadays are expected to be CPS, such as the
sensor networks, and designing such systems hints at the
need for the following two: (a) properties to be found in

International Journal of Distributed Sensor Networks 5

the field of software components that solve CPS subsystem
design issues and (b) a SOA for supporting their interactions.
Meanwhile, infusing autonomy in that distributed system,
which forms this overlay network actualizing the IoT vision,
can be achieved by drawing inspiration from nature for self-
organization and the utilization of the agent-based program-
ming paradigm for autonomous operation.

Modern sensor networks have been shown to incorporate
in part several of the aforementioned solutions and program-
ming paradigms in order to achieve their goals. While the
majority of solutions are tailored to a specific scenario, or at
least a specific family of them, and they successfully address
these issues, they are nonetheless not designed with an eye
towards a future IoT application with the capacity to support
numerous scenarios. These solutions also do not focus on
the need for delivering a system capable of autonomous
operation, achieved through minimized human intervention
and attributed to self-organization properties. Finally, such
systems attempt to facilitate effortless, ad hoc connectiv-
ity of the devices, albeit primarily relying on centralized
approaches for interconnection and resource discovery.

Addressing the aforementioned needs and exploring
the alternatives, we propose an architecture that aspires
to use bioinspired concepts to support autonomy through
self-adaptation and self-organization in the field of ADS.
Consequently, we incorporate that model into the design of
a middleware capable of seamlessly interconnecting humans
and heterogeneous machines, which evidently has the capac-
ity to facilitate interactions among them. In an attempt to
provide a universal, easily adoptable solution, we ascertain
that the middleware possesses properties in its architecture
that allow for a substantially high degree of extensibility
and adaptability, when incorporated into an end-system
supporting the desired vision of an IoT.

3. Proposed Architecture

The Emergent Distributed Bio-Organization (EDBO) is a
model that was conceived during long term work on har-
nessing emergent phenomena in artificial distributed systems
(ADS). Initial work on understanding the micro-macro
causal links, along with ADS experience gained through a
simpler version of EDBO, has led to the development of
a disciplined framework for engineering emergence, and
EDBO as an abstract distributed system model aiming to
engineer emergent properties at the macroscopic level [14].

EDBO is based on the concept of focusing on properties
and interactions at the microscopic level in order to allow
desired properties to emerge at the global, or macroscopic,
level. Previous bioinspired approaches tackle specific prob-
lems with limited scope while EDBO attempts a holistic
approach while it addresses multiple operational issues of
distributed systems.

The main problem that EDBO attempts to solve is the
discovery of resources in an unstructured, fully decentral-
ized, network, under varying conditions. The rationale of
introducing emergent properties in a distributed system
is to improve its operational efficiency and to eliminate

the need for human configuration and management. EDBO
is a continuation of previous work in distributed systems
where the focus was on understanding how relationships
among network nodes affect resource discovery overall [46].
Although it is a generic case study which represents dis-
tributed systems, more concrete studies, like file sharing net-
works, high performance computing, decentralized schemes
of Web services, or sensor and monitoring networks, could
potentially benefit from the results of this work.

While there is a diverse set of objectives that contempo-
rary distributed systems are expected to satisfy, not all of them
can be appropriately treated as macroscopic properties which
could emerge from local interactions. The main objectives of
EDBO are to achieve scalability, robustness, and availability
in a distributed system without explicit engineering. Instead,
by following an experiment-driven framework, various prop-
erties and behaviors are introduced as different hypotheses
of achieving the aforementioned global objectives. Emergent
properties can be utilized in the organization and mainte-
nance of the network as well as the basis for improving the
discovery of resources within the network.

The EDBO model is described at length in the following
section, along with the biologically inspired concepts and
properties that were employed as enablingmechanisms of the
desired emergent behaviors.

3.1. Emergent Distributed Bioorganization. The scope of
EDBO is limited to the top layer of the distributed sys-
tems paradigm. A generic unstructured distributed system
model has been devised which will maintain a high level of
availability, scalability, and robustness, under different opera-
tional conditions.This is achieved by introducing biologically
inspired properties in the EDBO model as well as employing
agent-based techniques in order to guide emergent phe-
nomena in an ADS. The conceptual structure followed in
the model is built in terms of a distributed application that
provides resources to external users, rather than a distributed
system that is composed of users (peers).

EDBO nodes are represented by agents referred to as
BioBots (Figure 1(b)) which use two-way logical connections
(relationships) to form an overlay network. Each BioBot has
a limited number of relationships to other BioBots which
are managed autonomously. In terms of functionality, a
BioBot serves as a wrapper for a set of resources (abstracting
data, functionality, and services) which are provided to user
requests (queries).

A BioBot represents the core routing component which
facilitates the propagation of queries through the network in
an autonomous manner. BioBot behavior is based on several
bioinspired heuristic mechanisms (elaborated in Section 3.2)
that guide its decision making. The heuristics rely on the
BioBot’s internal state, the available relationship meta-data,
and the current state of the environment, which in terms of
the EDBO paradigm is referred to as BioSpace. This environ-
ment layer acts as a middleware between the BioBots and the
underlying operating system and physical infrastructure (see
Figure 1(a)), with different middleware instances running on
different servers being interconnected in order to facilitate

6 International Journal of Distributed Sensor Networks

Execution platform
(server)Physical

connections

BioSpace
(logical space)

BioBot
(node)

Relationship
(logical link)

(a)

BioBot

BioSpace middleware

Attributes

Behavioral heuristics

(i) Resource set
(ii) Spatial location

(iii) Relationship buffer
(iv) Discovery energy level
(v) Service energy level

(i) Query routing alg.
(ii) Movement alg.

(iii) Relationship management alg.
(iv) Reproduction alg.

(b)

Figure 1: (a) Simplified overview of the BioSpace; (b) BioBot’s core attributes and heuristics.

a unified environment and a singular spatial universe. In
addition, the BioSpace facilitates several functional opera-
tions such as communication, offspring creation, and move-
ment service.

3.2. EDBO: Biological Principles. EDBO utilizes a range
of microscopic properties and interactions (at the BioBot
level) in order to achieve global-level properties such as
organization and optimization.

Autonomous Decision-Making. Autonomy is one of the fun-
damental principles of nature; biological entities usually act
without explicit central or external control. Autonomous
decision making in EDBO is realized through several algo-
rithms that use local interaction and information to guide
agent behavior.

Death and Birth Events through EnergyMaximization. Energy
can be seen as a major life force in nature, enabling biological
entities to perform a variety of tasks. In EDBO, the concept
of energy is portrayed as a BioBot attribute. More specifically,
the model proposes two different energy types:

(i) Discovery energy is the primary indicator of BioBots’
usefulness in facilitating the resource discovery pro-
cess. The discovery energy is awarded to the BioBots
that facilitate a successful query match. BioBots can
spend discovery energy while performing various
activities such as moving, exchanging messages, and
reproducing.

(ii) Service energy denotes how popular or successful is a
resource in the system. Service energy is allocated to
each resource individually when the resourcematches
a query. Service energy is consumed each time query
matching occurs.

In the natural world, biological organisms aspire to
maximize the energy gain and minimize the energy loss as
a vital principle for survival. In a similar fashion, energy
maximization is a core principle of the EDBOmodel. BioBots
which fail to maximize their energy and reach a critical low

are dying (i.e., removed from the network), while successful
agents are rewarded with the ability to reproduce. The latter
can happen through single-parent replication, which results
in identical copies, or through binary reproduction in which
both parents’ properties are combined to produce a new
mixture of service and discovery characteristics.

Adaptation through Ad Hoc Selection. This is directly inspired
by natural selection and fitness-based evolution. BioBot
fitness is expressed through energy levels which clearly
represent how fit or unfit an entity is, at any point during
its life cycle. Death and birth events allow the network to
continuously select the most successful BioBots according to
the current network conditions.

3.3. EDBO: Operational Emergence. The main challenge in
the EDBO model is to devise an effective and efficient
way of discovering resources in an initially unstructured
and fully decentralized network. Query matching is imple-
mented through simple keyword comparison. Intuitively,
query routing appears to be the deciding factor for the
success of resource discovery. However, our hypothesis is
that providing an appropriate network organization and
resource population size is as important.The rationale behind
this is that by imposing ad hoc overlay organization and
adjustment of the number of BioBot/resource instances, the
system will be able to maintain acceptable levels of query
match success rate without proactive (well-informed) routing
strategies that often impose high communication overheads.
Towards this direction, the EDBO platform aims to utilize
emergent behaviors in two main aspects of operation: the
availability and scalability of resources and the organization
and optimization of the network.

The scalability and availability of resources are an impor-
tant aspect in ADS, since the query load imposed by the
users often exhibits extreme fluctuations. Additionally, some
of the resources are in higher demand (popular) than others
(unpopular). In order to cope with these requirements,
EDBO utilizes energy distribution as the main feedback
mechanism that regulates the size of the BioBot population.

International Journal of Distributed Sensor Networks 7

Since the amount of energy entering the system is regulated
by the number of successfully resolved queries, in situations
where there is a high query load the amount of available
energy in the system will be increased. This allows for a
larger BioBot reproduction rate which essentially scales up
the number of available resource providers. Moreover, by
using energy driven selection of parents (see Section 3.2)
popular resources have higher chances of being reproduced.
A decrease in the query load leads to an overall energy
decrease, which in turn increases the BioBot death rate and
reduces the number of birth events. Thus, the size of the
BioBot population scales down.

Structured overlays are typically performing better than
unstructured ones. In the EDBO this is tackled via an emer-
gent overlay organization and connection (relationship) opti-
mization. This is mainly inspired by the supernode architec-
ture [47] which enables application of discovery mechanisms
to improve discovery performance overall. In the supernode
architecture, the overlay structure is logically divided into two
layers: the global layer which is composed out of supernodes
that enable global connectivity and the local cluster layer
which facilitates local interconnection. In order to facilitate
the ad hoc formation of supernode structures through local
BioBot decisions, EDBO incorporates flexible relationship
buffer size, different relationship acquisition strategies, and
energy metadata. The selection of the superbots is based on
the BioBots’ discovery energy level, which in turn determines
the total number of relationships (slots) that a BioBot can
establish. BioBots with high discovery energy and a large
number of relationships are granted the superbot status. Such
BioBots allocate part of their connections to other superbots,
while the rest of the connection slots are used to facilitate
the connectivity with the nodes in the local cluster. BioBots
in the local cluster optimize their relationships through
evaluation of partners’ spatial distance in order to ensure tight
connectivity in the local cluster.

3.4. Realizing the EDBO Architecture for CPS. The proposed
architecture aims to serve as a main infrastructure that will
enable any authorized consumer to perceive the required
sensor or other types of data as if connected to the nervous
system of an organism. It provides a solution that enables
utilization of emergent behaviors to achieve availability and
scalability of resources and the organization and optimization
of the network. The proposed middleware is a realization
of the above-described research prototype network (EDBO)
that achieves several self∗ properties using the bioinspired
solution described above. Thus, it is composed of BioBots
(logical nodes) that are realized in a BioSpace (middleware).
BioBots are capable of communicating with CPS if in range,
enabling bridging of the desired CPS and the middleware.

EDBO for CPS facilitates a plug and play solution which
allows the addition of such a system to the network at
anytime. By adding a new CPS (provider) to the proposed
middleware, which is based on the EDBO architecture, a
service will be automatically provided and discovery will
be enabled in a fully decentralized manner. Consumers
realized as compatible clients will be able to discover and

then consume all the provided data from the connected
CPS without the need of any central control. The abstract
proposed architecture is depicted in Figure 2.

The following section details the design followed towards
implementing the EDBO for CPS architecture as a viable
solution for real-world wireless sensor networks.

4. Middleware Design

In order to fulfill its goal as a middleware, the design of the
EDBO for CPS implementation allows for several desired
properties to be present in the final system. To begin with,
it is essential that an ADS, which can account for all the func-
tionality and properties, must be developed as a multiagent
system to enable autonomy and realize the ideas presented by
the EDBO model (the BioSpace, the BioBot, and their inter-
actions). Meanwhile, the core principles of component-based
software engineering have to be realized for the middleware
to be able to accommodate any future development; those are
composability, substitutability, reusability, and extensibility
[48]. Finally, it was discussed how a SOA is essential to tackle
most of the common architectural and implementation issues
that are expected of an IoT-enabling middleware.

Naturally, a suitable framework for the development of
such a system is essential, with the following traits being of
paramount importance: offering the ability to design with
SOA principles, encompassing the much-desired properties
of software components and, of course, providing the tools to
develop a full-fledged MAS. The Jadex Active Components
(JAC) framework has been chosen to this end, offering all
of the above and additionally solving issues such as simu-
lation support, security, as well as offering fast prototyping
[49]. Finally, it must be mentioned that the nonfunctional
properties expected of the EDBO middleware have been
considered during its design. Specifically, software patterns
such as the strategy, factory, observer, and adapters have been
used heavily in order for the software to support a high degree
of extensibility and at the same time maintain the highest
possible degree of applicability to assorted scenarios.

The following subsections will detail how the proposed
architecture elements depicted in Figure 2 were designed
as a middleware by virtue of the chosen framework for its
development. Firstly, details of the capabilities of the JAC
framework are presented, followed by the design details
of the BioSpace and BioBot abstractions as entities in a
multiagent, distributed system. The section continues with a
presentation of the conceptual architecture of themiddleware
and our approach towards solving the IoT issues, eventually
concluding with a short presentation of the manner in which
the various middleware components operate once deployed.
A package overview of all individual components of the
system is illustrated in Figure 3.

4.1. The Jadex Active Components Framework. The JAC
project started out as Jadex, an extension over the JADE
framework that aimed to utilize the BDI agent model and
offer an effective and efficient implementation of it over
JADE.Over time, it has grown to become a complete, separate

8 International Journal of Distributed Sensor Networks

Figure 2: An abstract representation of the proposed architecture.

≪Java Package≫ ≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫
≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

≪Java Package≫

endusersystem

query

forwarding

externalsystem

comm

local

remote

platform

BioBot

energymanagement

migration

relationshipmanagement

servicediscovery

BioSpace

birth

death

energyallocation

systemdiscovery

local

remote

Figure 3: EDBO middleware package overview. The end-user system running at the nodes consuming services, the external system at the
nodes providing services, and the platform on the nodes forming the EDBO overlay network.

International Journal of Distributed Sensor Networks 9

framework for creating a MAS, or an ADS, that can be
deployed on a number of different devices, provided that they
can run a JVM, including a specialized, lightweight version
of the framework that can be used for deployment of systems
on Android devices. The framework does not offer only BDI
agent implementation; in addition, it supports Plain Old Java
Object (POJO) programming for any type of agent (e.g.,
model-based, reflex agents).

The main strength of the framework lies in the fact that
it is created with a SOA in mind, with the categorization
of implemented services as either required (an agent cannot
function without this service available somewhere in the
ADS) or provided (functionality that the agent possesses),
thus simplifying the translation of the EDBO model to
system architecture. Meanwhile, JAC offers asynchronous
agent interaction using the future paradigm (see Figure 4) to
facilitate invocation of agent provided services, which prac-
tically eliminates the need for the utilization of an ACL and
messaging to simulate asynchronous agent interaction. This
interaction is realized in an event-driven manner and hence
covers the needs of an architecture that can support the IoT.

Themost integral part of the JACarchitecture is theActive
Component (AC), which refers to the agent implementa-
tion encapsulated as a software component through several
properties. Furthermore, the additional properties of the AC
come from the SOA aspect of the framework and essentially
constitute a separate module that attaches to the agent and
is responsible for handling any service-related property or
functionality the AC is qualified for. Finally, apart from
any traditional services offered through an ADS developed
with JAC, the framework is capable of exposing any service
implemented for an AC as either aWSDL or RESTful service.
The added value of this capability is the realization of an IoT
as a WoT, with the latter functioning as either a wrapper of
the system or complementing its provided services.

4.2. The BioSpace. In the model, the BioSpace is described
as a logical, 2D space where the BioBots live and die. An
important distinction that must be made at this point is that
the model regards it as a single entity offering services to
the BioBots (e.g., energy allocation andmigration), but when
translating the model into software the risk of employing
centralized solutions is inevitable. This is why the software
running on each system has been designed in such a manner
that it can still provide BioSpace services to the BioBots on
that particular system, without the need to resort to a cen-
tralized mechanism (e.g., a database with BioBot locations).
This is achieved primarily by the abstraction of the migration
service to merely provide the functionality of migrating (i.e.,
changing current BioBot logical space location), while the
BioBots store that location individually instead.

The JAC framework classifies the services in the system
as either required or provided. A BioBot consuming the
services provided by the BioSpace should have to specify
those services as required. But in a system adhering to the
SOA principles, it is essential that these services are provided
by someone; in the case of a JAC the provider is always
an AC. Therefore, a very basic AC has been created with

BioBot BioSpace

Invoke service

Return future

Add result listener to the future

Notify listener with result

Extract result from future

Calculate energies

Figure 4: Sequence diagram depicting the future paradigm at work
using the example of the Energy Allocation Service.

the sole purpose of offering theBioSpace services (specified as
provided). In JAC services also have a scope, which refers to
where they will be available in the ADS (e.g., platform, local
network, globally). A platform scope is used to this end so
that it is only accessible by the BioBots living on the current
machine.

An example of this design can be seen in the following
scenario: a BioBot is born and the BioSpace has to allocate
service and discovery energies to it.

(1) The BioBot AC invokes the Energy Allocation Service
of the BioSpace AC (assigns a listener to a future
event).

(2) The BioSpace AC receives the invocation (creates the
future event) and determines how much energy to
allocate, and when ready it communicates it to the
BioBot AC (sets the result of the future and notifies
the listener).

(3) The BioBot AC retrieves the energy levels sent to it by
the BioSpace AC (extracts the result wrapped within
the future event) and begins its life functions.

Figure 4 provides an illustration of this process involving
the JAC future paradigm (service-oriented, event-driven
communication).

4.3. The BioBot. The EDBO model describes the BioBot as a
very basic, reflexive agent: one that can simply react to queries
it receives regarding service discovery (either from users or
other BioBots) and relationship or reproduction requests by
other BioBots. Its functionality is hence limited and it is
clear that the three aforementioned services are specified as
provided services, while the ones provided by the BioSpace
AC are required by the BioBot AC to ensure that a BioBot
cannot be born without a BioSpace to live in. The state of the
BioBot, which it monitors as an agent, is distributed among
the distinct services it provides. Specifically, monitoring of

10 International Journal of Distributed Sensor Networks

Birth

Determine
energy
levels

Migrate

Migrate?

Reproduce

Yes

Yes

Yes

Yes

No

No

No

No

Replicate

Partner
accepted?

Contact
partner

Sexually

Asexually

Sexually or
asexually?

Reproduction
conditions?

Manage
relationships

Adjust
partners

buffer

Death
conditions?

Inform
partners
of death

Death

Figure 5: Flowchart demonstrating the life cycle of the BioBot.

energies is handled by the Energy Management service,
monitoring of location by the migration service, monitoring
of relationships and metadata on the partners by the Rela-
tionship Management service, and keywords related to the
services the BioBot is aware of through the service discovery
service. The observer software pattern has been applied to
these services and the BioBot itself so that monitoring of
its state can be carried out elegantly in an event-driven
manner, in addition to having the capacity to be tailored to
the administrator’s needs.

Additionally, the JAC framework specifies three functions
that can be used to abstract the behavior of an AC being cre-
ated (the BioBot being born), its main process as expected of
an agent (BioBot life cycle), with the last one describing what
happens when the AC is being destroyed (BioBot dying).The
life cycle of the BioBot, how it performs its life functions as
designed for the middleware, is presented in Figure 5. The
BioBot is designed to ask the BioSpace for energy allocation
and introduction to another BioBot when it is born, ending

relationships before dying and monitoring service levels and
taking several actions regarding its bioinspired functions
(migration, reproduction, replication, and relationships). As
a deviation from the BioBot agent described in the model,
the BioBot AC is capable of skipping one of its life functions:
processing incoming messages and acting on them. This is
attributed to the SOA design of the AC in the framework
and the event-drivenmanner of AC interactions thanks to the
future paradigm.

BioBot interactions take place as described above for the
BioBot and BioSpace AC, and they are facilitated through
two different services specified as provided services in the
design: the RelationshipManagement service and the Service
Discovery service. The former service is used to find a
partner to keep for migration towards possible reproduction
and forwarding queries, an action that the latter service is
responsible for. This Relationship Management service has
been designed with the strategy software pattern so that it
is trivial to configure how BioBots choose their partners

International Journal of Distributed Sensor Networks 11

IRelationshipService

+ requestPartnerByChance()
+ requestPartnerByKSV()
+ requestPartnerByMetaData()
+ requestPartnerByName()
+ requestPartnerIntroduction()
+ formRelationship()
+ terminateRelationship()
+ isLookingForPartner()
+ requestPartners()
+ partnerDied()
+ partnerAdded()
+ announceDeath()
+ announceMove()
+ manageRelationships()
+ updateMetaData()
+ partnerMoved()

IEnergyManagementService

+ decreaseDiscoveryEnergy()
+ increaseDiscoveryEnergy()
+ getDiscoveryEnergyLevel()
+ increaseServiceEnergy()
+ decreaseServiceEnergy()
+ getServiceEnergyLevel()

≪Java class≫
BioBotAgent

+ cBioBotAgent()
+ agentCreated()
+ executeBody()
+ agentKilled

IMigrationService

+ Migrate()
+ getCurrentLocation()

IServiceDiscoveryService

+ updateServices()
+ forwardQuery()
+ returnQuery()
+ getServices()

≪Java interface≫
IEnergyAllocationService

+ allocateServiceEnergy()
+ allocateDiscoveryEnergy()

≪Java interface≫
IBirthService

+ createBioBot()

≪Java interface≫
IDeathService

+ killBioBot()

≪Java class≫
BioSpaceServiceProviderAgent

+ cBioSpaceServiceProviderAgent()
+ agentCreated()
+ executeBody()
+ agentKilled()

I

I

I I

I

I

I

C C

Figure 6: The BioBot and BioSpace agents, including their provided and required services.

according to the model: randomly, using keyword similarity
or favoring better metadata. This allows for the effortless
integration of better, more optimized strategies in the future.

BioBots are introduced to each other through either the
BioSpace or another BioBot, which essentially means that
the BioBot keeps a proxy of its partner so that they can
communicate to them directly when needed (framework
concept of AC External Access). In order to obtain this
proxy, which for newly born BioBots is usually provided by
the BioSpace AC, the design relies on the JAC framework
capacity for awareness of other computer systems. This
awareness mechanism is the core of the system that realizes
it as an ADS, thanks to the various methods it provides
for discovering systems connected to the overlay network:
Broadcast, Multicast and IP Scanning for local networks, and
Registry, Message and Relay for global networks. Awareness
settings can be enabled and disabled at runtime, and many
can be used together at the same time providing an excellent
solution to ad hoc connectivity and reactivity to disaster
scenarios. An overview of the BioBot agent and the services
it provides, as well as the one it requires from the BioSpace, is
illustrated in Figure 6.

4.4. Addressing IoT Concerns. At the very core of the IoT
lie the issues of the unique identification of things, their
interconnection, and interactions, as well as their virtualiza-
tion. The latter solves the problems of device heterogeneity
due to the fact that the virtual representation of the system
is expected to be uniform. Naturally, the EDBO model has
not been designed with all these issues in mind, providing

Things

Adapters

BioBots

Key
words

Figure 7: The layered architecture of the EDBO middleware.

the mere abstraction of a keyword to represent the func-
tionality a thing possesses. Through its layered architecture
(Figure 7) and the exploitation of the mechanisms available
by the JAC framework, the design of the EDBO middleware
provides the means to leverage the aforementioned issues.
Each layer of this architecturewill be discussed in this section.

Theoutermost layer namedThings represents the software
running on the end-point, which can be a single device, an
end-user, or even a complex CPS. Two systems have been
developed to support different roles for end-point devices:
one for “things” offering a service and one for a human end-
user attempting to search for a service.The design is modular
and loosely-coupled; therefore, the appropriate libraries can
be used in any system that aspires to provide a different type

12 International Journal of Distributed Sensor Networks

of user interface with the core of the middleware. This layer
fully supports a WoT implementation because the services,
the ones which realize this interface, have been exposed
as RESTful services and can thereby be accessed by any
system that is capable of RESTful communication. This can
be a simple mobile phone app (the JAC framework provides
extremely lightweight libraries for deployment of the system
on Android devices), aWeb application, or a server gathering
data from end-point devices, amongmany other possibilities.
TheAPI of this functionality is detailed in the documentation
of the middleware. As such, the ultimate purpose of this layer
is to serve as the first step in achieving the interaction among
“things,” one of the core issues IoT implementations ought to
address.

In the onion-layered architecture of the EDBO middle-
ware, the layer Things communicates directly with the layer
Adapters. Whereas the former aimed to facilitate interaction
at a higher level, the latter aims to address the problem of the
lower-level interoperability, taking into account the expected
high degree of heterogeneity among “things.”When a user or
a system initiates an action, the information provided by the
varied forms of end-point software on the outer layer has to
be communicated to the inner layer of BioBots. Nonetheless,
the BioBots can only understand a predefined format for
data communicated to them; therefore, translation is needed.
This second layer provides the means to solve this translation
problem and achieve interoperability. The adapter software
design pattern has been employed to this end, thus allowing
developers to extend the provided classes and create their
own adapters as needed for translating the information from
their devices or CPS into an EDBO service. Already provided
are sample adapters that can translate data to and from
Windows INI, XML, and JSON formats. Essentially, the sheer
flexibility of adapter approach provides the means to achieve
the much needed virtualization of a human user or a system
in any IoT scenario.

Having solved the problem of interoperability and inter-
action among “things” with the 2 outer layers, the third
layer attempts to solve the interconnection of things. This
layer is now provided by the core of the EDBO model: the
bioinspired approach that creates the overlay network of
the end-point systems and facilitates their communication.
The BioBots are always aware of who their partners are,
what services they can offer, and which partners to contact
to try and discover a service they cannot offer themselves.
The Service Discovery and Relationship services shoulder
the majority of the workload to this end, which is solving
the problem of interconnection in an IoT implementation,
in conjunction with the awareness mechanisms that the
JAC framework provides. The uniqueness in the case of the
EDBO middleware is that the contribution of this layer is
not only limited to the interconnection of devices, rather it
extends to the provision of autonomous operation via self-
organization, not a strict requirement for an IoT application
but an extremely beneficial property.

The innermost layer is that of Keywords, the abstraction
currently used to represent how the BioBots determine if
the search term supplied by a thing matches a term they
are aware of. This layer does not represent some form of

a centralized repository of services, rather it aspires to provide
some sort of very primitive semantics to the middleware.
Future work is planned to replace this layer with enhanced
semantics, if possible with an extended ontology. The unique
identification of the things connected to the network is
achieved in part thanks to this layer, but also in part due
to how the External Access proxies of platforms connected
to the rest of the network are handled by the underlying
awareness mechanisms of the JAC framework.

4.5. Middleware Operation. The operation of the EDBO
middleware in a sample deployment scenario can provide
an insight into some of its capabilities. The walkthrough
presented herein assumes a scenario in the domain of
health care for elderly patients. In this scenario, the patient
possesses a health sensor platform to record some data that
that their personal doctor would like to monitor and the
history of which should be recorded in the hospital server
for processing by expert systems. Figure 8 illustrates how
these actors and systems are interconnected with the EDBO
middleware deployment.

The two application servers run the core of the middle-
ware, each with a BioSpace and BioBots to create the overlay
network (link 1, Figure 8) that end-point systems can connect
to and offer or consume services. The health sensor platform
runs software created by the manufacturer; however, they
have incorporated the SystemDiscovery libraries fromEDBO
to connect with BioBots (link 2, Figure 8) and they have also
implemented an adapter to translate the data produced by
their platform (e.g., the XML adapter) into EDBO services.
The android phone possessed by the doctor runs a simple,
lightweight app that periodically checks for the data of their
patients by using the RESTful API of a specific BioBot (link
4, Figure 8). The JSON adapter is used to translate the data
from the EDBO service into the format that the app can
process to produce alerts as needed. Finally, the server runs
the already provided EDBO External System EDBO software
to connect with the BioBots (link 3, Figure 8) and hence acts
as a service consumer in this case by getting the data from
the health sensor platform at regular intervals. It implements
a new adapter that parses EDBO service data and maps them
onto fields for a MySQL database.

This scenario depicts only two EDBO middleware sys-
tems to serve as the backbone of the overlay network on
nodes, but this could be extended to feature any number
of platforms needed to satisfy the area coverage needs of
the specific IoT scenario. Whenever a new EDBO middle-
ware platform is instantiated on an application server, it
will attempt to use all of the allowed platform awareness
mechanisms available in order to find an entry point to the
network (e.g., local area broadcast and IP message passing
but not IP scanning). Once it has formed a relationship
with another BioBot, it can be conversed with during service
discovery and it can now offer any services that have been
published on that application server.

Having showcased the formulation of an IoT with the
two outer layers of the EDBO architecture above (Things
and Adapters, Figure 7), the service discovery capabilities

International Journal of Distributed Sensor Networks 13

Hospital server

EDBOExternalSystem.jar

Application server

EDBO.jar EDBO.jar

Health sensor platform

Platform software

Android phone

RESTful mobile app

≪3≫ ≪1≫

≪2≫

≪4≫

≪Device≫

≪Device≫

≪Device≫
Application server
≪Device≫

≪Device≫

Figure 8: A sample deployment scenario for the EDBO middleware.

Sufficient
service
energy?

Keyword
found?

Gain
service
energy

Provide
requested

service

Lose
service
energy

Have
partners?

Sufficient
discovery
energy?

Lose
discovery

energy

Forward Randomly,
similarity strategy,
complex strategy

query to
partner

YesYes

Yes

Yes

No
No

No

No

Figure 9: Flowchart depicting the decentralized query forwarding mechanism.

of the middleware with the inner layers remain to be seen
(BioBots, Keywords, Figure 7). This process takes place in
the case at hand when the mobile phone app is planned
to update the latest data on the patients being monitored
(e.g., every 10 minutes) and when the server collects data for
processing (e.g., every 1 hour). In the case of the android app,
the BioBot will receive the query on the RESTful wrapper
of the service, process it, and immediately reply with the
requested service data since they are readily available. On
the other hand, the hospital server sends the request to the
platform it is connected to but the BioBot receiving that query
cannot satisfy it itself. Consequently, it forwards the query to
their partner who can provide the requested data.The flow of
this discovery process as the BioBots perform it in each case is

outlined in Figure 9. The energy level fluctuations presented
there trigger the BioBot life cycle decision making process
(Figure 5) and lead to self-organization.

5. Middleware Evaluation

The EDBO model promises self-adaptivity and self-opti-
mization in anADS, properties that need to be verified during
the transition from model to software. In order to ascertain
that the EDBO middleware demonstrates the capabilities
offered by the model, extensive testing has taken place
continuously throughout its iterative development process,
which was in turn followed by an elementary evaluation of

14 International Journal of Distributed Sensor Networks

its capabilities. Both of these tasks have been planned since
the beginning of the development process and have been
facilitated by the functionality offered by the JAC framework,
and specifically through the Jadex Control Center (JCC)
software offering a test center and through the integrated
logging mechanisms for the ACs.

The approach towards testing has been carried out in
two ways: (a) unit testing for each component developed
and (b) integration testing when it was encompassed in the
rest of the system. The JCC, through its test center, offers
a frontend for executing JUnit-like, component-based test
cases for each AC that has been developed (in this case
the BioBot and BioSpace agents). As the main guideline
for developing these test cases served a formal model of
the BioBot implemented as an X-machine, which has been
developed as part of the EDBO model. The X-machine
represents all possible states and transitions among them
taking place throughout the lifecycle of the BioBot and offers
a formal testing methodology. Therefore, it was elementary
to map these states and transitions onto the JUnit test cases
needed to verify and validate BioBot behavior through its
functions and the functions of its services (both provided and
required). The BioSpace service provider also had JUnit test
cases covering its functionality, although no formal model
existed to guide the process (no life functions to perform).

The evaluation of the middleware has been focused
on investigating the capabilities of the middleware towards
realizing a self-adaptive, self-optimizing ADS. The optimal
approach to determining the behavior of an ADS developed
with the EDBO middleware was deigned to be the runtime
evaluation in the form of a case study comparing results
of a system with no self-organization capabilities to one
that possesses them. Past results on the evaluation of the
model have shown that the most optimal strategy out of the
three currently formulated and implemented is that of the
complex processing of the metadata. This is the case where
BioBots tend to form meaningful relationships in the long
term (self-optimization) and are capable of handling user
behavior fluctuations by reevaluating current relationships
and reproducing or replicating (self-adaptive). Consequently,
the middleware was configured to use two different strategies
for the same case and compare the results: the complex
strategy and the random strategy.

Evaluation was carried out through the facilities provided
by the JAC framework. Specifically, each AC has an inherent
logging mechanism that can be activated and its entries can
be viewed at real-time during execution via the component
viewer offered by the JCC. Additionally, the design of the
system enforces the observer pattern and hence a custom
implementation of the abstract observer provided with the
middleware offers the means to record all important data
from the state changes and interactions of each BioBot. A
parser has been developed to read and review the resulting
logs, producing information on the data sought after to
determine the properties of the system. The data gathered
regarded response accuracy (howmany queries were satisfied
on average) and response delay (average number of hops
for each query). These values were measured at the very
beginning of runtime and compared to a few moments later

Table 1: Response accuracy and delay regarding the selected service
for the runtime evaluation scenario using the random and complex
(metadata) strategies.

Time frame
Avg. response
accuracy

Avg. response
delay (hops)

Random Metadata Random Metadata
After 5 minutes 60.25% 64.09% 2.921 2.896
After 20 minutes 57.92% 71.23% 3.057 2.842
After 50 minutes 58.51% 89.56% 3.013 2.439

(short-term adaptivity) andnearing the end of runtime (long-
term optimization), in order to determine if the desired
properties emerged in the system. As such, these metrics
constitute the Key Performance Indicators (KPIs) for the pur-
poses of this quantitative evaluation: determining efficiency
of the system over the passage of time (totally unstructured
origins, adaptation, and organized system in the end).

In order to determine how the system can adapt to user
behavior, the evaluation scenario required the development
of a querying function that sends various keywords to the
BioBots, emphasizing a select keyword at the beginning
(to establish a baseline), again after a little time during
runtime and near the end again. Naturally, this evaluation
has been carried out as a demonstration of the system using
an elementary case study that could simulate the following
scenario: an ADS of weather sensors. The system is deployed
over several regions and the end-users can check the weather
for each region. As an example, after the system has just been
deployed and initialized, a hailstorm affecting crops in one
of the regions prompts users trying to check on the status of
their crops to request the data from that region primarily.The
system thus ought to adapt to this sudden need and try to
prepare for future needs. After this initial influx of requests
for this region, users start to check on other regions for a
significant time period to determine if theywere also affected.
After this interval of normalized activity, users decide to
check again on the region suffering from the hailstorm to
determine its current state. At this point, the system should
display its self-organization capabilities by having evolved in
such a manner that requests towards this “popular” query
search can be satisfied faster and with higher accuracy.

The results gathered from the evaluation can be found in
Table 1. Positive results on response accuracy demonstrate
that the system manages to adapt to user behavior in the
short-term, which may become even more significant in the
long-term as the system optimizes itself to servemore queries
similar to the ones it received at the beginning and the
first half of its runtime. Delay results did not provide much
information regarding short-term capabilities of the system,
which may be attributed to the low initial energy levels of
BioBots restricting more partners. Nonetheless, there were
some changes towards the end of the evaluation hinting at the
possibility of self-organization considering that metric, too.

As expected, the random strategy produced no posi-
tive results whatsoever regarding self-organization. On the
contrary, it appears that random partner selection leads to
BioBots having “bad” relationships and wasting energy on

International Journal of Distributed Sensor Networks 15

forwarding queries aimlessly. Unlike the evaluation results
of the model, no superbots have been observed, which is
attributed to the limited resources available for evaluating an
ADS at runtime as compared to simulation results. Finally, a
criticism of the model, or at least for its initial configurations
regarding energy levels, stemmed from the fact that several
BioBots that could not satisfy queries (or forward them) died
after some time, which prohibited access to services they
offered; in one case, the single BioBot offering a particular
service died, effectively losing all access to that service in the
network.

Overall, the system demonstrates the capacity to address
the issue of load balancing and, moreover, it can do so with-
out any human intervention, proving the self-organization
and self-adaptivity capabilities of the system. There is a
differentiation here with the traditional approaches to load-
balancing that similar solutions employ, where several factors
are measured over time during network operation and then
settings are adjusted to account for expected load balance
depending on network size and connected users, specific
hardware settings of nodes such as remaining energy [50], or
knowledge of the general structure of the network such as the
very efficient SAAS-RWSNs [51]. In such cases this happens
when these values reach the appropriate point that the new
settings have to be applied, and it further demands the exis-
tence of a centralized mechanism that keeps all these data of
all network nodes so that they can be accessed by every node.
Contrary to this process, the EDBOmiddleware is capable of
adapting to the changes in its operational environment in a
continuous rather than in a discretemanner, and also without
any knowledge on network structure either. The advantage
in this case would be the example of 990 users connected at
the same time experiencing a slow response because the next
optimization is to take place when the number goes above
1000; in the case of the EDBO, the system should have adapted
gradually to better support these users already.

6. Conclusions

The vision of an Internet of Things is a promising approach
to bringing together the two worlds of cyber and physical,
especially imagining the gains in accessibility and applica-
bility of sensor networks connected to it. By harnessing
the power of component and agent-based services, as well
as object-oriented approaches, we designed an extensible
middleware capable of realizing a wide range of scenarios
with that vision in mind. Its strength lies in the bioinspired
model at the core of its design, one that is capable of offering
autonomous operation to such an artificial distributed system
of interconnected and interacting cyber or physical entities,
whethermachines or humans. Self-organization features have
emerged in the system thanks to short-term adaptivity to user
behavior, as well as long-term self-optimization for expected
user requests.

Future work to the EDBO middleware is planned to add
features and functionality and to optimize certain aspects
of its operations. As a first step, work is underway on
developing a data annotation framework to enable the seam-
less integration of CPS to the core architecture of BioBots

(the innermost layer of our architecture, Figure 7 earlier).
Discarding the primitive keyword matching functionality,
the successful integration of semantics will provide a more
refined architecture that allows for better automation of the
introduction of new sensor providers to the system. Several
standards for data representation and communication for
varied devices are being investigated, in an effort to meet
this goal and enhance the virtualization aspect, and hence the
interoperability, of the things communicating via the EDBO
middleware. We also aim to work on establishing a security
infrastructure that goes beyond the basic security issues
already solved in the current realization of our proposed
distributed architecture.

The issue of BioBots dying and losing access to services
will be investigated through multiple future evaluations on
various case studies and assorted size networks. This one
issue has already sparked research into alternatives to the
fundamental biofunction of death the BioBots possess and
its conversion into temporary dormancy. The product of the
evaluation work is expected to produce a policy for optimal
energy level configurations for the BioBots and offer further
insight into the scalability in IoT applications. Furthermore,
the results of these evaluations will be compared to results of
similar systems in specific applications in order to develop a
better understanding of the overall potential of EDBOand the
areas that require further optimization, its standing among
similar systems, and the possible integration of ideas from
those systems with the EDBO ecosystem.

We currently apply the proposed solution in this paper
as the core architecture for health monitoring [52], aiming
to evaluate it in a real case study and at the same time
refine it in order to enable seamless, and automate as much
as possible, integration of sensors to the system. Research
is also expanding to the domain of computational acoustic
scene analysis, so as to prove the capacity of the system to
support different and more demanding applications, but also
as an opportunity to investigate the capacity for mapping
BioBot life functions onto real-life actions for connected
devices and CPS. One example could be the mapping of
BioBot migration onto sensor motor actions towards seeking
a potentially better place for receivingmore accurate auditory
data. Another is the example of adjusting sensor energy
levels in accordance with BioBot energy levels to fine-tune
system autonomy through prolonged battery life. Finally, the
introduction of new types of energies will be investigated, due
to the research on EDBO that already indicates the potential
emergence of more self-∗ properties that could benefit future
IoT applications.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors are cofinanced by Greece and the European
Union (European Social Fund) O.P. “Human Resources
Development,” NSFR 2007–2013.

16 International Journal of Distributed Sensor Networks

References

[1] K. Ashton, “That ‘Internet of Things’ thing: in the real world,
things matter more than ideas,” RFID Journal, vol. 22, pp. 97–
114, 2009.

[2] F. Mattern and C. Floerkemeier, “From the internet of comput-
ers to the Internet ofThings,” in From Active Data Management
to Event-Based Systems and More, vol. 6462 of Lecture Notes
in Computer Science, pp. 242–259, Springer, Berlin, Germany,
2010.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of Things (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29, no. 7,
pp. 1645–1660, 2013.

[4] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Inter-
net of things: vision, applications and research challenges,” Ad
Hoc Networks, vol. 10, no. 7, pp. 1497–1516, 2012.

[5] P. Barnaghi, W.Wang, C. Henson, and K. Taylor, “Semantics for
the internet of things: early progress and back to the future,”
International Journal on SemanticWeb and Information Systems,
vol. 8, no. 1, pp. 1–21, 2012.

[6] S. Alam, M. M. R. Chowdhury, and J. Noll, “SenaaS: an event-
driven sensor virtualization approach for internet of Things
cloud,” in Proceedings of the 1st IEEE International Conference
on Networked Embedded Systems for Enterprise Applications
(NESEA ’10), pp. 1–6, IEEE, Suzhou, China, November 2010.

[7] D. Uckelmann, M. Harrison, and F. Michahelles, “An archi-
tectural approach towards the future Internet of Things,” in
Architecting the Internet of Things, pp. 1–24, Springer, Berlin,
Germany, 2011.

[8] S. Evdokimov, B. Fabian, S. Kunz, and N. Schoenemann,
“Comparison of discovery service architectures for the internet
of things,” in Proceedings of the IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC ’10), pp. 237–244, IEEE, Newport Beach, Calif, USA,
June 2010.

[9] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V.
Y. Terziyan, “Smart semantic middleware for the internet of
things,” in Proceedings of the 5th International Conference on
Informatics in Control, Automation and Robotics (ICINCO-
ICSO ’08), vol. 8, pp. 169–178, Funchal, Portugal, May 2008.

[10] L. Roalter, M. Kranz, and A. Möller, “A middleware for intelli-
gent environments and the Internet of Things,” in Ubiquitous
Intelligence and Computing, vol. 6406 of Lecture Notes in
Computer Science, pp. 267–281, Springer, Berlin, Germany, 2010.

[11] L. Atzori, A. Iera, and G. Morabito, “The internet of things: a
survey,”Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[12] L. Tan and N. Wang, “Future Internet: the internet of things,”
in Proceedings of the 3rd International Conference on Advanced
Computer Theory and Engineering (ICACTE ’10), pp. V5376–
V5380, Chengdu, China, August 2010.

[13] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Pearson Education India, 2005.

[14] G. Eleftherakis, O. Paunovski, K. Rousis, and A. J. Cowl-
ing, “Emergent distributed bio-organization: a framework for
achieving emergent properties in unstructured distributed sys-
tems,” in Intelligent Distributed Computing VI, G. Fortino, C.
Badica, M. Malgeri, and R. Unland, Eds., vol. 446 of Studies
in Computational Intelligence, pp. 23–28, Springer, Berlin, Ger-
many, 2013.

[15] R. Klauck and M. Kirsche, “Bonjour Contiki: a case study of a
DNS-based discovery service for the Internet ofThings,” in Ad-
hoc, Mobile, andWireless Networks, vol. 7363 of Lecture Notes in
Computer Science, pp. 316–329, Springer, Berlin, Germany, 2012.

[16] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,
“Interacting with the SOA-based internet of things: discovery,
query, selection, and on-demand provisioning of web services,”
IEEE Transactions on Services Computing, vol. 3, no. 3, pp. 223–
235, 2010.

[17] D. Zeng, S. Guo, and Z. Cheng, “The web of things: a survey,”
Journal of Communications, vol. 6, no. 6, pp. 424–438, 2011.

[18] Z. Shelby, “Embedded web services,” IEEE Wireless Communi-
cations, vol. 17, no. 6, pp. 52–57, 2010.

[19] D. Guinard, I. Ion, and S. Mayer, “In search of an Internet
of Things service architecture: REST or WS-∗? A developers’
perspective,” inMobile andUbiquitous Systems: Computing,Net-
working, and Services, vol. 104 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 326–337, Springer, Berlin, Germany, 2012.

[20] E. A. Lee, “Cyber physical systems: design challenges,” in
Proceedings of the 11th IEEE International Symposium on Object
Oriented Real-Time Distributed Computing (ISORC ’08), pp.
363–369, IEEE, Orlando, Fla, USA, May 2008.

[21] F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “From wireless sensor
networks towards cyber physical systems,” Pervasive andMobile
Computing, vol. 7, no. 4, pp. 397–413, 2011.

[22] E. A. Lee, “Computing foundations and practice for cyber-
physical systems: a preliminary report,” Tech. Rep. UCB/EECS-
2007-72, University of California, Berkeley, Berkeley, Calif,
USA, 2007.

[23] R. Al Ali, T. Bures, I. Gerostathopoulos et al., “DEECo: an
ecosystem for cyber-physical systems,” inProceedings of the 36th
International Conference on Software Engineering, pp. 610–611,
ACM, Hyderabad, India, June 2014.

[24] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou,
“Distributed real-time software for cyber-physical systems,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 45–59, 2012.

[25] P. Horn, “Autonomic computing: IBM’s perspective on the state
of information technology,” Computing Systems, vol. 15, pp. 1–
40, 2001.

[26] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic
computing era,” IBM Systems Journal, vol. 42, no. 1, pp. 5–18,
2003.

[27] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[28] B. Biskupski, J. Dowling, and J. Sacha, “Properties and mech-
anisms of self-organizing MANET and P2P systems,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 2, no.
1, article 1, 2007.

[29] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. Sunderam,
“Towards selforganizing distributed computing frameworks:
the H

2
O approach,” Parallel Processing Letters, vol. 13, no. 2, pp.

273–290, 2003.
[30] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K.

Pohl, “A journey to highly dynamic, self-adaptive service-based
applications,” Automated Software Engineering, vol. 15, no. 3-4,
pp. 313–341, 2008.

[31] A. J. Chakravarti, G. Baumgartner, andM. Lauria, “The organic
grid: self-organizing computation on a peer-to-peer network,”

International Journal of Distributed Sensor Networks 17

IEEE Transactions on Systems, Man, and Cybernetics Part A:
Systems and Humans., vol. 35, no. 3, pp. 373–384, 2005.

[32] H. Schmeck, “Organic computing—a new vision for distributed
embedded systems,” in Proceedings of the 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC ’05), pp. 201–203, IEEE, May 2005.

[33] P. Boonma, P. Champrasert, and J. Suzuki, “BiSNET: a
biologically-inspired architecture for wireless sensor networks,”
in Proceedings of the International Conference on Autonomic and
Autonomous Systems (ICAS ’06), 54, IEEE, Silicon Valley, Calif,
USA, July 2006.

[34] K. Aberer, M. Hauswirth, and A. Salehi, “Middleware support
for the ‘Internet of Things’,” in 5th GI/ITG KuVS Fachgespräch
“Drahtlose Sensornetze”, LSIR-CONF-2009-017, Stuttgart, Ger-
many, 2006.

[35] J. I. Vazquez, A. Almeida, I. Doamo, X. Laiseca, and P. Orduña,
“Flexeo: an architecture for integratingwireless sensor networks
into the Internet of Things,” in 3rd Symposium of Ubiquitous
Computing and Ambient Intelligence 2008, vol. 51 ofAdvances in
Soft Computing, pp. 219–228, Springer, Berlin, Germany, 2009.

[36] O. Dagdeviren, I. Korkmaz, F. Tekbacak, and K. Erciyes, “A
survey of agent technologies for wireless sensor networks,” IETE
Technical Review, vol. 28, no. 2, pp. 168–184, 2011.

[37] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: a mobile agent
middleware for self-adaptive wireless sensor networks,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 4, no.
3, article 16, 2009.

[38] A. Boulis, C.-C. Han, R. Shea, and M. B. Srivastava, “Sensor-
Ware: programming sensor networks beyond code update and
querying,” Pervasive and Mobile Computing, vol. 3, no. 4, pp.
386–412, 2007.

[39] T. Harman, J. Padget, and M. Warnier, “A multi-layered
semantics-ready sensor architecture,” in Proceedings of the
3rd International Workshop on Agent Technology for Sensor
Networks (ATSN ’09), Budapest, Hungary, May 2009.

[40] J. W. Hui and D. Culler, “The dynamic behavior of a data
dissemination protocol for network programming at scale,” in
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, pp. 81–94, ACM, November 2004.

[41] T. Liu and M. Martonosi, “Impala, a middleware system for
managing autonomic, parallel sensor systems,” in Proceedings
of the 9th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’03), vol. 38, pp. 107–118, San
Diego, Calif, USA, June 2003.

[42] R. Willett, A. Martin, and R. Nowak, “Backcasting: adaptive
sampling for sensor networks,” in Proceedings of the 3rd Interna-
tional Symposium on Information Processing in Sensor Networks
(IPSN ’04), pp. 124–133, ACM, Berkeley, Calif, USA, April 2004.

[43] G.Mainland, D. C. Parkes, andM.Welsh, “Decentralized, adap-
tive resource allocation for sensor networks,” in Proceedings of
the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2, pp. 315–328, USENIXAssociation,
2005.

[44] P. Padhy, R. K. Dash, K.Martinez, andN. R. Jennings, “A utility-
based sensing and communication model for a glacial sensor
network,” inProceedings of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS ’06),
pp. 1353–1360, ACM, May 2006.

[45] J. Kho, A. Rogers, and N. R. Jennings, “Decentralised adaptive
sampling of wireless sensor networks,” in Proceedings of the
1st International Workshop on Agent Technology for Sensor
Networks, pp. 55–62, Honolulu, Hawaii, USA, May 2007.

[46] O. Paunovski, G. Eleftherakis, K. Dimopoulos, and T. Cowling,
“Evaluation of a selective distributed discovery strategy in a
fully decentralized biologically inspired environment,” Informa-
tion Sciences, vol. 180, no. 10, pp. 1865–1875, 2010.

[47] B. Beverly Yang andH. Garcia-Molina, “Designing a super-peer
network,” in Proceedings of the 19th International Conference
on Data Engineering, U. Dayal, K. Ramamritham, and T.
M. Vijayaraman, Eds., pp. 49–60, IEEE Computer Society,
Bangalore, India, March 2003.

[48] I. Crnkovic, J. Stafford, and C. Szyperski, “Software components
beyond programming: from routines to services,” IEEE Soft-
ware, vol. 28, no. 3, pp. 22–26, 2011.

[49] L. Braubach and A. Pokahr, “Developing distributed systems
with active components and Jadex,” Scalable Computing: Prac-
tice and Experience, vol. 13, no. 2, pp. 100–119, 2012.

[50] Z. Zhang, Y. Wang, F. Song, and W. Zhang, “An energy-
balanced mechanism for hierarchical routing in wireless sensor
networks,” International Journal of Distributed Sensor Networks,
vol. 2015, Article ID 123521, 10 pages, 2015.

[51] K. Kim, C. Ha, and C. Ok, “Network structure-aware ant-based
routing in large-scale wireless sensor networks,” International
Journal of Distributed Sensor Networks, vol. 2015, Article ID
521784, 16 pages, 2015.

[52] A. Basholli, T. Lagkas, G. Eleftherakis, and P. A. Bath, “Wireless
monitoring systems for enhancing national health services in
developing regions,” in Proceedings of the International Confer-
ence on Health Informatics (HEALTHINF ’14), M. Bienkiewicz,
C. Verdier, G. Plantier, T. Schultz, A. L. N. Fred, andH.Gamboa,
Eds., pp. 511–516, ESEO, SciTePress, March 2014.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

