
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2015; 25:749–780
Published online 20 March 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1575

Assessing and generating test sets in terms of
behavioural adequacy

Gordon Fraser1,*,† and Neil Walkinshaw2,*,†

1Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, S1 4DP, Sheffield, UK
2Department of Computer Science, University of Leicester, University Road, LE1 7RH, Leicester, UK

SUMMARY

Identifying a finite test set that adequately captures the essential behaviour of a program such that all faults
are identified is a well-established problem. This is traditionally addressed with syntactic adequacy met-
rics (e.g. branch coverage), but these can be impractical and may be misleading even if they are satisfied.
One intuitive notion of adequacy, which has been discussed in theoretical terms over the past three decades,
is the idea of behavioural coverage: If it is possible to infer an accurate model of a system from its test exe-
cutions, then the test set can be deemed to be adequate. Despite its intuitive basis, it has remained almost
entirely in the theoretical domain because inferred models have been expected to be exact (generally an infea-
sible task) and have not allowed for any pragmatic interim measures of adequacy to guide test set generation.
This paper presents a practical approach to incorporate behavioural coverage. Our BESTEST approach
(1) enables the use of machine learning algorithms to augment standard syntactic testing approaches and
(2) shows how search-based testing techniques can be applied to generate test sets with respect to this cri-
terion. An empirical study on a selection of Java units demonstrates that test sets with higher behavioural
coverage significantly outperform current baseline test criteria in terms of detected faults. © 2015 The
Authors. Software Testing, Verification and Reliability published by John Wiley & Sons, Ltd.

Received 30 April 2014; Revised 23 February 2015; Accepted 23 February 2015

KEY WORDS: test generation; test adequacy; search-based software testing

1. INTRODUCTION

To test a software system, it is necessary to (a) determine the properties that constitute an adequate
test set and (b) identify a finite test set that fulfils these adequacy criteria. These two questions have
featured prominently in software testing research since they were first posed by Goodenough and
Gerhart in 1975 [1]. They define an adequate test set to be one that implies no errors in the program if
it executes correctly. In the absence of a complete and trustworthy specification or model, adequacy
is conventionally quantified according to proxy measures of actual program behaviour. The most
popular measures are rooted in the source code—these include branch, path and mutation coverage.

Such measures are hampered because there is often a chasm between the static source code syn-
tax and dynamic, observable program behaviour. Ultimately, test sets that fulfil source code-based
criteria can omit crucial test cases, and quantitative assessments can give a misleading account of
the extent to which program behaviour has really been explored.

*Correspondence to: Gordon Fraser, University of Sheffield, Department of Computer Science, Regent Court, 211 Porto-
bello, S1 4DP, Sheffield, UK; Neil Walkinshaw, Department of Computer Science, University of Leicester, University
Road, LE1 7RH, Leicester, UK.

†E-mail: gordon.fraser@sheffield.ac.uk; n.walkinshaw@leicester.ac.uk
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

http://creativecommons.org/licenses/by/3.0/

750 G. FRASER AND N. WALKINSHAW

In this paper, we take an alternative view of test set adequacy, following an idea first proposed by
Weyuker in 1983 [2]: If we can infer a model of the behaviour of a system by observing its outputs
during the execution of a test set, and we can show that the model is accurate, it follows that the test
set can be deemed to be adequate. The approach is appealing because it is concerned with observable
program behaviour, as opposed to some proxy source-code approximation. However, despite this
intuitive appeal, widespread adoption has been hampered by the problems that (a) the capability
to infer accurate models has been limited, (b) establishing the equivalence between a model and a
program is generally undecidable, and (c) there are no systematic approaches to deriving test sets
that cover a program’s behaviour.

The challenge of assessing the equivalence of inferred models with their hidden counterparts is
one of the major avenues of research in the field of machine learning. Since the publication of
Valiant’s paper on probably approximately correct (PAC) learning [3], numerous techniques have
been developed that, instead of aiming to establish whether or not an inferred model is exactly
correct, aim to provide a more quantitative measurement of how accurate it is. This ability to
quantify model accuracy in a justifiable way presents an opportunity to make Weyuker’s idea of
inference-driven test adequacy a practical reality.

This paper shows how, by applying the principles that underlie PAC learning, it is possible to
develop a practical and reliable basis for generating rigorous test sets. This paper extends an earlier
paper [4] that strictly followed the PAC principles in the BESTESTPAC approach, but in doing so
leads to problems of large test sets and potential bias. To overcome this problem, this paper makes
the following contributions:

� It presents the refined BESTESTCV technique, which adopts k-folds cross validation—a more
pragmatic substitute for PAC, which yields much smaller test sets.
� It shows how behavioural adequacy assessment approaches can be used to assess test sets for

systems that take data inputs and produce a data output (Section 3) in terms of a Behavioural
Coverage criterion.
� It presents a search-based test generation technique that extends standard syntactic test gen-

eration techniques by ensuring that test sets are optimized with respect to this criterion
(Section 4).
� It presents an empirical study on 18 Java units, indicating that the technique produces test sets

that explore a broader range of program behaviour and find more faults than similar test sets
that meet the traditional, syntax-based adequacy metrics (Section 5).

2. BACKGROUND

The section begins with a discussion of the weaknesses of conventional syntactic coverage mea-
sures. This is followed by an introduction to the general notion of behavioural adequacy. Finally,
the section introduces two notions from the domain of machine learning. The first is the probably
approximately correct (PAC) framework, a theoretical framework for evaluating model accuracy
that underpins our BESTESTPAC approach. The second introduces the k-folds cross validation, a
more applied evaluation framework that underpins our BESTESTCV approach.

2.1. Source code-driven testing is inadequate

When reduced to reasoning about program behaviour in terms of source code alone, it is generally
impossible to predict with any confidence how the system is going to behave [5]. Despite this dis-
connect between code and behaviour, test adequacy is still commonly assessed purely in terms of
syntactic constructs. Branch coverage measures the proportion of branches executed; path coverage
measures the proportion of paths; mutation coverage measures the proportion of syntax mutations
that are discovered.

These approaches are appealing because they are based on concepts every programmer under-
stands; for example, it is usually straightforward to add new tests to improve branch coverage.
However, the validity of these approaches is dubious because the precise relationship between a

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 751

syntactic construct and its effect on the input/output behaviour of a program is generally impossi-
ble to ascertain. Branches and paths may or may not be feasible. Mutations may or may not change
program behaviour. Loops may or may not terminate.

Even if these undecidability problems are set aside, and one temporarily accepts that it is possible
to cover all branches and paths and that there are no equivalent mutants, there still remains the
problem that these measures remain difficult to justify. There is at best a tenuous link between
coverage of code and coverage of observable program behaviour (and the likelihood of exposing
any faults). These measures become even more problematic when used as a basis for measuring how
adequate a test set is. It is generally impossible to tell whether covering 75% of the branches, paths
or mutants implies a commensurate exploration of observable program behaviour; depending on the
data-driven dynamics of the program, it could just as well be 15% or 5%.

Some of these problems are illustrated with the bmiCategory example in Figure 1. The test set in
the table achieves branch and path coverage but fails to highlight the bug in line 5; the inputs do not
produce a body mass index (BMI) greater than 21 and smaller than 25 that would erroneously output
‘overweight’ instead of ‘normal’. Although mutation testing is capable in principle of highlight-
ing this specific fault, this depends on the selection of mutation operators and their quasi-random
placement within the code—there is no means by which to establish that a given set of mutations
collectively characterizes what should be a truly adequate test set.

The fact that the given test set is unable to find this specific fault is merely illustrative. There is
a broader point: source code coverage does not imply behavioural coverage and is not in itself a
justifiable adequacy criterion. If a test set claims to fully cover the behaviour of a system, it ought to
be possible to derive an accurate picture of system behaviour from the test inputs and outputs alone
[2, 6, 7]. A manual inspection of only the inputs and outputs of the BMI example tells us virtually
nothing about the BMI system; one could guess that increasing the height can lead to a change in
output category. However, it is impossible to accurately infer the relationship between height, weight
and category from these five examples. Despite being nominally adequate, they fail to sufficiently
explore the behaviour of the system.

2.2. Behavioural test set adequacy

Behavioural adequacy is founded on the idea that, if a test set is to be deemed adequate, its tests
‘cover all aspects of the actual computation performed by the program’ [2]. In this context, the term
behaviour refers to the relationship between the possible inputs and outputs of a program. In other
words, it should be possible to infer a model from the program behaviour from the test set, which can
accurately predict the outputs for inputs that have not necessarily been encountered. The concrete
representation of this will vary depending on the nature of the program; a sequential control-driven

Figure 1. bmiCategory example that calculates the body mass index (BMI), and a test set for the BMI
example that achieves branch and path coverage.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

752 G. FRASER AND N. WALKINSHAW

Figure 2. Basic ‘virtuous loop’ that combines testing with model inference.

system could be modelled as a finite-state machine; a data function might be represented by a
differential equation, or a decision tree.

The idea of adopting this perspective to assess test adequacy was first proposed by Weyuker [2],
who developed a proof-of-concept system that inferred LISP programs to fit input/output data.
Since then, the idea of combining model inference with software testing has been comprehensively
explored in several theoretical and practical contexts [6–14]. Much of this work has focussed on the
appealing, complementary relationship between program testing and machine learning. The former
is concerned with finding suitable inputs and outputs to exercise a given model of some hidden sys-
tem, and the latter infers models from observed inputs and outputs. Together, the two disciplines
can be combined to form a ‘virtuous loop’ where (at least in principle) it would be possible to fully
automate the complete exploration of software behaviour.

This loop is illustrated in Figure 2. Of course, there are variants; different types of models, feed-
back mechanisms and other sources of inputs can be fed in. Ultimately, the basic process is one of
generating test sets, inferring models from their executions and (usually) using the models to iden-
tify new test cases. The point at which the process terminates is also variable. Some approaches will
only terminate once a strict condition has been established (e.g. the model can be demonstrated to
be exactly accurate [12]). Others will simply terminate if time runs out, or no further test cases can
be found that contradict the model [14].

A key factor that has prevented the widespread use of behavioural adequacy has been its practical-
ity. So far, approaches have sought to make an adequacy decision, rather than obtain a quantitative
measurement. Models are deemed either accurate or inaccurate, accordingly test sets must be either
adequate or inadequate. This is problematic because the tasks of inferring an exact model and test-
ing a model against a system are practically infeasible. In practice, this means that the combined
processes of inference and testing tend to require infeasibly large numbers of test cases to converge
upon the final adequate test set. If on the other hand a cheaper inference process is adopted that
allows for an inexact model (cf. previous work by Walkinshaw et al. [14]), there has been no reli-
able means by which to gauge the accuracy of the final model, and to assess the adequacy of the
final test set.

2.3. The probably approximately correct (PAC) framework

The aforementioned problems of expense and accuracy have formed the basis for a substantial body
of research in the machine learning community. Much of this research has been carried out under the
heading of statistical or computational learning theory [15]. In this context, Valiant’s popular PAC
framework [3] has been used extensively to reason in statistical terms about learnability—the notion
that certain types of concepts can be inferred to a sufficient degree of accuracy within polynomial
time. The PAC framework describes a basic learning setting, where the key factors that determine
the success of a learning outcome are characterized in probabilistic terms. As a consequence, if it
can be shown that a specific type of learner fits this setting, important characteristics such as its
accuracy and expense with respect to different sample sizes can be reasoned about probabilistically.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 753

Much of the notation used here to describe the key PAC concepts stems from Mitchell’s introduction
to PAC [15].

The PAC setting assumes that there is some instance space X . For a software system, this would
be the infinite set of all (possible and impossible) combinations of inputs and outputs. A concept
class C is a set of concepts over X , or the set of all possible models that consume the inputs and
produce outputs in X . The nature of these models depends on the software system; for sequential
input/output processors, C might refer to the set of all possible finite-state machines over X . For
systems such as the BMI example, C might refer to the set of all possible decision trees [15].

A concept c � X corresponds to a specific target within C to be inferred (we want to find a
specific subset of relationships between inputs and outputs that characterize our software system).
Given some element x (a given combination of inputs and outputs), c.x/ D 0 or 1, depending on
whether it belongs to the target concept (conforms to the behaviour of the software system or not).
The conventional assumption in PAC is that there exists some selection procedure EX.c;D/ that
randomly selects elements in X following some static distribution D (we do not need to know this
distribution, but it must not change).

The basic learning scenario is that some learner is given a set of examples as selected by
EX.c;D/. After a while, it will produce a hypothesis model h. The error rate of h subject to
distribution D (errorD.h/) can be established with respect to a further ‘evaluation’ sample from
EX.c;D/. This represents the probability that h will misclassify one of the test samples, that is,
errorD.h/ � P rx2DŒc.x/ ¤ h.x/�.

In most practical circumstances, a learner that has to guess a model given only a finite set of sam-
ples is susceptible to making a mistake. Furthermore, given that the samples are selected randomly,
its performance might not always be consistent; certain input samples could happen to suffice for it
to arrive at an accurate model, whereas others could miss out the crucial information required for
it to do so. To account for this, the PAC framework enables us to explicitly specify a limit on the
extent to which an inferred model is allowed to be erroneous to still be considered approximately
accurate (�), and the probability with which it will infer an approximate model (ı).

It is important to distinguish between the term ‘correct’ in this context of model inference and the
context of software testing. A model is ‘correct’ in the PAC sense if, for every input, it will return the
same output as the subject system from which it was inferred, regardless of whether these outputs
conform to the output expected by the systems’ developer. This is clearly different from the notion
of functional correctness as applied to software. In this case, an output is only correct if it conforms
to the developer’s intentions, or some abstract specification.

2.4. k-folds cross validation

In the testing context considered in this paper, there are several practical barriers that undermine the
validity of applying PAC. PAC presumes that there are two large samples, selected under identical
circumstances. However, in a testing context, there may only be a small selection of test cases
available, and partitioning this sample into a training and a test sample could produce two highly
dissimilar sets of features. Secondly, the available sample of test cases is unlikely to have been
randomly selected from some fixed distribution; they might have been handpicked to deliberately
achieve branch coverage for example.

This problem is also well established in machine learning. A practical alternative that has become
the de facto standard for evaluating inferred models in such a context is known as k-folds cross
validation (CV) [16]. The basic idea is to, for some k, randomly divide the original set of examples
into k mutually exclusive subsets. Over k iterations, a different subset of examples is selected as the
‘evaluation set’, whilst the rest are used to infer the model. The final accuracy value is taken to be
the average accuracy score from all of the iterations. This has the benefit of producing an accuracy
measure without requiring a second, external test set.

2.4.1. Choosing k. One key parameter with the use of CV is the choice of k. There is no firm advice
on choosing this [16]. The choice depends on a combination of (a) the total number of examples
available, (b) the extent to which these exercise the behaviour of the system in question and (c) the

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

754 G. FRASER AND N. WALKINSHAW

amount of time available. For example, if the number of examples is low and k is too high, the
partition used for evaluation could be too small, yielding a misleading score. If there are lots of
examples and k is high, it could take too much time to iterate through all of the partitions.

A common choice for k when CV is used to evaluate machine learning techniques is 10 (the CV
technique as a whole is often referred to as ‘10-folds cross validation’). Alternatively, if the number
of examples is not too high, it is possible to use ‘leave-one-out cross validation’, where k D n � 1,
and the evaluation set always consists of just one example. Ultimately, however, given the lack of
concrete guidance, the choice of k is left to the user, and their judgement of the extent to which the
set of examples is representative of the system in question.

2.4.2. Choosing a scoring function. Another important parameter is the choice of evaluation metric.
In other words, given an inferred model and a sample of inputs and outputs that were not used
for the inference, how can we use this sample to quantify the predictive accuracy of the model?
To provide an answer, there are numerous approaches, the selection of which depends on several
factors, including the type of the model and whether its output is numerical or categorical.

For models that produce a single numerical output, the challenge of comparing expected outputs
to the outputs produced by a model is akin to the challenge of establishing a statistical corre-
lation. Accordingly, standard correlation-coefficient computation techniques (Pearson, Kendall or
Spearman rank) can be used.

For non-numerical outputs, assessing the accuracy of a model can be more challenging. Accuracy
is often assessed by measures that build upon the notions of true and false positives and negatives.
Popular measures include the F-measure (the harmonic mean of Precision and Recall [17]), the
receiver operating characteristic (ROC) and Cohen’s kappa measure on inter-rater agreement [18].

3. ASSESSING BEHAVIOURAL ADEQUACY

In this section, we show how the various notions presented in the previous section can be used to
compute inference-based measures of test adequacy. We firstly present a PAC-based measure [4] in
Section 3.1. This is then followed up by the k-folds CV measure in Section 3.2, which addresses
some of the limitations of PAC.

3.1. Using PAC to quantify behavioural adequacy

The PAC framework presents an intuitive basis for reasoning about test adequacy. Several authors
have attempted to use it in a purely theoretical setting to reason about ‘testability’, to reformulate
syntax-based adequacy axioms [6, 7, 10] or to place bounds on the number of tests required to
produce an adequate test set [19].

Figure 3. Probably approximately correct (PAC)-driven test adequacy assessment [19]

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 755

The basic approach (as presented in [4]) is shown in Figure 3 (the arcs are numbered to indicate
the flow of events). The test generator produces tests according to some fixed distribution D that
are executed on the system under test (SUT) c. With respect to the conventional PAC framework,
they combine to perform the function of EX.c;D/. The process starts with the generation of a test
set A by the test generator (this is what we are assessing for adequacy). This is executed on the
SUT; the executions are recorded and supplied to the inference tool, which infers a hypothetical
model that predicts outputs from inputs. Now, the test generator supplies a further test set B . The
user may supply the acceptable error bounds � and ı (without these the testing process can still
operate, but without conditions for what constitutes an adequate test set). The observations of test
set B are then compared against the expected observations from the model, and the results are used
to compute errorD.h/. If this is smaller than �, the model inferred by test set A can be deemed to be
approximately accurate (i.e. the test set can be deemed to be approximately adequate).

The ı parameter is of use if we want to make broader statements about the effectiveness of the
combination of learner and test generator. By running multiple experiments, we can count the pro-
portion of times that the test set is approximately adequate for the given SUT. If, over a number
of experiments, this proportion is greater than or equal to 1 � ı, it becomes possible to state that,
in general, the test generator produces test sets that are probably approximately adequate (to para-
phrase the term ‘probably approximately correct’, that would apply to the models inferred by the
inference technique in a traditional PAC setting).

3.1.1. Limiting factors. The PAC framework was developed as a purely theoretical concept. With
respect to testing, this has facilitated several useful calculations, such as establishing a polynomial
bound on the number of random tests required to ensure behavioural adequacy [19]. More funda-
mentally, it enables us to establish whether, at least in theory, certain systems are even ‘testable’
(i.e. whether or not there is a polynomial limit for a given system at all).

However, applying this framework in a testing context gives rise to several fundamental limita-
tions (as mentioned in Section 2.4). The assumption that tests are selected at random from a fixed
distribution is unrealistic. Effectively, this assumption would imply that there exists some fixed set
of test inputs, from which both the test set and evaluation set are blindly selected. In reality, test sets
are generated differently. For example, in attempting to ensure syntax coverage, one might select
random inputs at first but then select further inputs that are influenced by the performance of the
initial ones. One might also include particular test cases that are sanity-checks, and others that tar-
get aspects of behaviour that are known to be particularly vulnerable to faults. This is not random
selection; the distribution is not fixed, and the tests are not selected independently.

If we simply ignore these problems and use PAC regardless, there is a danger that the adequacy
score is invalid. Ultimately, PAC is a statistical framework; it makes a probabilistic assumption that
the final model is ‘approximately correct’. To be valid, statistical comparisons between groups rely
on the presumption that the groups are sufficiently similar (to ensure that we are comparing ‘like
with like’). This assumption can be easily violated in a testing context.

Aside from the manner in which samples are selected, there is also the (implicit) assumption that
there are sufficient test cases from which to form a sufficiently robust comparison. Given that the
comparison between the test set and the evaluation set is statistical in nature, statistical observations
can only be confirmed with any confidence if they are derived from a sufficiently large number of
observations. This runs counter to the general aim of keeping test sets as small as possible. Test
sets that contain fewer than 10 test cases are very frequent but cannot be reasonably used in a PAC
setting, because any statistical conclusion would lack sufficient statistical power.

These limiting factors do not necessarily rule out the use of PAC; it is always possible to cal-
culate a score. If there are not enough test cases to produce two sufficiently sized groups, the de
facto alternative is to construct the evaluation set from a large number of random tests. Ultimately,
however, such workarounds do place a question mark over the validity of the adequacy scores that
are produced.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

756 G. FRASER AND N. WALKINSHAW

Figure 4. Illustration of k-folds cross validation applied to behavioural adequacy.

3.2. Using CV to quantify behavioural adequacy

This section shows how k-folds cross validation (introduced in Section 2.4) can be used instead of
PAC. This enables the use of a single large test set instead of two separate ones, which attenuates
the problem of bias that can arise with PAC and reduces the number of tests required.

The process is illustrated in Figure 4. The scoring process starts with a single test set. The test set
is partitioned into k sets of tests. Over k iterations, k�1 of the sets are used to infer a model, whilst
the remaining set is used for evaluation. The result is taken to be the average of the scores.

CV is commonly used under the assumption that the given set of examples collectively reflect
the complete range of behaviour of the underlying system. If this is the case, the resulting average
score can be taken as indicative of the accuracy of the model inferred from the complete set. This
assumption of a collectively representative set of examples does of course not always hold. In the
case of program executions, a truly representative set is notoriously difficult to collect [1]. This
gives rise to the question of what a CV score means when the test set is not necessarily complete
or representative.

In this scenario, a CV score has to be interpreted in a more nuanced manner. Although CV scores
are always ‘internally valid’ (they are always valid with respect to the data they are given), they
are not necessarily ‘externally valid’; they can easily be misled by a poor sample. For example,
looking forward to our inference of models from program executions, a set of examples that omits
a prominent function in a program could yield models that all presume that no such function exists.
Although the models may be very wrong, because they are all evaluated with respect to the same
incomplete sample, they could still yield a very high CV score.

As a result, for scenarios where sets of examples fail to collectively expose the full range of
behaviour of the system, there is the danger that the resulting score can be inaccurate. It is conse-
quently necessary to interpret CV in a conservative light. If the score is high, it could well be due
to a bias in the sample. A high CV score can at best corroborate the conclusion that an inference
technique is accurate but cannot offer any form of guarantee. However, if the score is low, this is
more reliably indicative of a problem, that is, with the sampling of the test set, or the inference of
the model.

3.3. Combining code coverage with behavioural adequacy

As discussed in Section 2.1, source code coverage alone is insufficient when used alone as a basis
for assessing test adequacy. Test sets that achieve code coverage often fail to expose crucial aspects
of software behaviour. Capturing the set of executions that fully expose the relationship between the
input to a program and its output generally entails more than simply executing every branch. It is
this line of reasoning that underpins the PAC and CV-driven behavioural adequacy approaches.

However, as discussed in the previous text, PAC and CV are limited by one common factor:
they will provide a misleading score if the test set(s) is incomplete. If a portion of a program that
contributes to the output of the program is not executed, it cannot be factored into a behavioural
model. In this respect, test adequacy is two-dimensional; it is necessary to make sure that all of

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 757

the code is executed, but it is equally necessary to ensure that this code is executed sufficiently
rigorously so as to ensure that all of its possible contributions to the program output are exposed.

This rationale underpins the argument that code coverage and behavioural adequacy are com-
plementary [2]. Code coverage can guide the test selection towards executing the full range of
behavioural features but cannot ensure that these features are executed in a sufficiently comprehen-
sive manner. This aspect can however be assessed in terms of behavioural adequacy. The fact that
the two measures are complementary suggests that they should both be taken into account when
assessing the adequacy of a test set. This gives rise to our behavioural coverage metric, defined
as follows:

Definition 1 (Behavioural coverage)

BCT D .CovT ; BAT /

For a given test set T , CovT measures the code coverage (e.g. branch coverage) for T .BAmeasures
the behavioural adequacy (either by PAC or CV) for T .

In order to impose an order on test sets in terms of their behavioural coverage, one could combine
the two dimensions into a weighted average, similar to how the F-measure combines precision
and recall. This is what we do in our optimisation (Section 4). Depending on the circumstances,
however, it might be preferable to treat the two dimensions separately, for example, as part of a
multi-objective optimisation.

This is not the first attempt to extend pure code coverage. However, past approaches to overcome
the deficiencies of code coverage have lead to extended coverage metrics that consider code ele-
ments only covered if they influence observable outputs (e.g. OCCOM [20] or OMC/DC [21]), or
if they propagate to test assertions [22]. Behavioural coverage is different in that syntactic coverage
and behavioural adequacy cannot easily be coerced into a single value, they are rather two dimen-
sions: Code coverage represents which parts of a program have been tested, and adequacy measures
how well they have been tested.

3.4. An example of behavioural coverage in action

To provide an intuitive illustration of the rationale behind behavioural coverage, we consider
the three diagrams shown in Figure 5. The area of each diagram is taken to represent the full
range of input/output behaviour. Each zone within a diagram represents a distinctive feature of
program behaviour.

Branch coverage of a program (Figure 5(a)) can often be achieved from a relatively small test
set. In the BMI example, this ought to execute each behaviour of the program at least once. As
one could easily conceive of a program involving conditional loops or complex data dependencies,

(a) Branch Coverage (b) Behavioural Adequacy (c) Behavioural Coverage

Figure 5. Illustration supporting the rationale for behavioural coverage.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

758 G. FRASER AND N. WALKINSHAW

Figure 6. Decision trees inferred from different example test sets for the body mass index program.

it is therefore worth emphasizing that one could choose more rigorous code coverage criteria for
behavioural coverage, such as Def-Use coverage [23] or MCDC [24]. However, merely executing a
behaviour once is not necessarily sufficient by itself; as discussed in Section 2.1, a single execution
of a feature is unlikely to expose any faulty behaviour.

Behavioural adequacy tells us how accurate the models are that we infer from the executed test
cases. This, in turn, can be used to gauge how well our test cases delineate between the distinctive
behaviour of different program features. For example, consider the decision tree in Figure 6(a),
which is inferred from the branch coverage test set for the BMI example in Figure 1. This decision

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 759

tree is clearly incomplete; for example, none of the inferred decisions even depend on input ‘weight’.
This incompleteness is reflected with a behavioural adequacy measurement of 0.0.

However, as shown in Figure 5(b), behavioural adequacy alone can be misleading. If a feature is
not represented in a test set at all, this will not be reflected in the resulting assessment. Figure 6(b)
shows a decision tree inferred from a set of 76 tests (selected from a random set of tests for illus-
trative purposes) that cover only the cases of normal and underweight BMI values. Compared with
Figure 6(a), the decisions are quite accurately reflecting the implementation with respect to the
observed behaviour, which is reflected by a high adequacy score (0.97 using F-measure). However,
the branch coverage value (40%) reveals that only two out of five cases are covered.

This leads us to the rationale for behavioural coverage, as shown in Figure 5(c). It seeks to com-
bine the benefits of these two approaches. Accordingly, a test set should not only execute each
individual feature but should do so sufficiently to achieve behavioural adequacy with respect to all
of the features. An example of such a test set is used to infer the decision tree shown in Figure 6(c):
All branches are covered, leading to 100% branch coverage. However, the adequacy score is now
lower than that in Figure 6(b) (0.89), showing that although more behaviour has been covered, it has
not been exercised with the same intensity as the subset of behaviour in Figure 6(b).

3.5. What about program correctness?

In this paper, we are exclusively concerned with the adequacy problem; assessing the extent to which
a test set covers the observable program behaviour. The question of whether the tests are producing
the correct results (the oracle problem) remains an open one. Note that this is not a problem specific
to the notion of behavioural adequacy but applies to any adequacy measurement not based on a
representation of intended behaviour (e.g. specification). For now, we have to presume that faults
will manifest themselves in obvious ways (e.g. as program failures) or will be detected with the aid
of assertions that have been produced a priori (either within the code or expressed as test properties).

One further commonly suggested option is for the tester to manually inspect the test outputs. The
problem here is that it can be a time-consuming, error-prone task. Potentially complex computations
carried out by the SUT have to be replicated by the tester. Abstract functional requirements have to
be reconciled with (possibly large numbers of) low-level inputs and outputs.

In this respect, inferring models from test executions can however provide assistance. Depending
on the choice of inference algorithm, inferred models can provide an abstract, inspectable represen-
tation of what has been tested. What might be thousands of test executions can often be summarized
into a much more succinct abstract model.

4. GENERATING ADEQUATE TEST SETS

Having defined how to measure test set adequacy, we now turn to the question of how to produce
test sets that are optimized in this respect. Whilst some traditional test generation problems such as
branch coverage can be nicely framed in a way that makes it possible to use symbolic techniques to
calculate test data, this does not immediately hold for behavioural adequacy. Furthermore, because
a test set that achieves full behavioural adequacy could imply an unreasonably large number of tests,
one might be content to trade off the adequacy for a smaller, more practical test set. Ultimately, this
is an optimization problem calling for search-based testing techniques.

4.1. Search-based testing

The use of meta-heuristic search techniques to produce test cases is commonly referred to as search-
based testing. Typically, meta-heuristic search algorithms are driven by fitness functions, which are
heuristic functions to estimate the distance of a candidate solution to the optimal solution. In the
context of software testing, an individual of the search is often a test case, and the fitness function
estimates the distance towards reaching a particular point in the code. Alternatively, individuals
can constitute entire test sets. This is necessary if the objective concerns the entire test set, such as
achieving 100% branch coverage or, in our case, behavioural adequacy.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

760 G. FRASER AND N. WALKINSHAW

To develop a search-based test generator for behavioural adequacy, it is necessary to define a
suitable fitness function. According to Section 3, and in particular Definition 1, achieving this goal
involves two distinct objectives: first, to execute all the code of the method, and second, to ade-
quately do so. In other words, the fitness function should assess a test set in terms of its code
coverage, but also in terms of its ability to expose a sufficiently broad range of observable behaviour
with respect to the executed code.

The tasks of fulfilling these two objectives are discussed in the following two subsections. This
is followed by a more in-depth description of how the genetic algorithm applies the resulting fitness
functions to home-in on suitable test sets.

4.2. Code coverage

The first objective is a traditional goal in test generation; a prerequisite to finding errors in a piece
of code is that the code is actually executed in the first place. A reasonable approximation is articu-
lated in the traditional branch coverage metric: The proportion of possible true and false predicate
outcomes that have been executed in a program (where 100% implies that all edges of the control
flow graph are traversed). In principle, the approach could also be used in conjunction with more
rigorous criteria such as Modified Condition/Decision Coverage (MCDC) [24], which may have a
higher chance of revealing additional behaviour. Theoretical coverage criteria such as path coverage
may help to expose more behaviour, but the path explosion problem caused by constructs such as by
loops means that such criteria cannot generally be applied in practice. Furthermore, the link between
behaviour and coverage remains tenuous: Executing loops with different numbers of iterations will
not necessarily lead to relevant new behaviour.

We thus assume that a minimum requirement for any adequate test set is that all feasible (atomic)
branches in the program have been executed. Achieving branch coverage is a classical objective
in search-based testing, and the literature has treated this problem sufficiently. The fitness of a test
set with respect to covering all branches is based on the branch distance metric, which estimates
how close a logical predicate in the program was to evaluating to true or to false [25]. The branch
distance for any given execution of a predicate can be calculated by applying a recursively defined
set of rules (see [25] for details). For example, for predicate x � 10 and x having the value 5, the
branch distance to the true branch is max.0; 10 � x/ D 5.

A simple fitness function [26] is to sum up the individual branch distances, such that an optimal
test suite would have a fitness value of 0. Some details need to be taken into account: First, branch
distances need to be normalized to prevent any one branch from dominating the search. Second, we
need to require that each branching predicate is executed at least twice, to avoid the search from
oscillating between the true and false evaluation of the predicate (i.e. if the predicate is executed
only once and evaluates to true, the search would optimize it towards evaluating to false instead, and
once that is achieved, it would optimize it towards evaluating true again). Let dmin.b; T / denote
the minimum branch distance of branch b when executing test set T , and let �.x/ be a normalizing
function in Œ0; 1� (e.g. we use the normalization function [27]: �.x/ D x=.x C 1/), we defined
d.b; T / as follows:

d.b; T / D

8̂̂̂
<
ˆ̂̂:

0 if the branch has been covered,

�.dmin.b; T // if the predicate has been
executed at least twice,

1 otherwise.

When generating adequate test sets, we require that the branch coverage for all branches in the set of
target branches B is maximized, that is, the branch distance is minimized. Thus, the overall branch
fitness is defined as follows:

cov.T / D
X
bk2B

.1 � d.bk ; T //

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 761

4.3. Behavioural adequacy

The second objective expresses how thoroughly this code has to be exercised with respect to its
externally observable behaviour.

4.3.1. Using PAC and a validation set. To optimize behavioural adequacy using the PAC approach
(Section 3.1), we require two test sets. Consequently, our initial approach to compute behavioural
adequacy [4] was to evolve pairs of test sets, where one will ultimately end up being the final test
set, and the other one is the ‘evaluation’ set that is used to infer a model with WEKA [28], which is
a widely used collection of machine learning algorithms. For a given pair of test sets .T1; T2/, the
adequacy A can be measured by inferring a model from T1, and comparing the predicted outputs
from this model against the actual outputs from the program for the tests in set T2.

Let A.T1; T2; S/ be a function that calculates the adequacy as described in Section 3.1 using a
scoring function S (Section 2.4.2). Often, an adequacy value of 0 simply means that the number of
samples is too small to draw any conclusions. Therefore, whenever adequacy is 0, we include the
size of the test set in the fitness function, to spur the growth of test sets until adequacy can be reliably
determined. We do this by including the size of test set T1 in the fitness function if adequacy is 0,
such that larger test sets will be favoured by the search. To ensure that any adequacy value> 0 has a
higher fitness value, we normalize the size of T1 in the range Œ0; 1� using the normalization function
� [27] (see previous text), and otherwise add 1 if adequacy is > 0:

APAC .hT1; T2i/ D
´
1C A.T1; T2; S/ if A.T1; T2; S/ > 0,

�.jT1j/ otherwise

A combined fitness function to guide test generation for adequacy can thus be defined as the
weighted sum of APAC and the branch coverage values cov.T1/ and cov.T2/ (coverage of both test
sets needs to be optimized):

fitness.hT1; T2i/ D ˛ �APAC .T1; T2/C ˇ � cov.T1/C ˇ � cov.T2/

The values ˛ and ˇ are used to weigh coverage against adequacy. For example, in our experiments,
we used ˇ D 1000 and ˛ D 1, which would cause the search to prefer even small improvements
in coverage to large increases in behavioural adequacy. The reasoning for this choice of weight-
ing is that a higher adequacy value may be misleading if it is measured on an incomplete sample
of behaviour. The search will thus initially be dominated by code coverage, and once the search
converges on code coverage, exploration will focus more on behaviour. However, covering the exist-
ing behaviour to a higher level of adequacy might in turn lead to coverage of additional syntactic
elements, which the search would embrace and then explore to higher adequacy. Note that this
weighting is an implementation choice we made for our experiments; in principle, it would also
be possible to use multi-objective optimization to generate the test suites [29]. In this case, the
result of the optimisation would be a Pareto-front of test sets, and the user would be able to choose
between test sets with higher coverage and lower adequacy, or test sets with lower coverage but
higher adequacy of the covered code.

As discussed in Section 3.1, there is a threat of sampling bias as T1 and T2 are not drawn indepen-
dently from each other. The consequences of this are twofold. Firstly, this interdependence means
that the final test sets are not as effective as they could be. Secondly, it can undermine the reliabil-
ity of the final ‘behavioural adequacy’ score. A test set that is accompanied by an artificially high
adequacy score that cannot be trusted by the developer undermines its value.

4.3.2. Using k-folds cross validation. To overcome this drawback of the initial approach, we intro-
duced the k-folds cross validation approach described in Section 3. The adequacy of a test set T is
calculated using CV by deciding on a k, partitioning T into k subsets. In turn, each of the k sub-
sets is set aside for evaluation, whilst the others are used for inferring the model. The adequacy
measurement is the average of the individual scores.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

762 G. FRASER AND N. WALKINSHAW

Let A.T; S; k/ be the adequacy calculated as described in Section 3.2, where S is a scoring
function (Section 2.4.2) and k is chosen as described in Section 2.4.1. Again, an adequacy value of
0 may indicate a too small sample size, such that the fitness function favours growth in that case:

ACV .T / D
´
1C A.T; S; k/ if A.T; S; k/ > 0,

�.jT j/ otherwise

Expressed as a weighted combination with the branch coverage value cov.T /, the fitness function
to guide test generation for adequacy is thus defined as follows:

fitness.T / D ˛ �ACV .T /C ˇ � cov.T /

4.4. Evolving adequate test sets with a genetic algorithm

The optimization goal is to produce an adequate test set. A test set T is a set of test cases ti , and a
test case is a value assignment for the input parameters of the target function. The number of tests
in an adequate test set is usually not known beforehand, so we assume that the size is variable and
needs to be searched for but has an upper bound BT . The neighbourhood of test sets is potentially
very large, such that we aim for global search algorithms such as a genetic algorithm (GA), where
individuals of the search population are referred to as chromosomes.

We generate the initial population of test sets randomly, where a random test set is generated by
selecting a random number n D ŒTmin; Tmax�, and then generating n test cases randomly. A test
case is generated randomly by assigning random values to the parameters of the method under test.
Note that this is not a requirement; the initial population could also be based on an existing test set
(e.g. [30]), for which one may intend to improve behavioural adequacy.

Out of this population, the GA selects individuals for reproduction, where individuals with better
fitness values have a higher probability of being selected. To avoid undesired growth of the popu-
lation (bloat [31]), individuals with identical fitness are ranked by size, such that smaller test sets
are more likely to be selected. Crossover and mutation are applied with given probabilities, where
crossover exchanges individual tests between two parent test sets, and mutation changes existing
tests or adds new tests to a test set. These search operators have been explored in detail in the
literature, and we refer to [32] for further details.

When using the APAC fitness function, the use of a validation set requires some adjustment: Here,
a chromosome is a pair of test sets hT1; T2i, in contrast to the single test set T used for the approach
based on ACV . In general, it is not desirable that genetic material is exchanged between the first
(test set) and the second (validation set). Therefore, in this case, crossover and mutation are applied
to both test sets individually.

If the search is terminated before a minimum has been found, post-processing can be applied to
reduce the test set size further. Traditional test set minimization uses heuristics that select subsets
based on coverage information; in the case of adequacy, it is not easy to determine how an individual
test contributes to the overall behavioural exploration. Therefore, in our experiments, we minimized
test sets using a simple, but potentially inefficient, approach where we attempt to delete each test in
a set and check whether this has an impact on the fitness.

5. EVALUATION

To evaluate the effects and implications of behavioural coverage, we have implemented a prototype
providing the functionality of the BESTESTPAC and BESTESTCV approaches. The prototype takes
as input a Java class and attempts to produce a behaviourally adequate test set for each of its methods
(according to either of the PAC or k-folds CV heuristics). Currently, systems are limited to param-
eters of primitive input and return values, although this will be extended to general data structures
and stateful types in future work.

In this paper, we proposed BESTESTCV as a means to overcome limitations of BESTESTPAC ;
therefore, the first three research questions focus on gathering a deeper understanding of the factors

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 763

Table I. Study subjects.

Name Source No. of lines No. of branches Output

Bessj [33] 80 29 Numeric
Binomial [34] 92 69 Numeric
BMICalculator [19] 17 9 Discrete
CalDate [35] 25 7 Numeric
ColorHelper [36] 19 7 Numeric
Evaluation [28] 33 3 Numeric
Expint [33] 51 31 Numeric
Fisher [37] 49 17 Numeric
Gammq [33] 71 27 Numeric
Luhn [38] 42 57 Discrete
Middle [35] 19 29 Numeric
MulAndCheck [34] 31 17 Numeric
Remainder [39] 33 25 Numeric
TicTacToe [40] 69 45 Numeric
Triangle [25] 25 17 Discrete
TCAS [41] 99 78 Discrete
WBS [42] 168 93 Discrete
WrapRoundCounter [35] 9 3 Numeric

influencing BESTESTCV , whereas the fourth research question compares both approaches against a
broad range of typical testing criteria (thus subsuming the original experiments in [4]). The specific
research questions are as follows:

RQ1: What are the effects of learners, the value k and evaluation metrics on the final behavioural
adequacy score?

RQ2: Which configuration leads to test sets with the highest fault-detection ability?
RQ3: What is the relationship between behavioural adequacy and fault-detection ability?
RQ4: How does behavioural adequacy compare with traditional syntactical adequacy criteria?

5.1. Experimental setup

5.1.1. Subject systems. The set of classes selected for our experiments is shown in Table I. These are
selected (indiscriminately) from existing testing literature (referenced where possible). Because the
purpose is to focus on particular units of functionality, we identify the particular method within each
system that accepts the input parameters and returns the output value. Although an arbitrary number
of other methods may be involved in the computation, our current proof-of-concept system requires
the specification of a single point for providing input and reading output. As will be discussed in
Section 6, our ongoing work is transferring this technique to other systems (e.g. abstract data types)
that have multiple methods for providing input and output.

Our use of off-the-shelf machine learning algorithms imposes another restriction. We only
selected systems that return primitive inputs and outputs (numbers, strings and Booleans). As dis-
cussed in Section 2.4.2, these have been grouped into two categories: those that return a numerical
or a discrete value. This has a bearing on the model inference and scoring techniques that can
be applied.

5.1.2. Experimental variables. The experimental variables that were identified, along with the
values that were assigned to them, are presented below.

� The SUT (Table I).
� The machine learning algorithm. To establish the effect of this, we identified a broad range of

algorithms that have been well established in machine learning literature and have been shown
to excel for a wide range of different types of system. The selected algorithms are as follows:

� The C4.5 Decision Tree learner (discrete systems) [43]
� A Naive Bayesian Network learner (discrete systems) [28]

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

764 G. FRASER AND N. WALKINSHAW

� The M5 learner and the M5Rules variant (numeric systems) [28]
� The AdaBoost learner (discrete systems) [44]
� Multilayer Perceptron (neural net) learners (both numeric and discrete systems) [28]
� Additive Regression (numeric systems) [28]

� The parameters of the BESTESTCV approach mentioned in Section 3:

� The value k. This was chosen from one of the four most commonly used values: 2, 5, 10 or
n � 1 (leave one out (LOOCV)).

� The evaluation function (to measure how accurate the inferred model is). We selected from
F-Measure, kappa and area under the ROC curve and the correlation coefficient (all as
computed by WEKA [28]).

5.1.3. Data collection. The described approaches have been implemented using EVOSUITE [32] as
framework for evolutionary search and the WEKA model inference framework [28]. Each learner
was executed with its default WEKA parameter settings.

The experiments were systematically executed, using every possible combination of variables on
every subject. Because the EVOSUITE evolutionary algorithms and some of the WEKA inference
algorithms include a degree of stochasticity, there is a danger that this can lead to particularly lucky
or unlucky results. To avoid any skew from this effect, every experiment was repeated 30 times with
different random seeds, and results are statistically analysed. EVOSUITE was configured to run for
10 min per run for each class and configuration; all other parameters were set to default values [45].

After the 10-min run, resulting test sets were minimized using a simple heuristic. For each test t in
the resulting test set T , the fitness value was calculated for the test set without the test (T 0 D T n¹tº).
If the fitness value of T 0 is worse than that of T , the test is retained in T ; otherwise, it is removed
from T (and the adequacy calculation for the next test t 0 would then be based on T 0, rather than T).

For each execution of a test set, its behavioural adequacy and mutation score were recorded. The
data collection was particularly time-consuming. For RQ1–RQ3, BESTESTCV had to be executed
and assessed for every possible combination of k, evaluation function and learner. For RQ4, both
BESTESTCV and BESTESTPAC had to be executed and compared against a host of baseline test
generation techniques (carried out by configuring alternative fitness functions in EVOSUITE). Again,
to avoid accidental bias, each experiment for the baseline approaches was repeated 30 times with
different random seeds. For each subject, configuration and seed, EVOSUITE was run for 10 min.
This should lead to a fair comparison, as the overhead of inferring models for BESTESTPAC and
BESTESTCV is included in these 10 min. The following baseline test adequacy measures were used
to drive test generation:

� A test set optimized for branch coverage, where test sets are built to cover every logic branch
in every method.
� A test set optimized for branch coverage but expanded with random tests to match the average

size of the BESTESTCV test sets (to investigate the influence of test set size).
� A random test set that was generated to match the average size of the BESTESTCV tests.
� A test set optimizing the weak mutation score [46], where test sets were generated to expose

mutants.
� A test set optimizing dataflow coverage, where test sets are optimized to cover as many as

possible inter-method, intra-method, and intra-class definition-use pairs in the target class [47].
� A test set generated using the original BESTESTPAC approach [4] (denoted ‘PAC’ in the plots).

This was run with the full set of machine learning algorithms and evaluation metrics.

This culminated in a total of 286 202 experimental configurations, totalling 286 202 � 10 min D
5:4 years of computational time. These experiments were executed on the University of Sheffield
Iceberg HPC cluster‡. The full dataset is available online§.

‡http://www.shef.ac.uk/wrgrid/iceberg.
§http://www.evosuite.org/bestest/.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

http://www.shef.ac.uk/wrgrid/iceberg
http://www.evosuite.org/bestest/

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 765

5.1.4. Analysis techniques. To measure the effect of different factors (e.g. the choice of learner),
or combinations of effects (required for RQ1–RQ3), we carry out grouped statistical tests. Because
Shapiro–Wilks tests indicate that the data is non-normal, we cannot use analyses of variance
and related measures such as partial eta-squared to assess effect sizes. Instead, we resort to
non-parametric measures that do not presume normality.

To measure the effect of different factors (e.g. the choice of learner) on the adequacy and mutation
scores, we use Cliff’s ı [48]. This was primarily chosen because it is (a) well established and (b)
simpler to interpret than other comparable measures. For more details about non-parametric effect
size measurements, we refer to Peng and Chen [49]. Given a pair of groups A and B (e.g. the group
of mutation scores for two different classes), Cliff’s ı gives the probability that individual scores
for A are greater than those for B . The ı score lies in the interval Œ�1 W 1�, where negative numbers
indicate the probability that all of the scores for A are smaller than B , and positive numbers indicate
the probability that all of the scores for A are greater than B . A score of 0 indicates that the two
distributions are overlapping.

Cliff’s ı is a pairwise test. To investigate the effect of a particular factor (e.g. learner), we carry
out every possible pairwise test for that factor (we compare the mutation scores for every pair of
learners). The systematic approach used to run the experiments (Section 4) means that other factors
are evenly represented in these groups. Because we only care about the relative distance between
factors (and not which one was greater), we take the mean absolute value for all deltas, which gives
us an overall effect size for the factor as a whole.

5.2. Results

5.2.1. RQ1—What is the effect of learners, k and evaluation metrics on the final behavioural ade-
quacy score. The aim of this research question is to investigate how the various factors affect the
resulting adequacy score. Table II shows the Cliff’s ı values, illustrating the extent to which dif-
ferent factors contribute to the variance of the adequacy scores. To further provide an overview of
the data, two box plots that summarize the interplay between the choice of learner and subject class
are shown in Figure 7, and Figure 8 illustrates the effect of the evaluation metric for each of the
discrete systems.

Learner: Taking the choice of class into account, the choice of a suitable learner is important,
with an average jıj of 0.12 for both numerical and discrete systems. This is corroborated by the box
plots in Figure 7; different learners can yield completely different adequacy scores. For example,
under TCAS for discrete systems, the MultiLayerPerceptron neural net learner tends to produce low
adequacy scores (mean of 0.51), whereas the NaiveBayes learner measures a mean score of 0.93.

In general, we observe that for discrete systems, the J48 (C4.5) and Naive Bayes learners con-
sistently lead to higher adequacy scores than the AdaBoost and MultiLayerPerceptron learners. For
numerical systems, depending on the system, either the AdditiveRegression or M5 algorithms lead
to highest adequacy scores.

System under test (class): The Cliff’s ı values show that adequacy scores depend primarily on
the system under test (the class). This is especially pronounced with the discrete systems, where the
choice of class leads to an average jıj of 0.58. This is to be expected; systems can vary substantially
in terms of complexity, making it much harder to infer suitable models and derive useful test sets

Table II. Cliff’s delta with respect to adequacy scores.

Numerical systems Discrete systems

Factors Mean jıj SD Mean jıj SD

SUT 0.406 0.315 0.583 0.318
Evaluation function 0.006 0.004 0.125 0.077
K 0.1 0.05 0.025 0.016
Learner 0.121 0.081 0.125 0.085

SD, standard deviation.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

766 G. FRASER AND N. WALKINSHAW

0.00

0.25

0.50

0.75

1.00

B
M

IC
alculator

Luhn

tcas

T
riangle

W
B

S

A
de

qu
ac

y

(a)Discrete systems

0.00

0.25

0.50

0.75

1.00

B
essj

B
inom

ial

C
alD

ate

C
olorH

elper

E
valuation

E
xpint

F
isher

G
am

m
q

M
iddle

M
ulA

ndC
heck

R
em

ainder

T
icT

acT
oe

W
rapR

oundC
ounter

A
de

qu
ac

y

AdaBoost J48 MultiLayerPerceptron NaiveBayes AdditiveRegression M5 MultiLayerPerceptron

(b)Numerical systems

Figure 7. Adequacy scores by class and learner.

0.00

0.25

0.50

0.75

1.00

B
M

IC
alculator

Luhn

tcas

T
riangle

W
B

S

A
de

qu
ac

y

Correlation FMeasure Kappa ROC

Figure 8. Adequacy scores for discrete systems by class and evaluation metric.

for some than others. This is also nicely demonstrated by the large variation between the individual
classes as shown in Figure 7.

This gives rise to the question of which features of a system make it particularly easy or hard
to infer an accurate model from the system. As we saw in the previous text, the learner does
have an influence, but clearly less than the actual system under test. We conjecture that the main
factor influencing this phenomenon is the testability of the system. In particular, Figure 7 shows
two special cases: For the discrete systems, no configuration managed to achieve a positive ade-
quacy score on the Luhn system. Similarly, for the numerical systems, no configuration managed
to achieve a positive adequacy score for the Fisher class. We revisit Luhn and Fisher again in detail
in Section 5.3.2.

Evaluation metric: The choice of evaluation metric has a negligible impact on the adequacy
score achieved for numerical systems. Evaluation metrics have a more significant impact for discrete
systems, as illustrated in Figure 8. The choice of evaluation metric for discrete systems leads to an
average jıj of 0.12. The box plots indicate that the F-measure tends to yield the lowest adequacy
scores, whereas ROC and Correlation metrics tend to yield the highest.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 767

Value of k: The choice of k has a very slight impact for both numerical and discrete systems.
The average jıj is 0.01 for numerical systems, and 0.03 for discrete systems.

For numerical systems, higher values of k tend to lead to higher values of adequacy. When all
numerical configurations are ranked according to adequacy score, the top eight configurations have
k as LOOCV (the highest possible value). Of the bottom 10 configurations, six have k D 2, whereas
none of the top 25 configurations have k D 2. The full table is provided in the accompanying dataset
for this paper§.

Finally, there is a remark about the interpretation of these scores. The purpose of this research
question is to investigate the relationship between the various factors (learner, k and evaluation
metric) and the adequacy score. There is a temptation to conclude that those configurations that
yield the highest scores are also the ‘best’ ones. This is however potentially misleading; a false high
score could easily arise from the use of unsuitable configurations (Section 3.3). The next research
question will therefore attempt to draw a link between adequacy and the actual performance: the
ability to detect faults.

5.2.2. RQ2—Which configurations lead to test sets with highest fault-detection ability. To assess
fault-detection ability, we resort to mutation analysis as a proxy measurement [50]. We calculated
mutation scores using EVOSUITE’s built-in support for mutation analysis, which uses the same
mutation operators as implemented in Javalanche [51] and the aforementioned study [50]. The muta-
tion scores are averaged over 30 runs, to account for randomness in the evolutionary algorithm. The
average jıj results, shown in Table III, assess the extent to which different factors affect the mutation
scores. The top 10 configurations according to average rankings are displayed in Table IV.

Before discussing the individual findings, it is important to discuss an intrinsic characteristic of
the mutation data. As shown by the data in Table III, the choice of class has by far the largest
effect on the eventual mutation score. In both numerical and discrete systems, the choice of system

Table III. Cliff’s delta with respect to mutation scores.

Numerical systems Discrete systems

Factors Mean jıj SD Mean jıj SD

SUT 0.849 0.277 0.86 0.291
Evaluation function 0.003 0.002 0.04 0.03
K 0.01 0.006 0.03 0.015
Learner 0.03 0.02 0.08 0.07

SD, standard deviation; SUT, system under test.

Table IV. Average rankings in terms of mutation score for different configurations of learner,
k and evaluation function.

Discrete systems Numerical systems

Eval k Learner Av. rank Eval k Learner Av. rank

Kappa 5 Bayes 5.7 ROC 2 Regression 15.5
Kappa 2 J48 13.2 Kappa 2 Perceptron 16.4
Kappa LOOCV J48 13.5 FMeasure 2 Perceptron 18.1
ROC 2 Bayes 14.5 FMeasure 5 Regression 18.3
FMeasure 2 J48 17.0 ROC 2 Perceptron 18.5
Kappa 10 J48 19.7 Kappa 5 Perceptron 19.3
Corr. 2 J48 20.0 ROC 5 Regression 20.0
Kappa 2 Bayes 20.2 Corr. 10 Perceptron 20.0
FMeasure LOOCV Bayes 20.8 ROC LOOCV Perceptron 21.0
ROC 10 J48 21.9 Kappa 2 M5 21.2

Due to the different numbers of learners for discrete and numeric systems, there are a total
of 64 configurations per class for discrete systems and 48 possible configurations per class for
numerical ones.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

768 G. FRASER AND N. WALKINSHAW

accounts for the biggest differences in score. This is explained by the fact that the average mutation
scores were primarily stratified according to classes, where specific configuration options would
only lead to relatively small deviations from the average mutation score for a given class. This is
due to the fact that for a given class, the majority of mutants could be exposed trivially, by any test.
Only a small fraction of remaining mutants could serve to distinguish the truly rigorous test cases;
a relatively small improvement in the mutation score could indicate a significant increase in the
adequacy of the test set.

Despite the overwhelming variations in mutation score according to class, the results show that
the other factors nonetheless have a significant impact of their own. The key findings are as follows:

� For numerical systems, the choice of a suitable learner is the only factor to have a slight
influence on the mutation score, with an average jıj of 0.03.
� For discrete systems, all other factors have a non-trivial effect on the mutation score. Eval and

k have average jıjs of 0.03 and 0.04, respectively. The choice of learner has a comparatively
much more significant effect, with an average jıj of 0.08.

Looking at the specific configurations (the top 10 of which are shown in Table IV), the significant
role of the learner is clear. The Naive Bayes and J48 (C4.5) learners consistently lead to the highest
mutation scores for discrete systems (they dominate the highest-scoring 10 configurations but do not
appear at all in the bottom 10). For numerical systems, it is a similar case for Additive Regression
and MultiLayer Perceptron learners.

5.2.3. RQ3—What is the relationship between the adequacy score and the ability to detect defects.
Whilst investigating RQ1 and RQ2, it became apparent that the range of adequacy and mutation
scores is sensitive to the configuration of BESTESTCV . An unsuitable configuration will overesti-
mate adequacy scores. Accordingly, to answer this question, we assume that we are starting from a
configuration that is capable of effectively exposing faults. So, given such a configuration, why is it
effective? How and to what extent does adequacy contribute?

To establish this relationship, we therefore choose those configurations that led to the high-
est mutation scores in RQ2, that is, those ranked highest for numerical and discrete systems in
Table IV. Note that the earlier criticism on source code-based criteria holds also for mutation
analysis (Section 2.1). That is, a high mutation score is merely a rough indicator of adequacy.
Nevertheless, a sufficient exploration of a program’s behaviour should generally lead to high muta-
tion scores. The chosen configurations are thus those that performed best across all numerical and
discrete systems (in some cases, certain configurations might achieve higher mutation scores on
individual classes).

First of all, we want to establish whether there is a correlation between adequacy and mutation
score; does an increase in adequacy imply a corresponding increase in mutation score? Calculating
the Pearson correlation coefficient indicates a coefficient of �0.18 for discrete systems and 0.02 for
numerical systems. Clearly then, at face value, there is no positive correlation at all.

For a closer inspection, Figure 9 shows scatter plots relating the mean adequacy score to the
mean mutation scores. It is important to bear in mind that each coordinate summarizes 30 actual
recordings, which are often unevenly spread. Because there are too many points to plot in a useful
way, the concentration of these points is indicated by the contour lines (the results of a 2D Kernel
density estimation¶).

This points towards a more subtle relationship between the two factors that differ between the
discrete and numerical systems. In the numerical systems, the mutation scores tend to be high, but
there is a high variance in adequacy score (as indicated by the fact that the contours run across
the plot in a relatively narrow band). However, for the discrete systems, both dimensions tend to
be spread more evenly around particular coordinates for each system (as indicated by the more
conical contours).

For Fisher, Evaluation (numerical) and BMICalculator (discrete), the results stand out; the muta-
tion score is very high, despite a very low adequacy score. These programs are interesting because

¶http://docs.ggplot2.org/0.9.3.1/geom_density2d.html.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

http://docs.ggplot2.org/0.9.3.1/geom_{d}ensity2d.html

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 769

0.7

0.8

0.9

1.0

0.00

0.25

0.50

0.75

1.00

Adequacy Score

M
ut

at
io

n
S

co
re

(a) Numerical systems: Eval=ROC, =2, learner = Additive Regression

0.75

0.80

0.85

0.90

0.95

1.00

0.00

0.25

0.50

0.75

1.00

Adequacy Score

M
ut

at
io

n
S

co
re

(b) Discrete systems: Eval=Kappa, =5, learner = Naive Bayes

Figure 9. Scatter plots relating adequacy scores to the normalized mutation scores for the two top
configurations in Table IV.

their source code is relatively easy to cover by standard branch coverage techniques, making it rel-
atively straightforward to expose the mutants. However, their underlying functional behaviour is
exceedingly difficult to fully capture and infer. The difficulty of doing so for Fisher was discussed

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

770 G. FRASER AND N. WALKINSHAW

for RQ1. Evaluation calculates a statistical correlation, where a test set has to contain pairs of num-
ber sets as inputs that fulfil particular correlation properties. BMICalculator carries out a non-linear
calculation from two numbers to compute a category; although its branches can be covered easily,
this would not suffice to expose the underlying non-linear relationship between the input parameters
and the output category.

If we restrict ourselves to programs for which the mutants cannot be trivially exposed (by leaving
out Fisher, Evaluation and BMICalculator), effects on the correlation coefficients are observable. For
discrete systems, the Pearson correlation rises from �0.18 to 0.59, and for numerical systems, the
correlation rises from 0 to 0.21. In summary, for programs where mutants are not trivially covered,
a correlation emerges between adequacy and the mutation score. An increase in adequacy indicates
an increase in the number of faults that are exposed by the test set.

Branch coverage remains the primary driver for mutation coverage. For numerical systems, the
correlation between branch and mutation coverage is 0.59 (0.7 for the subset excluding Fisher,
Evaluation and BMICalculator), and for discrete systems, it is 0.93.

Despite the fact that they are both positively correlated with mutation score, adequacy and branch
coverage are not correlated with each other (Pearson correlations of �0.02 for both numerical and
discrete systems). This corroborates their complementary nature, as discussed in Section 3.3. The
branch coverage objective increases the diversity of the test set to execute a larger proportion of
program features. The extent to which these features are fully explored is in turn maximized by the
adequacy score, which also tends to spur the exploration of additional branches that are particularly
hard to reach. Ultimately, it is this synergy between the two that yields the higher mutation scores.

5.2.4. RQ4—How does BESTESTCV compare with existing adequacy criteria. To establish the
comparative performance of test sets generated using the BESTESTCV approach, we compared them
against test sets generated to fulfil a selection of traditional, syntax-based criteria, as described in
Section 5.1.3. All of the resulting test sets were compared in terms of their mutation score and size.
The results for discrete systems are shown in Figure 10, and the results for numerical systems are
shown in Figure 11.

To make such a comparison meaningful, it is necessary to pick a specific configuration for
BESTESTCV . For this, it makes sense to select a configuration that is known to perform reasonably
well (previous RQs have after all shown that there are several choices of model inference algorithm
that perform very poorly). Accordingly, we selected the two configurations that had the highest cor-
relations for discrete and numerical systems (as used in RQ3, those ranked highest for numerical

(a)Mutation Scores (b)Test Set Sizes

Figure 10. Comparison between BESTESTCV and alternative criteria for discrete systems. PAC, probably
approximately correct; CV, cross validation.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 771

(a)Mutation Scores

(b)Test Set Sizes

Figure 11. Comparison between BESTESTCV and alternative criteria for numerical systems. PAC, probably
approximately correct; CV, cross validation.

Table V. Cliff’s delta for comparison of mutation scores against BESTESTCV .

D. flow Branch PAC Mut. BranchC Rnd.

Numerical systems

Expint �1.000 �1.000 0.034 �1.000 �0.952 �1.000
Remainder �0.133 �0.656 �0.003 0.915 0.308 �1.000
TicTacToe �0.949 �0.882 �0.037 �1.000 �0.510 �1.000
Gammq �0.989 �0.734 0.448 �0.162 �0.505 �1.000
Fisher �0.900 �0.833 �0.100 0.000 �0.002 �0.167
Middle �1.000 �0.570 0.175 0.944 �0.486 �1.000
Mul&Check �0.457 �0.438 0.506 0.517 �0.114 �1.000
W.R.Counter �0.667 �0.667 �0.467 0.333 �0.386 �0.667
Col.Hlp �0.669 �0.463 0.867 0.867 �0.241 �0.480
Bessj �0.728 �0.460 �0.092 0.374 0.442 �0.539
Binomial �1.000 �0.929 0.101 �0.834 �0.800 �1.000
Eval. �0.984 �0.986 �0.500 0.033 �0.500 �0.967
CalDate �0.733 �0.817 �0.721 0.829 �0.528 �0.733

Discrete systems

Luhn �1.000 �1.000 �0.246 �1.000 �1.000 �1.000
BMI �1.000 �0.911 �0.148 �0.579 �0.416 �1.000
tcas �1.000 �1.000 �0.553 �1.000 �1.000 �1.000
WBS �1.000 �1.000 0.131 �1.000 �1.000 �1.000
Triangle �1.000 �1.000 �0.082 �1.000 �0.070 �1.000

PAC, probably approximately correct.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

772 G. FRASER AND N. WALKINSHAW

and discrete systems in Table IV). Of course, this introduces a bias, and the results should be inter-
preted accordingly; this will show how other techniques compare against BESTESTCV , assuming
that it is suitably configured.

Because the differences between mutation scores are often difficult to discern, we provide in
Table V Cliff’s delta scores that compare, for each SUT, the mutation score distribution against
BESTESTCV . To recap, a negative delta value indicates the mutation scores for the other technique
tend to be smaller than those for BESTESTCV . A greater value indicates that the mutation scores
tend to be greater than for BESTESTCV . The magnitude of the delta conveys the probability of one
population being greater or smaller than the other; it does not convey the magnitude. Romano et
al. [52] suggest that a value 	0.147 should be treated as negligible. Any delta greater than this,
favouring a different technique, is highlighted in bold in the table. The delta is often relatively small
for mutation scores; the box plots serve as a useful basis for assessing this.

For numerical systems, the box plots show that in many cases, there is little to distinguish the
performance of different techniques.

Table V shows that, for numerical systems, there are seven cases in which Mutation Testing
achieves higher mutation scores than BESTESTCV . Although the distances are significant from
a Cliff’s delta perspective, the box plots for these systems show that the distances in scores are
very small indeed. This is possibly due to the fact that the systems for which Mutation produces
higher mutation scores than BESTESTCV are relatively small systems, with less scope for hard-to-hit
mutants, and a naturally high number of easily killed mutants.

Looking at the four largest numerical systems in terms of lines (Bessj, Binomial, Expint and
Gammq), the situation is different. On Bessj, there is a negligible difference in mutation score
between all approaches (apart from notable outliers for BESTESTCV and BESTESTPAC). For the
other three systems, BESTESTPAC and BESTESTCV significantly outperform the other systems. The
difference in mutation scores is especially marked for Binomial and Expint.

For discrete systems, results are more marked. For all systems apart from Triangle, the differ-
ence in mutation score can be discerned visually from the box plots, indicating that BESTESTCV
and BESTESTPAC clearly outperform the other criteria. The Cliff’s delta scores indicate that, for
Triangle, there is a negligible difference in performance between BESTESTCV and BranchSize.

Looking at the test sizes (Figures 10(b) and 11(b)), the numbers of test cases generated for
both BESTESTPAC and BESTESTCV tend to be significantly larger than for the other criteria||. In
most cases, the number of tests ranges between 20–35, whereas other approaches are minimized to
between 5 and 15 tests. In most cases, BESTESTCV requires fewer test cases than BESTESTPAC .
For two systems (TCAS and ColorHelper), BESTESTCV produces a more comparable number of
test cases to alternative criteria (a mean of 19 and 5 tests, respectively).

The figures for Branch+ (shorthand for BranchSize) merit further discussion. These test sets were
optimized for branch coverage, but expanded with random tests to match the size of those produced
by BESTESTCV . Only in two instances (Remainder and Bessj) did the test sets marginally outper-
form BESTESTCV . This shows that the improvement over branch coverage is not merely due to the
larger sizes.

It is not surprising that higher behavioural adequacy comes at the cost of larger test suites. When
resources available for testing are limited, does this mean that behavioural adequacy is not an option?
The answer is no—although in our experiments, we aimed to maximize behavioural adequacy as
much as possible within the 10-min bound, this may not reflect practical usage. For example, one
might first decide on the number of test cases to generate and then use the BESTESTCV approach to
find the best test set of that size. Furthermore, clearly 100% adequacy is an unrealistic goal in most
cases, so one might determine a given threshold of a minimum acceptable behavioural adequacy
and then generate only as many tests as necessary for this threshold. Unlike traditional syntactic
coverage criteria, the resulting test set comes with a more reliable measurement of the covered
program behaviour.

||We ignore figures for Random and BranchSize, because these are calibrated based on the numbers of tests for
BESTESTCV :

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 773

5.2.5. Threats to validity. In this paper, we argue that the link between structural coverage criteria
and behaviour is tenuous, yet as a proxy measurement for our analysis, we had to resort to mutation
analysis. This is a threat to construct validity, that is, how the performance of a testing technique
is defined. Traditionally, test generation techniques are compared in terms of the achieved code
coverage or mutation scores. However, as discussed at length in Section 2, these are at best indicative
of the true adequacy of the test sets and are at worst misleading. Given that the systems used in
this study are tested at a unit level, the scope for subtly mutating the source code is often restricted;
most mutants are exposed by the mere execution of any code. It is well known that mutation scores
are inflated by trivial mutants, yet at the same time, also too strict because of equivalent mutants.
Consequently, our results cannot be interpreted as a quantification of the relation between mutation
score and behavioural adequacy. However, considering that mutants are generally assumed to be
similar to real faults [53], the mutation analysis at least allowed us to establish that higher adequacy
leads to higher fault-detection ability, as indicated by mutation scores.

Threats to internal validity might arise from the method used for the empirical study. To reduce
the probability of having faults in our testing framework, it has been carefully tested. Furthermore,
randomized algorithms are affected by chance. To cope with this problem, we ran each experiment
30 times, and we followed rigorous statistical procedures to evaluate their results. We limited the
search to 10 min when generating test sets, which may be more time than necessary to satisfy simple
criteria like branch coverage. However, it is difficult to determine what precisely would constitute a
fair comparison, as this varies greatly between individual subjects and criteria.

Threats to external validity concern the generalization to other types of software, common for any
empirical analysis. We have selected 18 different classes for evaluation, which arguably results in a
small evaluation, such that the results might not generalize to all types of software. This was largely
necessitated by the current limitations of the BESTESTPAC prototype (e.g. limitation to primitive
data types and model inference only for single outputs), which is the subject of ongoing work.
However, to reduce sampling bias, the evaluation set represents all cases satisfying the previous
constraints on which we have applied our experiments, and it is based on an extensive literature
review. The chosen systems are mainly small, and this was influenced by the use of off-the-shelf
machine learners. However, in principle, the techniques presented apply to any system for which a
suitable machine learning algorithm is available, and our results indicate that the benefit of using
behavioural adequacy is higher for larger systems (cf. results on WBS and TCAS, which are based
on industrial systems). We discuss scalability issues in detail in the succeeding text.

5.3. Discussion

5.3.1. Using behavioural coverage to assess test criteria. The research questions have provided
insights into the general capability of behavioural adequacy to assess test sets and to generate test
cases that expose faults. However, there has been no explicit consideration of its value as a metric
in its own right. We now show how the notion of behavioural coverage (as defined in Section 3.3)
can serve as a useful performance indicator for different test set criteria.

In RQ4, a particular BESTESTCV configuration was compared against standard testing criteria,
and the resulting test sets were compared in terms of mutation coverage (as well as test set size). If
our behavioural coverage measure is to be of value, then one should be able to use it as a suitable
indicator of the effectiveness of the test set.

As an illustration of this, Figure 12 plots the behavioural coverage in its two dimensions for each
type of criterion. Given that we have multiple data points, we plot each coordinate by calculating
the harmonic mean for each dimension**.

When compared with the mutation score box plots from RQ4, the behavioural coverage plots
indicate that this two-dimensional metric tends to be a good indicator of test set quality. If we focus
on the systems for which there were clear ‘winners’ and ‘losers’ in terms of mutation scores, these

**This is merely an illustrative example of how the metric could be used and is not meant to be prescriptive; as with
other two-dimensional metrics (such as Precision and Recall [17]), the relationship between the two dimensions can be
plotted and visualized in numerous ways.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

774 G. FRASER AND N. WALKINSHAW

Figure 12. Comparison of different test criteria in terms of behavioural coverage. PAC, probably approxi-
mately correct; CV, cross validation.

relationships are also replicated in the scatter plot. If a criterion dominates other criteria in terms of
both branch coverage and adequacy, it will tend to yield a higher mutation score.

For example, the Expint example demonstrates this relationship particularly clearly. PAC and CV
both achieve the highest mutation scores. In the chart, CV dominates on both dimensions; PAC
matches CV on the branch-coverage front (dominating the rest) but is approximately matched by
BranchSize in terms of adequacy. However, looking at the mutation scores, BranchSize is the only
other technique to contain test cases (represented as outliers) that occasionally match PAC and CV.
The rest of the criteria are clustered together (and produce similar mutation scores). Finally, the
Random test sets produce very poor mutation scores, and similarly, the coordinate in the graph is
located firmly in the bottom left-hand corner of the chart.

As is to be expected, the specific BESTESTCV configuration we have chosen here does not
always produce the strongest behavioural coverage scores. The configuration is never bested in
terms of branch coverage but fails to produce test sets that yield the most accurate models in four
cases (CalDate, ColorHelper, Evaluation and WrapRoundCounter††). Looking back to the mutation
scores (Figures 10 and 11), the coordinates tend to agree with the mutation scores. In every case
(including the four mentioned in the previous text), the best-performing techniques are amongst
the top performers for mutation scores. Conversely, techniques that score poorly in behavioural
coverage (e.g. Random in Expint or Binomial) perform just as badly in the mutation scores.

An interesting observation in Figure 12 is that there are several cases where BESTESTCV leads
to higher branch coverage than optimizing branch coverage directly (e.g. Binomial, BMICalculator,
Expint, Gammq, Luhn, MulAndCheck, TCAS, TicTacToe, Triangle and WBS); in the remaining

††There are cases where a technique produces lower branch coverage and a higher adequacy score (e.g. TicTacToe or Mid-
dle). However, as discussed in Section 3.3, this tends to be due to the fact that the test set has failed to capture enough
of the program behaviour, so although the model is accurate, this is with respect to a narrower range of behaviour.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 775

cases, the branch coverage is the same. This suggests that the exploration of additional behaviour
helps in reaching additional code.

The fact that a single configuration of BESTESTCV does not always outperform all other tech-
niques on all subject systems is due to the fact that it is ultimately founded on the capability of
a model inference algorithm. Model inference algorithms are subject to Wolpert and Macready’s
‘no free lunch’ theorem [54]: No learning algorithm achieves consistently better generalization
performance than any other over all possible target functions. In other words, given a particular
BESTESTCV configuration, some systems under test will be particularly ‘learnable’ and thus yield
strong test sets, others will not. Thus, choosing a suitable learning configuration ultimately relies
upon human judgement, factoring in the various characteristics of the learning problem (i.e. the
subject system), and the learning algorithm.

5.3.2. Luhn and Fisher. From the results, there are two systems that would seem to be problematic
for our approach. None of the test sets generated for Luhn or Fisher gave rise to accurate models.
In fact, no single run for either system yielded an adequacy greater than 0. In other words, at no
point was any of the model inference algorithms able to produce a model that reliably predicted the
outputs given the inputs. Furthermore, in both cases, the mutation scores tended to be relatively high
(in the case of Fisher, the mean mutation score was almost perfect at 0.997).

At first glance, the results would seem to indicate that our technique for assessing behavioural
adequacy has simply failed. However, a closer investigation of these cases in fact reveals the con-
trary. It turns out that Luhn offers a perfect example of the problems discussed in Section 2.1, where
syntax-driven coverage measures such as mutation coverage can be dangerously misleading.

In the case of Fisher, the function computes the Fisher–Snedecor distribution [37]. It takes as
input three doubles: the value x and two parameters a and b. It returns a NaN if any of the param-
eters is negative and only provides a value between 0 and 1 (of interest to the learner) for a very
small window in the input domain. We observed that it was the presence of NaNs that tended to lead
to these poor results from WEKA. We devised a filtering procedure to remove the NaNs from the
training sets, whereupon adequacy values rose to the region of 0.4. This did not produce an increase
in the mutation score or branch coverage, but simply because these were already at extremely
high levels.

In the case of Luhn, the problem comes down to a limitation of the test generator. Luhn is a
procedure by which to validate credit card numbers for different card providers. The constraints that
govern whether a particular type of card number is valid are quite ‘narrow’; the number has to be of
the correct length, and different intervals of the number have to fall into particular ranges, depending
on the card provider. Furthermore, the input is actually a string, which is converted into a sequence
of digits. EVOSUITE attempts numbers for every type of card but fails to ever produce a valid card
number, which means that the output is always the same (invalid)—making it impossible to infer a
sensible model. To validate that this is indeed a testability problem, we added five valid credit card
numbers (one for each card type) to the seeding used by EVOSUITE (by adding public static fields
to the class). Doing so immediately increases the achieved branch coverage to around 73%, with
adequacy and mutation score both going up to around 79%.

These are two examples of cases where our BESTESTCV implementation did not work ‘out of
the box’. To maintain validity, we resisted the urge to manipulate the experimental setup. However,
here, we have shown that such problems are in fact relatively straightforward to address in practice.
If the set of test observations contains values that are incompatible with the learner, they can be
recoded. If the system suffers from testability problems, often strategies such as seeding can be used
to guide the test generation towards better inputs.

5.3.3. Scalability. The use of a genetic algorithm, coupled with the model inference and cross vali-
dation, all indicate that this approach could be very expensive. Genetic algorithms rely on the ability
to execute large numbers of tests. Cross validation again requires the repeated inference of a model
for each chromosome.

To assess the scalability of our approach, we re-ran our experiments for the two top-performing
configurations from RQ3, whilst varying the time limit. We ran 10 batches of experiments with 30

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

776 G. FRASER AND N. WALKINSHAW

repetitions each, ranging from 1 to 10 min, tracking intermediate values. In these runs, we observed
that the total number of tests executed per minute increases at an approximately constant rate,
although this rate varies from program to program.

The time spent on model inference/adequacy assessment tends to be relatively modest. For our
experiments, on average, 7.6% of time was spent on model inference and evaluation, whereas 70%
was spent on the actual execution of tests. These 7.6% represents an overhead that is not present
when optimizing for simpler criteria such as branch coverage. However, even so, the dominating
factor remains test execution, as is the case with any search-based test generation approach. Conse-
quently, we do not anticipate the use of model inference to be a major scalability issue. However,
it should be noted that these particular statistics are specific to the configurations considered. Some
model inference algorithms scale better than others and could lead to different balances in terms of
how time is used. For example, inferring models for larger state-based systems is likely to increase
the share of time that is spent on model inference.

Although test execution is in general the dominating factor in search-based testing, there is evi-
dence that search-based test generation approaches also scale to large industrial systems [55–58];
thus, we also expect our approach to scale to larger systems. However, scalability might also be
affected by the larger test sets that optimization for behavioural adequacy leads to. The larger the
test sets in the search population, the more of the search budget is spent on evaluating the fitness
of each individual, and that has an impact on the exploration the search can perform within a fixed
search budget. However, we observed that the size of the test sets in the search population remains
more or less stable throughout the search. The largest growth happens during phases where there
is no adequacy (e.g. in the case of Fisher, this was the case throughout the search). However, the
implementation of the GA in the underlying EVOSUITE ranks two individuals by their size if their
fitness values are equal, such that smaller test sets have a higher probability of being selected for
reproduction. Consequently, during phases of the search where there is no exploration of new cover-
age or adequacy, redundant test cases are removed from the test sets, and thus behavioural adequacy
does not lead to bloat [31].

5.3.4. The limits of model inference. The work presented in this paper relies on the notion that the
input/output behaviour of a program is approximately learnable by a machine learning algorithm.
We have seen (in RQ1) how the accuracy of an inferred model can vary significantly, depending on
a range of factors.

The question of how different factors lead to the successful inference of a model (irrespective
of whether the system in question is a software function) is almost impossible to answer in the
general case. We present some of the key factors (specifically with respect to software systems) in
the succeeding text:

1. Trace diversity and representativeness: The supply of a representative set of examples
from which to learn is key; if there is zero evidence of the potential for a particular facet of
behaviour, then no algorithm will produce a model that contains it. This is the problem that pre-
vented the inference of useful models for Luhn and Fisher. This problem is typical to dynamic
analysis and was discussed at length by Ernst [5].

2. Number of input variables: A large number of input parameters can give rise to the phe-
nomenon known as over-fitting [15], where the model wrongly incorporates variables that in
fact have no effect on the output. Although we did not do so for our experiments, over-fitting
can be avoided by eliding unnecessary variables from the execution traces.

3. Non-determinism/noisy output: The model inference algorithms in this paper are statistical
at heart; they draw probabilistic relationships between input variable values, and the corre-
sponding outputs. For systems where the output is non-deterministic, care has to be taken. It
is still of course possible to infer a statistical model of a non-deterministic system, but this is
contingent upon the fact that the effect of the non-determinism on the output is sufficiently
captured in the traces (see point 1).

4. Types: The types of inputs and outputs are key to the selection of model inference algorithm.
Our examples all deal with some combination of numerical or string inputs and outputs. How-

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 777

ever, software systems tend to operate on complex types: objects, trees, nested lists and so on.
At the moment, our approach has to adopt the same approach as other inference-based systems
such as Daikon [59]. Where possible, we flatten complex types into their primitive parts, and
lists are summarized in terms of their size.

5. Non-linearity: Certain behavioural characteristics are harder to infer than others or require a
huge training sample to infer. Non-linear behaviour (especially pronounced in BMICalculator
and Fisher) means that tiny variances in a given input variable can cause disproportionately
large variances in the output, and only for small intervals in the input space.

For each of the aforementioned characteristics, machine learning algorithms have been proposed
to cater for these situations. Certain algorithms are particularly good with a sparse sample of exam-
ples. Others can deal with special data structures. Others excel at dealing with noisy data and so on.
Invariably, different algorithms excel in one aspect but trade off performance in another. This is the
root of Wolpert’s no free lunch theorem [54], mentioned in RQ4.

The BESTESTCV approach has been validated on a selection of the most popular algorithms,
using their default parameter configurations. However, in principle, any classifier can be applied,
enabling the tester to exploit knowledge about the type of system being tested. Choosing a suit-
able algorithm requires expertise and knowledge about the circumstances and data against which
it will be applied. This may not necessarily be possible for all software systems, given the current
state of the art in machine learning. However, BESTESTCV provides a framework within which to
incorporate future algorithms as they appear.

6. CONCLUSIONS AND CONSEQUENCES

What test cases are necessary to ensure that a test set will expose all of the faults in a program?
How can they be collected? How can the final test set be assessed? These questions lie at the heart
of Djikstra’s famous assertion that tests can only show the presence of faults but not their absence,
and have formed the basis for the bulk of software testing research since.

So far, the vast majority of approaches have focussed on the source code of a system. Test cases
should execute all statements, branches, data–flow relations or mutants. Such syntax-centric views
of testing are rarely sufficient. In practice, they are at best used as minimum requirements for a test
set. A test set that satisfies these criteria rarely finds all of the mutants, for example.

One exciting, alternative approach to the syntactic approach was first proposed by Weyuker in
1983 [2]. She pointed out that if we can correctly infer the behaviour of a system from its test set, it
can be concluded that we have tested the behaviour adequately. Although exciting in theory, putting
this into practice raises several significant challenges. It is necessary to infer a suitable model that
represents the test set, to reliably quantify the accuracy of the model and, above all, to develop a
suitable procedure by which to generate test sets that will optimize the model accuracy. As a result,
this idea has remained predominantly in the theoretical domain.

This paper shows how the idea can be put into practice. It shows how model inference can be used
to provide a much more reliable assessment of test sets, which can in turn form a much more pow-
erful basis for the generation of rigorous test sets. Our experiments have shown that if configured
properly, optimizing test generation with respect to behavioural adequacy can significantly outper-
form current baseline techniques in terms of fault detection, especially for larger functions with a
complex branching structure.

The work in this paper was primarily concerned with the development of a proof of concept. As
such, it has only been applied to Java units, where inputs and outputs can easily be reduced to simple
primitive types. To make the approach more broadly applicable, our future work will focus on the
following five dimensions:

1. Adapt to systems with arbitrarily complex inputs and outputs: The current approach is
restricted to systems with a reasonably low number of input variables, and a single output. We
will investigate the use of different classes of model inference algorithms (i.e. support vector
machine algorithms [60]) that can, in principle, be applied to arbitrarily systems with large
numbers of inputs and outputs.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

778 G. FRASER AND N. WALKINSHAW

2. Integrating sequential state: The current approach is restricted to systems that take an input
and return an output in a single step. Our future work will explore the use of state machine
inference algorithms [13, 61] to enable the application of the technique to sequential-state
systems, such as GUIs, network protocols, or APIs.

3. Alternative syntactic coverage criteria: In this paper, we used branch coverage as the
underlying syntactic coverage criterion for our experiments. This choice seemed reasonable
given the nature of our prototype. However, as future work, we will consider the effect
of combining other syntactic criteria (e.g. MCDC [24], dataflow or mutation testing) with
behavioural adequacy.

4. Behavioural coverage for specification-based testing: Although our experiments focus on
behavioural adequacy as an additional dimension over syntactic code coverage, this does not
mean behavioural coverage needs to be purely a white-box technique. Structural coverage
criteria are also commonly used when testing using formal specifications or test models, and
we will consider defining behavioural coverage in terms of such black-box coverage criteria.

5. Applications of the inferred model: In this paper, we focussed on the evaluation and opti-
mization of test sets with respect to behavioural coverage. However, a behaviourally adequate
test set is not necessarily a means to an end: Given a behaviourally adequate test set, there
are potential applications of the model that can be inferred from this test set; for example, the
model can predict expected outputs even for inputs for which there is not an explicit test.

ACKNOWLEDGEMENTS

This work is funded by a Google Focused Research Award on ‘Test Amplification’, the DSTL-funded BATS
project DSTLX1000062430 and the DSTL-funded HASTE project. This project has been funded by the
EPSRC project ’EXOGEN’ (EP/K030353/1).

REFERENCES

1. Goodenough JB, Gerhart SL. Toward a theory of test data selection. IEEE Transactions on Software Engineering
1975; 1(2):156–173.

2. Weyuker E. Assessing test data adequacy through program inference. ACM Transactions on Programming Languages
and Systems 1983; 5(4):641–655.

3. Valiant L. A theory of the learnable. Communications of the ACM 1984; 27(11):1134–1142.
4. Fraser G, Walkinshaw N. Behaviourally adequate software testing. In 2012 IEEE Fifth International Conference

on Software Testing, Verification and Validation, Antoniol G, Bertolino A, Labiche Y (eds). IEEE: Montreal, QC,
Canada, April 17–21, 2012; 300–309. 2012. ISBN 978-1-4577-1906-6.

5. Ernst MD. Static analysis, dynamic: Synergy and duality. WODA 2003: ICSE Workshop on Dynamic Analysis,
Portland OR, USA, 2003; 24–27.

6. Zhu H, Hall P, May J. Inductive inference and software testing. Software Testing, Verification, and Reliability 1992;
2(2):69–81.

7. Zhu H. A formal interpretation of software testing as inductive inference. Software Testing, Verification and
Reliability 1996; 6(1):3–31.

8. Cherniavsky J, Smith C. A recursion theoretic approach to program testing. IEEE Transactions on Software
Engineering 1987; 13.

9. Bergadano F, Gunetti D. Testing by means of inductive program learning. ACM Transactions on Software
Engineering and Methodology 1996; 5(2):119–145.

10. Romanik K. Approximate testing and its relationship to learning. Theoretical Computer Science 1997; 188(1–2):
175–194.

11. Briand L, Labiche Y, Bawar Z, Spido N. Using machine learning to refine category-partition test specifications and
test suites. Information and Software Technology 2009; 51:1551–1564.

12. Shahbaz M, Groz R. Inferring mealy machines. In FM, Volume 5850 of Lecture Notes in Computer Science,
Cavalcanti A, Dams D (eds). Springer: Eindhoven, HNetherlands, 2009; 207–222. ISBN 978-3-642-05088-6.

13. Walkinshaw N, Derrick J, Guo Q. Iterative refinement of reverse-engineered models by model-based testing. Formal
Methods (FM), LNCS, Springer: Eindhoven, Netherlands, 2009; 305–320.

14. Walkinshaw N, Bogdanov K, Derrick J, Paris J. Increasing functional coverage by inductive testing: A case study.
International Conference on Testing Software and Systems (ICTSS), LNCS: Natal, Brazil, 2010; 126–141.

15. Mitchell T. Machine Learning. McGraw-Hill: Boston MA, USA, 1997.
16. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection, Mellish CS (ed.)

Morgan Kaufmann: San Mateo, August 20; 1137–1145. ISBN 1-55860-363-8.
17. Van Rijsbergen CJ. Information Retrieval. Butterworths, London, UK, 1979.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

ASSESSING AND GENERATING TEST SETS IN TERMS OF BEHAVIOURAL ADEQUACY 779

18. Cohen J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological
Bulletin 1968; 70(4):213.

19. Walkinshaw N. Assessing test adequacy for black-box systems without specifications. Proceedings of the Interna-
tional Conference on Testing Systems and Software (ICTSS’11), Paris, France, 2011; 209–224.

20. Fallah F, Devadas S, Keutzer K. Occom-efficient computation of observability-based code coverage metrics for
functional verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2001;
20(8):1003–1015.

21. Whalen M, Gay G, You D, Heimdahl MPE, Staats M. Observable modified condition/decision coverage. Proceed-
ings of the 2013 International Conference on Software Engineering, IEEE Press: San Francisco, CA, USA, 2013;
102–111.

22. Schuler D, Zeller A. Assessing oracle quality with checked coverage. 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation (ICST), IEEE: Berlin, Germany, 2011; 90–99.

23. Frankl PG, Weyuker EJ. An applicable family of data flow testing criteria. IEEE Transactions on Software
Engineering 1988; 14(10):1483–1498.

24. Chilenski JJ, Miller SP. Applicability of modified condition/decision coverage to software testing. Software
Engineering Journal 1994; 9(5):193–200.

25. McMinn P. Search-based software test data generation: A survey. Software Testing, Verification and Reliability 2004;
14(2):105–156.

26. Fraser G, Arcuri A. Evolutionary generation of whole test suites. International Conference On Quality Software
(QSIC), IEEE Computer Society: Los Alamitos, CA, USA, 2011; 31–40.

27. Arcuri A. It really does matter how you normalize the branch distance in search-based software testing. Software
Testing, Verification and Reliability (STVR) 2013:119–147. DOI: 10.1002/stvr.1495.

28. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: An update.
SIGKDD Explorations Newsletter 2009; 11:10–18.

29. Lakhotia K, Harman M, McMinn P. A multi-objective approach to search-based test data generation. Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computation, ACM: London, UK, 2007; 1098–1105.

30. Fraser G, Arcuri A. The seed is strong: Seeding strategies in search-based software testing. IEEE International
Conference on Software Testing, Verification and Validation (ICST), Montreal, Canada, 2012; 121–130.

31. Fraser G, Arcuri A. Handling test length bloat. Software Testing, Verification and Reliability (STVR) 2013.
32. Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering 2013; 39(2):276–291.

ISSN 0098-5589. DOI: http://doi.ieeecomputersociety.org/10.1109/TSE.2012.14.
33. Schneckenburger C, Mayer J. Towards the determination of typical failure patterns. 4th International Workshop on

Software Quality Assurance, co-located with ESEC/FSE’07 (SOQUA’07), ACM: Dubrovnik, Croatia, 2007; 90–93.
34. The Apache Commons Mathematics Library. Available from: http://commons.apache.org/math [last accessed 2012].
35. Ghani K, Clark JA. Strengthening inferred specifications using search based testing. Proceedings of the International

Workshop on Search-based Software Testing, IEEE Computer Society: Lillehammer, Norwary, 2008; 187–194. ISBN
978-0-7695-3388-9.

36. Apache JMeter. Available from: http://jmeter.apache.org [last accessed 2012].
37. Dorrer E. F-distribution. Communications of the ACM 1968; 11(2):116–117.
38. Java Luhn algorithm for credit card number validation. Available from: http://megasnippets.com/source-codes/java/

luhn_algorithm_credit_card_number_validation [last accessed 2012].
39. Sthamer H. The automatic generation of software test data using genetic algorithms., PhD thesis, University of

Glamorgan, Pontyprid, Wales, UK, April 1996.
40. Poulding S, Clark JA. Efficient software verification: Statistical testing using automated search. IEEE Transactions

on Software Engineering 2010; 36(6):763–777. ISSN 0098-5589. DOI: 10.1109/TSE.2010.24.
41. Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure and

its potential impact. Empirical Software Engineering 2005; 10:405–435. ISSN 1382-3256.
42. Staats M, Pǎsǎreanu C. Parallel symbolic execution for structural test generation. Proceedings of the 19th Interna-

tional Symposium on Software Testing and Analysis (ISSTA’10), ACM: New York, NY, USA, 2010; 183–194. ISBN
978-1-60558-823-0. DOI: http://doi.acm.org/10.1145/1831708.1831732.

43. Quinlan JR. C4. 5: Programs for Machine Learning. Morgan Kaufmann: San Mateo, CA, 1993.
44. Freund Y, Schapire R. A desicion-theoretic generalization of on-line learning and an application to boosting. In

Computational Learning Theory. Springer: Jerusalem, Israel, 1995; 23–37.
45. Arcuri A, Fraser G. Parameter tuning or default values? An empirical investigation in search-based software

engineering. Empirical Software Engineering (EMSE) 2013; 18:1–30. DOI: 10.1007/s10664-013-9249-9.
46. Fraser G, Arcuri A. Achieving scalable mutation-based generation of whole test suites. Empirical Software

Engineering 2014. DOI: 10.1007/s10664-013-9299-z.
47. Vivanti M, Mis A, Gorla A, Fraser G. Search-based data-flow test generation. 2013 IEEE 24th International

Symposium on Software Reliability Engineering (ISSRE), IEEE: Pasadena, CA, USA, 2013; 370–379.
48. Cliff N. Ordinal Methods for Behavioral Data Analysis. Routledge, Press: New York, USA, 1996.
49. Peng C-YJ, Chen L-T. Beyond Cohen’s d: Alternative effect size measures for between-subject designs. The Journal

of Experimental Education 2014; 82(1):22–50.
50. Andrews JH, Briand LC, Labiche Y, Namin AS. Using mutation analysis for assessing and comparing testing

coverage criteria. IEEE Transactions on Software Engineering (TSE) 2006; 32(8):608–624.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

http://commons.apache.org/math
http://jmeter.apache.org
http://megasnippets.com/source-codes/java/luhn_{a}lgorithm_{c}redit_{c}ard_{n}umber_{v}alidation
http://megasnippets.com/source-codes/java/luhn_{a}lgorithm_{c}redit_{c}ard_{n}umber_{v}alidation

780 G. FRASER AND N. WALKINSHAW

51. Schuler D, Zeller A. Javalanche: Efficient mutation testing for Java. Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE ’09, ACM: New York, NY, USA, 2009; 297–298. ISBN 978-1-60558-001-2. DOI:
10.1145/1595696.1595750.

52. Romano J, Kromrey JD, Coraggio J, Skowronek J. Appropriate statistics for ordinal level data: Should we really be
using t-test and Cohen’s d for evaluating group differences on the nsse and other surveys. Annual Meeting of the
Florida Association of Institutional Research, Tampa FL, USA, 2006; 1–3.

53. Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments? [software testing].
Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005, IEEE: St. Louis, MO, USA,
2005; 402–411.

54. Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Computation 1996; 8(7):
1341–1390.

55. Vos TEJ, Baars AI, Lindlar FF, Kruse PM, Windisch A, Wegener J. Industrial scaled automated structural testing with
the evolutionary testing tool. 2010 Third International Conference on Software Testing, Verification and Validation
(ICST), IEEE: Paris, France, 2010; 175–184.

56. Vos TEJ, Lindlar FF, Wilmes B, Windisch A, Baars AI, Kruse PM, Gross H, Wegener J. Evolutionary functional
black-box testing in an industrial setting. Software Quality Journal 2013; 21(2):259–288.

57. Gross F, Fraser G, Zeller A. Search-based system testing: High coverage, no false alarms. Proceedings of the 2012
International Symposium on Software Testing and Analysis, ACM: Minneapolis, MN, 2012; 67–77.

58. Arcuri A, Iqbal MZ, Briand L. Black-box system testing of real-time embedded systems using random and search-
based testing. In Testing Software and Systems. Springer: Natal, Brazil, 2010; 95–110.

59. Ernst MD, Cockrell J, Griswold WG, Notkin D. Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering 2001; 27(2):99–123.

60. Vapnik V. The Nature of Statistical Learning Theory. Springer Science and Business Media, 1999.
61. Walkinshaw N, Taylor R, Derrick J. Inferring extended finite state machine models from software executions.

International Working Conference on Reverse Engineering (WCRE’13), Koblenz, Germany, 2013.

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

	Assessing and generating test sets in terms of behavioural adequacy
	Summary
	Introduction
	Background
	Source code-driven testing is inadequate
	Behavioural test set adequacy
	The probably approximately correct (PAC) framework
	k-folds cross validation
	Choosing k
	Choosing a scoring function

	Assessing Behavioural Adequacy
	Using PAC to quantify behavioural adequacy
	Limiting factors

	Using CV to quantify behavioural adequacy
	Combining code coverage with behavioural adequacy
	An example of behavioural coverage in action
	What about program correctness?

	Generating Adequate Test Sets
	Search-based testing
	Code coverage
	Behavioural adequacy
	Using PAC and a validation set
	Using k-folds cross validation

	Evolving adequate test sets with a genetic algorithm

	Evaluation
	Experimental setup
	Subject systems
	Experimental variables
	Data collection
	Analysis techniques

	Results
	RQ1—What is the effect of learners, k and evaluation metrics on the final behavioural adequacy score
	RQ2—Which configurations lead to test sets with highest fault-detection ability
	RQ3—What is the relationship between the adequacy score and the ability to detect defects
	RQ4—How does BestestCV compare with existing adequacy criteria
	Threats to validity

	Discussion
	Using behavioural coverage to assess test criteria
	Luhn and Fisher
	Scalability
	The limits of model inference

	Conclusions and Consequences
	REFERENCES

