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ABSTRACT 14 
Multidrug resistance (MDR) plasmids frequently encode antibiotic resistance 15 
genes conferring qualitatively different mechanisms of resistance. We show that 16 
the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli 17 
depend upon the sociality of the drug resistance: Selection for a selfish drug 18 
resistance (efflux-pump) occurred at very low drug concentrations, just 1.3% of 19 
the sensitive’s MIC, whereas selection for a cooperative drug resistance 20 
(modifying-enzyme) occurred at drug concentrations exceeding the MIC of the 21 
plasmid-free strain. 22 
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TEXT 24 
Antibiotics are critical to modern medicine, but their widespread use and misuse 25 
has lead to the evolution of resistant strains to most commonly used antibiotics 26 
(1, 2). Antibiotic resistance has become a major threat to global health, with 27 
multi-drug resistant (MDR) bacteria observed globally (3). Environmental 28 
antibiotic resistance genes (ARGs) are a major source of clinical resistance (4). 29 
ARGs can be selected for at very low concentrations of antibiotic, far below the 30 
minimum inhibitory concentration (MIC) of sensitive cells (5, 6), with antibiotic 31 
contamination at sub-MIC concentrations being proposed as the main driving 32 
force behind environmental selection for resistance (7–9). However, ARGs can 33 
encode qualitatively different forms of resistance ranging from selfish to 34 
cooperative. Selfish drug resistances only confer a benefit to the individual cell 35 
harbouring it, for example efflux pumps, reduced membrane permeability and 36 
alteration of antibiotic targets (10, 11). By contrast cooperative antibiotic 37 
resistances benefit both the resistant cell and surrounding cells whether they are 38 
resistant or not. For example, modifying enzymes such as β-lactamase inactivate 39 
the antibiotic through hydrolysis, decreasing its environmental concentration. 40 
Localisation of the β-lactamase enzyme in the periplasmic space may enhance 41 
the share of the benefit for the resistant cell, but nevertheless, the decrease in 42 
the overall environmental concentration of antibiotic will benefit both resistant and 43 
sensitive cells (12). We hypothesised that the sociality of drug resistance could 44 
alter the selective conditions for the spread of ARGs (13, 14). Specifically, 45 
because the benefits of selfish drug resistance are directed solely to the resistant 46 
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cell, whereas the benefits of cooperative drug resistance are shared between 47 
resistant and sensitive cells, we predict that selfish drug resistance should be 48 
selected at lower relative drug concentrations (i.e. % of the sensitive MIC) than 49 
cooperative resistance.  50 
 51 
Multiple ARGs are frequently clustered together onto conjugative plasmids 52 
including combinations of selfish and cooperative drug resistances (15). How 53 
combinatorial antibiotic usage selects for MDR plasmids is not clear, especially 54 
for combinations of antibiotics requiring qualitatively different modes of drug 55 
resistance, such as selfish or cooperative drug resistances.  Here we tested how 56 
the sociality of drug resistance, and single versus combined antibiotic treatment, 57 
altered the selective conditions for the MDR plasmid RK2 (16) in Escherichia coli 58 
MG1655. RK2 encodes both cooperative ampicillin resistance, mediated by a β-59 
lactamase, and selfish tetracycline resistance, mediated by an efflux pump. We 60 
report that the selfish drug resistance is selected for at far lower relative antibiotic 61 
concentrations than the cooperative drug resistance, and that combined antibiotic 62 
selection is additive, showing no interaction. 63 
 64 
Conventionally, ARGs are thought to be positively selected at antibiotic 65 
concentrations exceeding the MIC of sensitive cells in monoculture (17) (i.e. the 66 
conventional selective window, Fig 1). To determine whether the sociality of 67 
resistance affected the selection window for the RK2 MDR plasmid, we estimated 68 
the relative fitness of plasmid bearing versus isogenic plasmid free cells by direct 69 
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competition following standard methodology (see supplementary material). In the 70 
absence of antibiotics the plasmid imposed a significant cost of carriage, 71 
decreasing the fitness of E. coli by 19% (Fig. 1A/B, t test, p < 0.001, t = -9.8674, 72 
df = 23). An intrinsic cost is often associated with plasmid carriage when 73 
accessory traits are not under positive selection due to cellular disruption and 74 
increase transcriptional load (18). Cooperative ampicillin resistance was 75 
positively selected at ampicillin concentrations exceeding the MIC of sensitive E. 76 
coli (Fig. 2A). Importantly, sensitive cells were able to maintain positive growth in 77 
mixed cultures at ampicillin concentrations that completely inhibited their growth 78 
in monoculture (>8μg/ml; cf. Fig. 1A & Fig. S4), justifying the assignment of 79 
ampicillin resistance as cooperative. Thus cooperative resistance permits 80 
persistence of a sensitive subpopulation beyond the sensitive MIC due to the 81 
inactivation of the antibiotic, potentially allowing reinvasion by sensitive cells 82 
once the antibiotic concentration is sufficiently reduced by the action of resistant 83 
cells.  84 
 85 
In contrast, selfish tetracycline resistance was positively selected at tetracycline 86 
concentrations of just 1.3% of the MIC of sensitive E. coli (Fig. 2B). Indeed, at 87 
concentrations of tetracycline above 10% of the MIC of sensitive E. coli, the 88 
resistant plasmid bearers competitively excluded the plasmid-free bacteria, with 89 
no plasmid-free cells observable (Fig. S1). This is despite the fact that plasmid-90 
free E. coli could survive at these tetracycline concentrations when grown alone 91 
(Fig. 1B). Our data suggest that selfish tetracycline resistance is positively 92 
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selected in the sub-MIC selective window at very low tetracycline concentrations, 93 
similar to those observed in the natural environment (19). 94 
 95 
When ampicillin and tetracycline were applied in combination there was no 96 
significant interaction (F1,68 = 0.2395, p = 0.6261) indicating that when these two 97 
antibiotics were used in combination their selective effects were independent and 98 
additive (Fig. 2C). This means that very low concentrations of tetracycline were 99 
sufficient to completely mask the population-level effects of cooperative ampicillin 100 
resistance. With increasing tetracycline concentrations, the ampicillin 101 
concentration positively selecting for the MDR plasmid shifted to lower and lower 102 
sub MIC levels, reducing the window of selective conditions where sensitive cells 103 
could persist (Fig. 2D).  104 
 105 
Residues of multiple antibiotics are commonly found contaminating the same 106 
environments at low concentrations (19, 20). These combinations, and 107 
particularly the presence in the environment of antibiotics like tetracycline 108 
targeted by selfish efflux-mediated resistance, will select for the spread of MDR 109 
plasmids and competitive exclusion of sensitive cells. This is despite being 110 
present at concentrations far below the level required to positively select 111 
resistance individually. This adds further evidence that ARGs, whether 112 
chromosomal or plasmid encoded, can be positively selected at antibiotic 113 
concentrations far below the MIC of sensitive strains (5, 6, 9).  114 
 115 
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Our study has a number of possible limitations: First, it is possible that other 116 
factors, in addition to sociality, may have contributed to differences in the fitness 117 
reaction norms of the antibiotics, including the contrasting effects of sub-MIC 118 
concentrations on monoculture densities and the fact that ampicillin is 119 
bacteriocidal whereas tetracycline is bacteriostatic. Second, we use exemplars of 120 
cooperative and selfish resistance but more research will be required to test the 121 
importance of sociality on the selective conditions for other resistance 122 
mechanisms. 123 
 124 
Here we show that the extent to which an ARG is positively selected at sub-MIC 125 
antibiotic concentrations depends upon the sociality of the mechanism of drug 126 
resistance. Cooperative ampicillin resistance is positively selected at ampicillin 127 
concentrations exceeding the MIC, whereas selfish tetracycline resistance is 128 
positively selected at 100-fold lower relative drug concentrations. This striking 129 
difference in the selective window for ARGs co-located on the same MDR 130 
plasmid probably arises because of the population-level effects of the ARGS: 131 
Cooperative ampicillin resistance allowed sensitive bacteria to survive past their 132 
MIC by reducing the ampicillin concentration and sharing the benefits of 133 
resistance, whereas, selfish tetracycline resistance drove complete competitive 134 
exclusion of sensitive cells at >10% MIC due to the exclusively individual benefits 135 
of efflux-mediated resistance. Combining the two antibiotics – at concentrations 136 
that would not normally select for resistance individually – selects for both 137 
resistances and spread of the MDR plasmid. Taken together these findings 138 
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suggest that selfish efflux-mediated drug resistances are likely to be especially 139 
important for the selective maintenance and spread of MDR plasmids. 140 
 141 
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 219 
FIG 1 220 
Cell density (OD600) of sensitive plasmid free bacteria (green line) and resistant 221 
plasmid containing bacteria (blue line) as a function of A ampicillin concentration, 222 
B tetracycline concentration after 24 hours growth in monoculture. Error bars 223 
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show SEM (n=6). Area shaded in green shows the sub-MIC selective window, 224 
and the area shaded in blue shows the selective window conventionally thought 225 
to select for resistance. 226 
 227 
FIG 2 228 
Fitness reaction norms as a function of antibiotic concentration during 229 
competition experiments between E. coli harboring the RK2 plasmid and isogenic 230 
plasmid free sensitive strains. Competitions in the presence of A ampicillin, B 231 
tetracycline, red lines show fitted regression. C/D Fitness reaction norms of 232 
combination treatments with both ampicillin and tetracycline during competition 233 
experiments between RK2 harboring and plasmid free strains. There is no 234 
significant interaction of antibiotic treatments upon the relative fitness (F1,68 = 235 
0.2395, p = 0.6261) indicating treatments were non-interacting and additive. Error 236 
bars show SEM (n=6), Antibiotic concentrations shown as percentages of 237 
sensitive MIC. 238  239 
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FIG 1 Cell density (OD600) of sensitive plasmid free bacteria (green line) and
resistant plasmid containing bacteria (blue line) as a function of A ampicillin
concentration, B tetracycline concentration after 24 hours growth in monoculture.
Error bars show SEM (n=6). Area shaded in green shows the sub-MIC selective
window, and the area shaded in blue shows the selective window conventionally
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FIG2 Fitness reaction norms as a function of antibiotic concentration during
competition experiments between E. coli harboring the RK2 plasmid and isogenic
plasmid free sensitive strains. Competitions in the presence of A ampicillin, B
tetracycline, red lines show fitted regression. C/D Fitness reaction norms of
combination treatments with both ampicillin and tetracycline during competition
experiments between RK2 harboring and plasmid free strains. There is no
significant interaction of antibiotic treatments upon the relative fitness (F1,68 =
0.2395, p = 0.6261) indicating treatments were non-interacting and additive. Error
bars show SEM (n=6), Antibiotic concentrations shown as percentages of sensitive
MIC.


