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Abstract. This paper offers a new look at the network flow dynamics from the viewpoint of 

physics by demonstrating that the traffic system, in terms of the aggregate effects of human 

behaviors, may exhibit like a physical system. Specifically, we look into the day-to-day 

evolution of network flows that arises from travelers’ route choices and their learning 

behavior on perceived travel costs. We show that the flow dynamics is analogous to a damped 

oscillatory system. The concepts of energies are introduced, including the potential energy 

and the kinetic energy. The potential energy, stored in each link, increases with the traffic 

flow on that link; the kinetic energy, generated by travelers’ day-to-day route swapping, is 

proportional to the square of the path flow changing speed. The potential and kinetic energies 

are converted to each other throughout the whole flow evolution, and the total system energy 

keeps decreasing owing to travelers’ tendency to stay on their current routes, which is 

analogous to the damping of a physical system. Finally, the system will approach the 

equilibrium state with minimum total potential energy and zero kinetic energy. We prove the 

stability of the day-to-day dynamics and provide numerical experiments to elucidate the 

interesting findings. 

 

Keywords: Day-to-day dynamics; Network flow; User learning; Potential energy; Kinetic 

energy 

 

1. Introduction 
 

The notion of user equilibrium (UE), as the norm for transportation system analysis, 

describes the ideal static state of the transportation networks as a result of the aggregate 

behavior of road users when they are all rational utility-maximizers. It was first proposed by  

and then further extended to stochastic user equilibrium (SUE) (Daganzo and Sheffi, 1977), 

boundedly rational user equilibrium (BRUE) (Mahmassani and Chang, 1987) and so on, 

attempting to predict traffic flows with more realistic assumptions on travelers’ behavior. 
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The UE traffic assignment problem was formulated as a mathematical programming problem 

in Beckmann et al. (1956), known as the “Beckmann’s transformation”. Although the 
formulation reflects some inherent properties of the traffic network, it is in a long time 

viewed as no intuitive economic or behavioral interpretation but merely a mathematical 

construct to solve UE (Sheffi, 1984). In economics, traffic assignment problem with 

separable link cost functions is modeled as the potential game (Rosenthal, 1973). In a 

potential game, all players’ strategies are mapped into one global potential function. The 

difference in values for the potential function has the same value as the payoff of each player 

when changing one’s strategy ceteris paribus. The equilibrium is reached at the local optima 

of the potential function. From this point of view, the Beckmann’s transformation can be 

endowed with a physical-like meaning - the “potential” of the transportation network. The 

equilibria are obtained when the system achieves the lowest potential (Monderer and Shapley, 

1996; Sandholm, 2001). 

 

Most studies on static traffic assignment examine the final equilibrium state when travelers 

have no incentive for route swapping. However, in a real traffic network, it is always 

observed that traffic flows fluctuate from time to time (Guo and Liu, 2011; He and Liu, 2012), 

due to the interference of external factors and change of the network itself. Furthermore, a 

disequilibrated transportation network would incline to approach the equilibrium (Guo and 

Liu, 2011; He and Liu, 2012) through travelers’ route swapping. To explain the mechanism of 

network flow fluctuation and attainment of UE states, a substantial stream of research has 

been developed to look into the “day-to-day” flow dynamics.  

 

The flow dynamics is sometimes described by a set of deterministic ordinary differential 

equations (ODEs) (Cho and Hwang, 2005; Han and Du, 2012; He et al., 2010; He and Liu, 

2012; Smith and Mounce, 2011). A “rational behavior adjustment process” (RBAP) with 
fixed demand was proposed by Zhang et al. (2001) and Yang and Zhang (2009), assuming 

that “the aggregated travel cost in the system based on the previous day’s route travel costs 
will decrease when the route flows change from day to day” (Yang and Zhang, 2009). Many 

typical models follow RBAP, such as those proposed by Smith (1984), Friesz et al. (1994) 

and Nagurney and Zhang (1997). An equivalent link-based “discrete rational adjustment 

process” was proposed by Guo et al. (2013, 2015). The BRUE-based day-to-day dynamics 

was investigated recently in Di et al. (2015), Guo and Liu (2011), Guo (2013) and Wu et al. 

(2013). 

 

In another branch of the literature, fluctuation of network flows is examined as a result of 

travelers’ perception and day-to-day learning on route travel costs (Bie and Lo, 2010; 

Cantarella and Cascetta, 1995; Cascetta and Cantarella, 1993; Horowitz, 1984; Watling, 1999; 

Xiao and Lo, 2015; Ye and Yang, 2013). Travelers are assumed to possess their own 
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perception on future traffic conditions and choose routes based on their perception. The 

perceived cost is updated according to new experience or real-time traffic information, and 

the route choice is modeled as a stochastic network loading process, given the new perceived 

costs. The corresponding stationary state of these models is SUE. 

 

The above two types of models are based on different assumptions. The first type deals with 

traffic flow evolution by updating traffic flows based on actual traffic conditions, but it 

ignores the impact of historical traffic information on travelers’ route choice decisions. In 

contrast, the second type treats the flow swapping as a result of cognition changing from a 

more intrinsic aspect, but it is more difficult to verify since the cognition is more difficult to 

measure and estimate than flows.  

 

In this paper, we explore the mechanism of travelers’ learning behavior and route swapping 
behavior in an integrated manner. Road users on the routes with higher costs will tend to 

switch to the ones with lower costs, while taking history into account. As a result, their route 

swapping speeds depend on the route travel cost differences both currently and in the past. 

Such behavior is defined as the “inertia” in day-to-day flow dynamics in this study. When 

introducing “inertia” into the continuous route swapping model, the day-to-day dynamics can 

be described by a set of second-order ODEs, which is similar to the physical motion equation 

of a harmonic oscillator. By analogy to the physical system, we are able to identify the 

“damping factor”, “restoring force”, “potential energy” and “kinetic energy” of the network 

during the day-to-day evolution. The difference between the actual costs on each route-pair 

acts like “restoring force” in the transportation network, while the route swapping brings 

“damping”. The Beckmann’s transformation is translated into the “potential energy”, as it 

was treated in the previous literature (Jin, 2007; Peeta and Yang, 2003; Sandholm, 2001), and 

the “kinetic energy” is defined to be associated with the flow changing. Total energy of the 

transportation network now comprises both the potential energy and the kinetic energy. The 

system keeps losing energy due to the “friction” caused by travelers’ tendency to stay on their 

current routes and eventually reaches UE. The UE state is also the minimum potential energy 

state with zero kinetic energy, which is consistent with the minimum total potential energy 

principle (Hashin and Shtrikman, 1963). 

 

The rest of this paper is organized as follows. Section 2 develops a continuous-time 

day-to-day dynamical model by considering travelers’ learning process and route swapping 

behavior. The day-to-day flow dynamics is formulated as a set of second-order ODEs, which 

possesses a similar form to the motion equation of a harmonic oscillator. Section 3 briefly 

introduces the dynamics and energies of a damped oscillatory system. By analogy to a 

damped oscillatory system, formulae of kinetic and potential energies of the dynamical traffic 

network are developed and relationship between network energy and traffic equilibrium is 

discussed. In Section 4, stability analysis is provided by LaSalle’s theorem. The total 
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mechanical energy function is chosen to be the Lyapunov function. Section 5 examines some 

interesting properties of the day-to-day model by numerical examples. The last section 

concludes the study and highlights some future research directions. 

2. The second-order day-to-day dynamics 
 
Consider a directed traffic network ܩ ൌ ሺܰǡ  ܣ ሻ consisting of a set ܰ of nodes and a setܣ

of links. Let ܹ denote the set of origin-destination (OD) pairs and ܴ௪ the set of all paths 

connecting OD pair ݓ א ܹ. Let ݀௪ ൐ Ͳ be the traffic demand between OD pair ݓ א ܹ, ௥݂௪ the flow on path ݎ א ܴ௪ between OD pair ݓ א ܹ and ݒ௔ the flow on link ܽ א  .ܣ

Let ȁܴ௪ȁ  represent the cardinality of set ܴ௪ , i.e., there are ȁܴ௪ȁ  number of paths 

connecting OD pair ݓ א ܹ. Each link has a separable cost function ܿ௔ሺݒ௔ሻ, which is 

assumed to be nonnegative, differentiable, convex and strictly increasing. Define ȟ ൌ ሾߜ௔௥ሿ 
and Ȧ ൌ ሾߣ௥௪ሿ as the link-path and OD-path incidence matrices, respectively, where Ɂ௔௥ 

equals 1 if path ݎ uses link ܽ and 0 otherwise, and ߣ௥௪ equals 1 if path ݎ connects OD 

pair ݓ and 0 otherwise. 

 

Let ܎ ൌ ሺ ௥݂௪ǡ ݎ א ܴ௪ǡ ݓ א ܹሻ୘ ܌ , ൌ ሺ݀௪ǡ ݓ א ܹሻ୘ and ܞ ൌ ሺݒ௔ǡ ܽ א  ሻ୘ be the vectorsܣ

of path flows, OD demands and link flows, respectively, where superscript “T” represents the 
transpose operation. The relationship between link flows, path flows and OD demands can be 

expressed by ܞ ൌ ȟ܎ǡ ܌ ൌ Ȧ܎ (ͳ) 

The actual path travel cost ܿ௥௪ along a path ݎ א ܴ௪ between OD pair ݓ א ܹ is given to 

be the sum of travel costs on all the links constituting this path, i.e., ܿ௥௪ ൌ σ ܿ௔ߜ௔௥௔א஺ , 

where ܿ௔ is the travel cost on link ܽ. 

 

2.1. Wardrop’s user equilibrium 

 

To begin with, we introduce the mathematical formulation of Wardrop’s UE. Let ݑ௪ denote 

the minimum path travel cost between OD pair ݓ א ܹ and ܝ ൌ ሺݑ௪ǡ ݓ א ܹሻ୘. Following 

Wardrop (1952) and Beckmann et al. (1956), the fixed-demand UE condition is given as 

follows. 

 

Definition 1. A path flow vector כ܎ satisfying Ȧכ܎ ൌ  is said to be a user equilibrium path ܌

flow pattern if the following condition holds: ܿ௥௪ሺ ௥݂௪כ ሻ ൜ൌ כ௪ǡ   ௥݂௪ݑ ൐ Ͳ൒ כ௪ǡ   ௥݂௪ݑ ൌ Ͳ     ݎ׊ א ܴ௪ǡ ݓ א ܹ (ʹ) 

Condition (ʹ) can be obtained from the first-order optimality conditions of the following 
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minimization problem: minܞ ෍ න ܿ௔ሺ߱ሻd߱௩ೌ଴௔א஺  (͵) 

subject to ܞ ൌ ȟ܌ , ܎ ൌ Ȧ܎ ,܎ ൒ ૙ 

Eq. (͵) is the mathematical form of the “Beckmann’s transformation”. Since the link travel 

cost functions are strictly increasing and convex, the UE link flow pattern כܞ is unique, 

while the UE path flow pattern is generally not unique, and any path flow vector contained in 

the set ሼכ܎ȁכ܎ ൒ ૙ǡ ȟכ܎ ൌ ǡכܞ Ȧכ܎ ൌ  .ሽ is a UE path flow pattern ܌

 

2.2. Dynamical network flow evolution model 

 

Consider a discrete-time day-to-day flow evolution model with learning process, where the 

calendar time is denoted by ݐ and the time step is ݐߜ. Travelers are assumed to possess their 

own perception on travel costs, denoted by ܥ௥௪ , for all paths ݎ א ܴ௪ ݓ , א ܹ . The 

perceived path travel costs may not be exactly the same as the actual travel costs they 

experienced. When the perception differs from the real condition, travelers may try to 

“correct” their perception by some rule. We call this behavior the travelers’ “learning 

behavior”. As assumed in many previous studies such as Bie and Lo (2010), Horowitz (1984), 

Watling (1999), Xiao and Lo (2015), Yang et al. (1993) and Ye and Yang (2013), the 

day-to-day learning behavior is simply modeled by the exponential moving average as 

follows: ܥ௥௪ሺݐሻ ൌ ߮௪ܿ௥௪ሺݐ െ ሻݐߜ ൅ ሺͳ െ ߮௪ሻܥ௥௪ሺݐ െ ሻˈͲݐߜ ൏ ߮௪ ൑ ͳ (Ͷ) 

Eq. (Ͷ) states that the new perceived path travel cost is a linear combination of the previous 

actual and perceived path travel costs; ߮௪ is an OD-dependent weighting factor. 

 

It is reasonable to assume that, the longer the time step is, the less certain the travelers will be 

about their prior perception (Berman et al., 2009). As a result, travelers will put less weight 

on their pervious perception when updating it. Therefore, it is reasonable to consider a 

general learning process with time-step-dependent weighting parameter, which can be 

formulated as follows, ܥ௥௪ሺݐሻ ൌ ߮௪ሺݐߜሻܿ௥௪ሺݐ െ ሻݐߜ ൅ ൫ͳ െ ߮௪ሺݐߜሻ൯ܥ௥௪ሺݐ െ  ሻ (ͷ)ݐߜ

where ߮௪ሺݐߜሻ is an increasing function of Ɂݐ satisfying ߮௪ሺͲሻ ൌ Ͳ   (͸) limఋ௧՜ஶ ߮௪ሺݐߜሻ ൌ ͳ   (͹) 
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One typical form of ߮௪ሺݐߜሻ is shown in Eq. (ͺ), if we assume that the memory of the past 

information decays at a rate proportional to its current value. ߮௪ሺݐߜሻ ൌ ͳ െ ݁ିఊೢఋ௧, ߛ௪ ൐ Ͳ (ͺ) 

Once travelers update their perceptions on travel costs, the next step is to reconsider their 

route choices. We assume that the path swapping rate from path ݎ א ܹ to path ݅ א ܹ is 

proportional to the cost difference between these two paths with a constant coefficient ߟ௪, 

which can be interpreted as travelers’ sensitivity to the cost difference. We further assume that 

travelers between the same OD pair are homogenous and have identical sensitivity for all 

pairs of paths in the same OD pair, i.e., the coefficient ߟ௪ is only OD-dependent. Now the 

aggregate flow swapping rate on path ݎ א ܴ௪ can be expressed by Eq. (ͻ) as follows: 

௥݂௪ሺݐሻ െ ௥݂௪ሺݐ െ ሻݐߜ ൌ െߟ௪ݐߜ ෍ ൫ܥ௥௪ሺݐሻ െ ோೢאሻ൯௜ݐ௜௪ሺܥ  (ͻ) 

As we show in Appendices A and B, under certain conditions, the day-to-day flow dynamics 

proposed in (ͻ) is a degenerated case of both the network tatonnement process (NTP) in 

Friesz et al. (1994) and the projected dynamical system (PDS) in Nagurney and Zhang 

(1997). 

 

Integrating the learning behavior in Eq. (ͷ) with the route swapping behavior in Eq. (ͻ) and 

then pushing the time step to zero, we have the following continuous form of the network 

flow dynamics (the derivation is provided in Appendix C), ͳߟ௪ߠ௪ȁܴ௪ȁ ݂ሷ௥௪ ൅ ͳߟ௪ȁܴ௪ȁ ݂ሶ௥௪ െ ͳȁܴ௪ȁ  ෍ ሺܿ௜௪ െ ܿ௥௪ሻ௜אோೢ ൌ Ͳǡ ௪ߠ ൐ Ͳǡ ௪ߟ ൐ Ͳ (ͳͲ) 

where ߠ௪ ൌ ሶ߮௪ሺͲሻ represents the initial decay rate of the memory on previous perceptions. 

It is interesting that, from the learning model, we obtain a second-order dynamical process 

with respect to path flows. In previous literature (Friesz et al., 1994; Nagurney and Zhang, 

1997; Smith, 1984; Yang and Zhang, 2009), the flow swapping rate ݂ሶ௥௪  is directly 

determined by actual travel costs on all paths. However, Eq. (ͳͲ) shows that, by considering 

travelers’ learning process, the path flow swapping rate ݂ሶ௥௪ is dependent not only on actual 

path travel costs but also on the second-order derivative ݂ሷ௥௪  of the path flow. When ߠ௪ ՜ λ, indicating that travelers have no prior perception on travel costs but just rely on the 

latest traffic information to adjust routes, Eq. (ͳͲ) will degenerate to the first-order model as 

follows, ݂ሶ௥௪ ൌ െߟ௪ ෍ ሺܿ௥௪ െ ܿ௜௪ሻ௜אோೢ ǡ ௪ߟ ൐ Ͳ (ͳͳ) 

For the flow dynamics, let ܠଵ ൌ ܎ ଶܠ , ൌ ሶ܎ ܠ , ൌ ቂܠଵܠଶቃ . Also denote ܏ሺܠଵሻ ൌ ሺ݃௥௪ǡ ݎ א
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ܴ௪ǡ ݓ א ܹሻ୘ , where ݃௥௪ ൌ σ ሺܿ௜௪ െ ܿ௥௪ሻ݅ݓܴא . Then the dynamics in Eq. (ͳͲ) can be 

rewritten into the following system of first-order ODEs, ൤ܠሶ ૚ܠሶ ૛൨ ൌ ቂ ଵሻܠሺ܏ଶીિܠ െ ીܠଶቃ (ͳʹ) 

where ી ൌ diag൛ߠ௪ܫȁோೢȁǡ ݓ א ܹൟ with ܫȁோೢȁ  being an identity matrix of size ȁܴ௪ȁ, and િ ൌ diag൛ߟ௪ܫȁோೢȁǡ ݓ א ܹൟ. 

 

Since ෍ ݓܴאݎሶଶǡ௥௪ݔ
ൌ ෍ ෍ ௪ሺܿ௜௪ߟ௪ߠ െ ܿ௥௪ሻ݅ݓܴאݎݓܴא

െ ௪ߠ ෍ ݓܴאݎଶǡ௥௪ݔ
ൌ െߠ௪ ෍ ݓܴאݎଶǡ௥௪ݔ

 (ͳ͵) 

then solving the ODE above yields ෍ ݓܴאݎଶǡ௥௪ݔ
ൌ ܽ݁ିఏೢ௧  (ͳͶ) 

where ܽ is constant. If the initial state of ܠଶ, denoted by ܠଶ଴, satisfies ෍ ଶǡ௥௪଴ݔ
ݓܴאݎ

ൌ Ͳǡ    ݓ׊ א ܹ (ͳͷ) 

Then ܽ ൌ Ͳ  and σ ோೢאሶଵǡ௥௪௥ݔ ൌ σ ோೢאଶǡ௥௪௥ݔ ൌ Ͳ  for all calendar time, thus the flow 

dynamics always satisfies the flow conservation condition. We further make the following 

assumption to guarantee that the path flows are always positive during the evolution process. 

In other words, we assume that the path flows only evolve in the interior of the feasible path 

flow set. 

 

Assumption 1. Define 

ܭ  ൌ ሼܠଵȁܠଵ ൐ ૙ǡ Ȧܠଵ ൌ  ሽ܌

where ܠଵ ൐ ૙ means that all the elements of ܠଵ are positive, and 

ܪ  ൌ ൛ܠଶȁݔଶǡ௥௪ א Թǡ σ ଶǡ௥௪ݔ ൌ Ͳ௥אோೢ ǡ ݎ׊ א ܴ௪ǡ ݓ א ܹൟ. 

We assume 

(i) Each UE path flow pattern ܠଵכ  is in ܭ; 

(ii) Starting with any point in ܭ ൈ  under dynamical process (ͳʹ) ܠ the trajectories of ,ܪ

will always stay in ܭ ൈ  .ܪ

 

Remark 1. In a deterministic network with arbitrary initial conditions, Assumption 1 can be 

easily violated. However, if we consider moderate path flow fluctuation in the neighborhood 

of the equilibrium points with no degenerate path, this assumption is generally satisfied. Here 

a degenerate path is the minimum-cost path whose flow must be zero under the equilibrium 

condition (Yang and Bell, 2007). 
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Theorem 1. With Assumption 1, all paths considered between the same OD pair have 

identical travel cost under UE. Then ܠଵכ א ܭ  states UE if and only if כܠ ൌ ቂܠଵכ૙ ቃ is a 

stationary point of the dynamical system (ͳʹ). 

 

Proof. At the stationary point of Eq. (ͳʹ), we have ܠଶכ ൌ ૙ and ܏ሺܠଵכሻ ൌ ૙, which leads to ෍ሺܿ௜௪ െ ܿ௥௪ሻ݅ݓܴא
ൌ ෍ ܿ௜௪݅ݓܴא

െ ȁܴ௪ȁܿ௥௪ ൌ Ͳǡ ݎ׊ א ܴ௪ǡ ݓ א ܹ (ͳ͸) 

Eq. (ͳ͸) holds if and only if ܿ௥௪ ൌ ܿ௜௪ for all ݎǡ ݅ א ܴ௪ˈݓ א ܹ, which is also the UE 

condition since ܠଵכ א  Ŷ   .ܭ

3. Physics of the day-to-day dynamics 
 
To understand our day-to-day model better, we borrow the physical concepts and make 

analogy of our dynamical system to a damped oscillatory system. Availability of this analogy 

lies in the similarity of the formulations of both systems in representing dynamics or motion. 

 

3.1. Dynamics and energy of a damped oscillatory system 

 

We first briefly illustrate the dynamics of a damped oscillator. Suppose a rigid body of mass ܯ is connected to the wall by a spring. A restoring force ܨሺݔሻ is applied on the mass by the 

spring, where ݔ is the displacement. Let ܧ௣ሺݔሻ be the potential energy of the mass at 

position ݔ. Without loss of generality, set ܧ௣ሺͲሻ ൌ Ͳ and then ܧ௣ሺݔሻ ൌ න െܨሺݔሻ݀ݔ௫
଴  (ͳ͹) 

Kinetic energy of the mass at a speed ݏ is defined as ܧ௞ ൌ ͳʹ  ଶ (ͳͺ)ݏܯ

In real oscillators, friction always exists to resist the motion of the mass. The frictional force ܨ௙ is usually assumed to be proportional to the velocity ݏ of the object, i.e., ܨ௙ ൌ െݏߴ ൌ െݔߴሶ  (ͳͻ) 

where ߴ is the damping coefficient. By Newton’s Second Law,  ݔܯሷ ൅ ሶݔߴ െ ሻݔሺܨ ൌ Ͳ (ʹͲ) 

Eq. (ʹͲ) is called the equation of motion of the oscillatory system. Especially, if the restoring 

force is proportional to the displacement, i.e. ܨሺݔሻ ൌ െ݇ݔ, where ݇ is the spring constant, 
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then the system is called a damped harmonic oscillator. Motion equation of the damped 

harmonic oscillator can be rewritten into the following form, ݔሷ ൅ ሶݔ଴߱ߞʹ ൅ ߱଴ଶݔ ൌ Ͳ (ʹͳ) 

where ߱଴ ൌ ඥ݇ Τܯ   is the “undamped angular frequency” and ߞ ൌ ߴ ൫ʹξ݇ܯ൯Τ  the 

“damping ratio”. Damping ratio determines the oscillation pattern of the system as listed 
below:  

i) Undamped (ߞ ൌ Ͳ): the system keeps oscillating and is unstable; 

ii) Underdamped (Ͳ ൏ ߞ ൏ ͳ): the system oscillates with the amplitude decreasing to zero. 

The angular frequency is given by ߱ଵ ൌ ߱଴ඥͳ െ  (ʹʹ) ଶߞ

iii) Critically damped (ߞ ൌ ͳ): the system converges at the fastest speed without oscillating; 

iv) Overdamped (ߞ ൐ ͳ): the system approaches to equilibrium without oscillating. The 

larger the damping ratio ߞ is, the slower the system converges. 

 

Figure 1 shows typical trajectories of a harmonic oscillator under different damping ratios.  

 

 
Figure 1. Harmonic oscillation under different damping ratios 

 

3.2. Energies of the traffic network with flow dynamics 

 

In a traffic network, travelers make daily route choices based on the perceived path travel 

costs and also update the perceptions according to previous travel experience; as a result, path 

flows may fluctuate from day to day. It is interesting to see that the dynamics of such a traffic 

network and that of a damped oscillatory system have some characteristics in common. First 

of all, they both have “inertia”. A rigid mass system tends to keep its former motion state 

because of inertia; while in a traffic network, travelers tend to keep their former route choices 

because of the impact of historical information on their perception of travel costs. Secondly, 

both systems have “damping”. For the physical system, damping is caused by frictions, with 
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which the system gradually loses energy before equilibrating. In a traffic network, damping is 

caused by travelers’ route swapping behavior to reduce individual cost. In this subsection, we 

will explore the similarity between the traffic network under day-to-day flow dynamics and 

the damped oscillatory system, and then discuss the system behavior from the perspective of 

energy. Alike to the damped oscillatory system, potential energy and kinetic energy of a 

traffic network will be defined and the evolution of energy will be investigated. 

 

Enlightened by the oscillatory system, we regard the link flow ݒ௔ ൌ σ σ ௔௥ߜ ௥݂௪௥אோೢ௪אௐ  as 

the total “deformation” or “displacement” of link ܽ א  ௔ሻ asݒand the link travel cost ܿ௔ሺ ,ܣ

the “restoring force”. Thus it’s natural to define ׬ ܿ௔ሺ߱ሻd߱௩ೌ଴  as the potential energy on link ܽ א  ,which is a scalar and thus additive. Then the total potential energy on the network ,ܣ

denoted by ܧ௣, is equal to ܧ௣ ൌ ෍ න ܿ௔ሺ߱ሻd߱௩ೌ଴௔א஺  (ʹ͵) 

which is exactly taking the form of the “Beckmann’s transformation” in Eq. (͵) and is also 

similar to that in Eq. (ͳ͹). 

 

Similar to Eq. (ͳͺ), define 
ଵଶ ݉௥௪ݔଶǡ௥௪ଶ  to be the kinetic energy of path ݎ א ܴ௪, and then the 

kinetic energy of the network can be written as ܧ௞ ൌ ෍ ෍ ͳʹ ݉௥௪ݔଶǡ௥௪ଶ௥אோೢ௪אௐ  (ʹͶ) 

where ݉௥௪ acts as the mass of path ݎ א ܴ௪ǡ ݓ א ܹ. Assume that the travel time ܿ௔ is in 

time unit ݄ (i.e. hour) and traffic flow ݒ௔ in ݄݁ݒȀ݄, then the dimension of potential energy ܧ௣ in Eq. (ʹ͵) is ݄݁ݒ. Furthermore, the unit of flow changing speed ݔଶǡ௥௪ is ݄݁ݒȀ݄ଶ. As it 

will be specified later in this subsection, ݉௥௪ is in ݄ସȀ݄݁ݒ, then the dimension of kinetic 

energy ܧ௞ in Eq. (ʹͶ) is ݄ସȀ݄݁ݒ ڄ ሺ݄݁ݒ ݄ଶΤ ሻଶ ൌ  ௣ܧ Therefore, the potential energy .݄݁ݒ

and kinetic energy ܧ௞ have the same dimension. Total mechanical energy of the system at 

any calendar time is the summation of its potential energy and kinetic energy, i.e., 

ሻܠሺܧ ൌ ෍ න ܿ௔ሺ߱ሻd߱௩ೌሺܠభሻ
଴௔א஺ ൅ ෍ ෍ ͳʹ ݉௥௪ݔଶǡ௥௪ଶ௥אோೢ௪אௐ  (ʹͷ) 

where ܠଵ ൐ ૙, Ȧܠଵ ൌ ଶǡ௥௪ݔ and ܌ א Թ, for all ݎ א ܴ௪, ݓ א ܹ. 

 

Then we have the following theorem on the relationship between system energy and UE. 

 

Theorem 2. ܧሺܠሻ is strictly convex and thus has the unique minimum at כܠ ൌ ቂܠభܠכమכ ቃ, where 
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כଵܠ  is the user equilibrium path flow pattern and ܠଶכ ൌ ૙. 

 

Proof. By assumption, ܿ௔ሺݒ௔ሻ  is strictly increasing for all ܽ א  ሻ is strictlyܠሺܧ thus ,ܣ

convex, which implies that ܧሺܠሻ has a unique minimum. To minimize Eq. (ʹͷ), the 

Lagrangian is  

ǡܠሺܮ ሻܝ ൌ ሻܠሺܧ ൅ ෍ ௪ݑ ቌ݀௪ െ ෍ ோೢאଵǡ௥௪௥ݔ ቍ௪אௐ  (ʹ͸) 

Therefore the first-order optimality conditions are ݔଵǡ௥௪כ כଵǡ௥௪ݔ߲ܮ߲ ൌ כଵǡ௥௪ݔ ሺܿ௥௪כ െ כ௪ݑ ሻ ൌ Ͳǡ    ݎ ׊ א ܴ௪ǡ ݓ א ܹ (ʹ͹) 

ܿ௥௪כ െ כ௪ݑ ൒ Ͳ , ݔଵǡ௥௪כ ൒ Ͳ, ݎ ׊ א ܴ௪ǡ ݓ א ܹ     (ʹͺ) ߲ݔ߲ܮଶǡ௥௪כ ൌ ݉௥௪ݔଶǡ௥௪כ ൌ Ͳǡ    ݎ ׊ א ܴ௪ǡ ݓ א ܹ      (ʹͻ) 

Conditions (ʹ͹) and (ʹͺ) together indicate UE, therefore ܠଵכ  is the UE path flow pattern. By 

Eq. (ʹͻ), ݔଶǡ௥௪כ ൌ Ͳ for all ݎ א ܴ௪, ݓ א ܹ, i.e., ܠଶכ ൌ ૙. This completes the proof.     Ŷ 

 

Since the potential energy in Eq. (ʹͷ) is the same as the objective function in Eq. (͵), thus 

when at UE, the system potential energy and system total energy reach minimum 

simultaneously, while the kinetic energy is zero and also minimum. 

 

By comparing the counterparts of Eqs. (ͳͲ) and (ʹͲ), ݉௪ ؜ ଵఎೢఏೢȁோೢȁ can be interpreted as 

the “mass” of each path between OD pair ݓ א ܹ. Since we assume that all the travelers 

between the same OD pair are homogeneous, characterized by the identical ߟ௪ and ߠ௪, then 

all the paths between the same OD pair will have the same “mass”, i.e., ݉௥௪ ൌ ݉௪ for all ݎ א ܴ௪. Further we define ܯ௪ ൌ ȁܴ௪ȁ݉௪ ൌ ଵఎೢఏೢ  as the total mass of OD pair ݓ א ܹ. In 

reality, the smaller ߠ௪ is, the more slowly travelers’ memory fades; and the smaller ߟ௪ is, 

the less sensitive the travelers are to the cost differences. Both situations will make travelers 

more prone to stay on their original routes. By defining the “mass”, such phenomenon can be 
interpreted from the angle of the physical system: smaller ߠ௪ or ߟ௪ means larger “mass” of 
each path. The larger the mass is, the more difficultly the system can change its state. 

Furthermore, analogously to the oscillatory system, 
ଵఎೢȁோೢȁ  can be interpreted as the 

“damping coefficient”, ௥݂௪  the “displacement” and ଵȁோೢȁ σ ሺܿ௜௪ െ ܿ௥௪ሻ௜אோೢ  the “restoring 

force” on path ݎ א ܴ௪. It can be observed that the “friction force” (reflected by the damping 

coefficient 
ଵఎೢȁோೢȁ) is inversely proportional to the parameter ߟ௪, which reflects travelers’ 
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tendency to stay on their current routes. A smaller ߟ௪ means that travelers are more willing 

to stick to their current choices, which just looks like that there is a larger friction force 

resisting the path flows to change. Also, the “restoring force” is larger when path travel costs 
have greater difference. 

 

Assume that the link/path travel time is in unit ݄ and link/path flow in ݄݁ݒȀ݄. Then from 

Eq. (ͷ), ߠ௪  has dimension ͳ ݄Τ , and from Eq. (ͻ), ߟ௪ has dimension ݄݁ݒ ݄ଷΤ ; therefore, ܯ௪, as well as ݉௪, has dimension ͳ ሺͳ ݄Τ ڄ ݄݁ݒ ݄ଷΤ ሻ ൌ ݄ସ ΤΤ݄݁ݒ .  

 

Remark 2. The analogy above is coarse since the day-to-day dynamical system is far more 

complicated than the nonlinear oscillatory system defined by Eq. (ʹͳ). The “restoring force” 
cannot be directly calculated from the flow in a single path but is dependent on all path flows 

on the network. 

 

Remark 3. The second-order flow dynamics under path-based tolls can be analogous to an 

oscillatory system with external forces. Here the tolls are acting just like the “external force” 
applied to a driven harmonic oscillator. Specifically, assuming the toll on path ݎ א ܴ௪ at 

time ݐ to be ߬௥௪ሺݐሻ, then Eq. (ͷ) is modified to the following form: ܥ௥௪ሺݐሻ ൌ ߮௪ሺݐߜሻ൫ܿ௥௪ሺݐ െ ሻݐߜ ൅ ߬௥௪ሺݐ െ ሻ൯ݐߜ ൅ ൫ͳ െ ߮௪ሺݐߜሻ൯ܥ௥௪ሺݐ െ  ሻ (͵Ͳ)ݐߜ

Following the procedure in Appendix C, we can express the second-order day-to-day 

dynamics with dynamic path-based tolls (with unity value of time) as ͳߠ௪ߟ௪ȁܴ௪ȁ ݂ሷ௥௪ ൅ ͳߟ௪ȁܴ௪ȁ ݂ሶ௥௪ ൅ ͳȁܴ௪ȁ ෍ ሺܿ௥௪ െ ܿ௜௪ሻ ൅ ͳȁܴ௪ȁ ෍ ሺ߬௥௪ െ ߬௜௪ሻ௜אோೢ௜אோೢ൅ ͳߠ௪ȁܴ௪ȁ ෍ ሺ ሶ߬௥௪ െ ሶ߬௜௪ሻ௜אோೢ ൌ Ͳǡ ݎ א ܴ௪ǡ ݓ א ܹ 
(͵ͳ) 

We can see that the “external forces” consist of not only the tolls but also the derivatives of 

the tolls, and they together affect the flow evolution. Moreover, understanding the mechanism 

of the network flow evolution can help design more efficient toll schemes, and one 

interesting issue is to find the optimal dynamic tolls that minimize convergence time or toll 

revenue. By applying the Pontryagin’s maximum principle, a bang-bang toll scheme 

switching among two or more discrete toll levels would be promising. 

4. Stability analysis 
 

Regarding the day-to-day dynamics, stability is always a major concern in the literature. The 

stability analysis of a dynamical system resorts to various stability theorems (Khalil, 2002) by 

constructing the Lyapunov functions. In this section, we examine the stability of our 
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day-to-day dynamics in Eq. (ͳʹ) by LaSalle’s theorem. The Lyapunov’s second theorem is 

not applicable in this case because the non-unique UE path flow patterns are usually not 

isolated points but constituting a convex set. 

 

Definition 2. Consider an autonomous system ܠሶ ൌ ۴ሺܠሻ (͵ʹ) 

where ۴ǣ ܯ ՜ Թ௠ is a locally Lipschitz map from a domain ܯ ؿ Թ௠ into Թ௠. A set ߎ is 

said to be an invariant set with respect to (͵ʹ) if 

ሺͲሻܠ  א ߎ ֜ ሻݐሺܠ  א ǡߎ ݐ ׊ א Թ 

A set ߎ is said to be a positively invariant set if 

ሺͲሻܠ  א ߎ ֜ ሻݐሺܠ  א ǡߎ ݐ ׊ ൒ Ͳ 

 

With this definition, we have the following LaSalle’s theorem (Khalil, 2002). 

 

Theorem 3. Let ߗ be a compact (closed and bounded) positively invariant set of the 

dynamical system (͵ʹ) and ܸǣ ߗ ՜ Թ be a continuously differentiable function such that ሶܸ ሺܠሻ ൑ Ͳ in ߗ. Let ߎ be the set of all points in ߗ where ሶܸ ሺܠሻ ൌ Ͳ. Let ܩ be the largest 

invariant set in ߎ. Then every solution starting in ߗ approaches ܩ as ݐ ՜ λ. 

 ܸሺܠሻ is called the Lyapunov function of the dynamical system represented by Eq. (͵ʹ). In 

the literature of day-to-day dynamics, Lyapunov functions could be of the quadratic form 

(Smith, 1984), the 2-norm distance (Friesz et al., 1994; Nagurney and Zhang, 1997) or the 

Beckmann’s transformation (Jin, 2007; Peeta and Yang, 2003). Here by analogy with a 

physical system, the total system energy could be an ideal Lyapunov function since if the 

system keeps losing its mechanical energy over time, it must eventually reach some final 

equilibrium state with the lowest mechanical energy. Based on Theorem 3, we obtain the 

following theorem.  

 

Theorem 4. With Assumption 1, if ܯ௪ ൌ ଵఏೢఎೢ for all ݓ א ܹ, then the function ܸሺܠሻ ൌ ሻܠሺܧ െ ݉݅݊  (͵͵) ሻܠሺܧ

is a Lyapunov function of the dynamical system in Eq. (ͳʹ). If the initial state of ܠଶ satisfies 

Eq. (ͳͷ), then under the dynamical process in Eq. (ͳʹ), the path flow pattern will approach 

the UE path flow set, and as a result, the link flows will approach the unique UE link flow 

pattern. 

 

Proof. With Assumption 1, the set ܭ ൈ  .is an invariant set of the dynamical system in Eq ܪ

(ͳʹ). The gradient of Eq. (͵͵) can be calculated as follows, 
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߲ܸሺܠሻ߲ݔଵǡ௥௪ ൌ ଵǡ௥௪ݔ߲߲ ෍ න ܿ௔ሺ߱ሻd߱௩ೌሺܠభሻ
଴௔א஺ ൌ ܿ௥௪ (͵Ͷ) 

߲ܸሺܠሻ߲ݔଶǡ௥௪ ൌ ଶǡ௥௪ݔ߲߲ ෍ ෍ ͳʹ ݉௪ݔଶǡ௥௪ଶ௥אோೢ௪אௐ ൌ ݉௪ ݔଶǡ௥௪ (͵ͷ) 

Then we have ሶܸ ሺܠሻ  ൌ ሶܠሻ୘ܠሺܸߘ  ൌ ෍ ෍ ܿ௥௪ݔሶଵǡ௥௪௥אோೢ௪אௐ ൅ ෍ ෍ ݉௪ݔଶǡ௥௪ݔሶଶǡ௥௪௥אோೢ௪אௐ  

ൌ ෍ ෍ ܿ௥௪ݔଶǡ௥௪௥אோೢ௪אௐ ൅ ෍ ෍ ݉௪ݔଶǡ௥௪ ቌ ෍ ௪ሺܿ௜௪ߠ௪ߟ െ ܿ௥௪ሻ௜אோೢ െ ௐאோೢ௪אଶǡ௥௪ቍ௥ݔ௪ߠ  

ൌ ෍ ෍ ܿ௥௪ݔଶǡ௥௪௥אோೢ௪אௐ ൅ ෍ ௪݉௪ߟ௪ߠ ෍ ଶǡ௥௪ݔ ቌ ෍ ܿ௜௪௜אோೢ െ ȁܴ௪ȁܿ௥௪ቍ௥אோೢ௪אௐ  

     െ ෍ ௪݉௪ߠ ෍ ௐאோೢ௪אଶǡ௥௪ଶ௥ݔ  

ൌ ෍ ෍ ܿ௥௪ݔଶǡ௥௪௥אோೢ௪אௐ ൅ ෍ ௪݉௪ߟ௪ߠ ෍ ଶǡ௥௪ݔ ෍ ܿ௜௪ ௜אோೢ௥אோೢ௪אௐ  

     െ ෍ ௪݉௪ȁܴ௪ȁߟ௪ߠ ෍ ௐאோೢ௪אଶǡ௥௪ܿ௥௪௥ݔ െ ෍ ௪݉௪ߠ ෍ ௐאோೢ௪אଶǡ௥௪ଶ௥ݔ  

ൌ ෍ ሺͳ െ ௪݉௪ȁܴ௪ȁሻߟ௪ߠ ෍ ܿ௥௪ݔଶǡ௥௪௥אோೢ௪אௐ ൅ ෍ ௪݉௪ߟ௪ߠ ෍ ܿ௜௪ ෍ ோೢאଶǡ௥௪௥ݔ  ௜אோೢ௪אௐ  

     െ ෍ ௪݉௪ߠ ෍ ௐאோೢ௪אଶǡ௥௪ଶ௥ݔ  

(͵͸) 

Substituting ݉௪ ൌ ଵఏೢఎೢȁோೢȁ into Eq. (͵͸) yields 

ሶܸ ሺܠሻ ൌ ෍ ͳȁܴ௪ȁ ෍ ܿ௜௪ ෍ ௐאோೢ௪אோೢ௜אଶǡ௥௪௥ݔ െ ෍ ͳߟ௪ȁܴ௪ȁ ෍ ௐאோೢ௪אଶǡ௥௪ଶ௥ݔ  (͵͹) 

If the initial state of ܠଶ satisfies Eq. (ͳͷ), then σ ோೢאଶǡ௥௪௥ݔ ൌ Ͳ for all ݓ א ܹ. Thus we 

have  
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ሶܸ ሺܠሻ ൌ െ ෍ ͳߟ௪ȁܴ௪ȁ ෍ ௐאோೢ௪אଶǡ௥௪ଶ௥ݔ ൑ Ͳ (͵ͺ) 

Equality in Eq. (͵ͺ) holds if and only if ݔଶǡ௥௪ ൌ Ͳ for all ݎ א ܴ௪, ݓ א ܹ, i.e., ܠଶ ൌ ૙. 

Thus the set ȫ in Theorem 3 reads ȫ ൌ ൛ܠȁ ሶܸ ሺܠሻ ൌ Ͳൟ ൌ ሼܠȁ ܠଶ ൌ ૙ሽ. Furthermore, if at 

some time ݐ, we have a point in ȫ with ܠଶሺݐሻ ൌ ૙ and ܠଵሺݐሻ ് כଵܠ , then according to Eq. 

(ͳʹ) and Theorem 1, ܠሶ ଶሺݐሻ ് Ͳ. As a result, the trajectory will not stay in ȫ. Therefore, the 

points that can stay in ȫ for all time are only those states with ܠଵ ൌ כଵܠ , i.e., those כܠ 

defined in Theorem 2. As a result, the largest invariant set in ȫ is ܩ ൌ ሼכܠሽ, and by 

Theorem 3, every trajectory starting in ܭ ൈ כଵܠ ,ሽ. From Theorem 1כܠwill approach ሼ ܪ  

states UE, hence the path flow pattern will approach the UE path flow set.    Ŷ 

 

We conclude this section by highlighting the analogy between the traffic network and the 

physical system. Starting from some initial state, the traffic network gradually loses its energy 

until it stops at the equilibrium with zero kinetic energy and minimum potential energy, 

which is consistent with the famous minimum total potential energy principle.  

 

5. Numerical experiment 
 
In this section, we provide examples to illustrate the characteristics of our new day-to-day 
model and analyze the physical and dynamical effects of the parameters. 
 

5.1. Experiment settings 

 

The original network structure is shown in Figure 2(a), consisting of four nodes and four 

directed links. For each link, the performance function takes the BPR (Bureau of Public 

Roads, 1964) form as follows, ܿ௔ሺݒ௔ሻ ൌ ܿ௔଴ ቈͳ ൅ ͲǤͳͷ ൬ݒ௔ݕ௔൰ସ቉ ǡ ܽ א ሼͳǡʹǡ͵ǡͶǡͷሽ 

where ܿ௔଴ is the free flow travel cost and ݕ௔ is the capacity of link ܽ א  The free flow .ܣ

travel costs and capacities of all the four links are listed in Table 1. There is only one OD pair 

with a fixed demand of 10 and served by the following two paths:  

Path 1: ܱ ՜ ͳ ՜ ʹ ՜ ܱ :Path 2  ;ܦ ՜ ͵ ՜ Ͷ ՜  ܦ

The UE path flow pattern is ሺ ଵ݂כǡ ଶ݂כሻ ൌ ሺʹǤͷͷǡ ͹ǤͶͷሻ. 
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Figure 2. Network structures: (a) original network, (b) new network. 

 

Table 1. Parameters of the link performance functions 

Link no. ܽ 1 2 3 4 5 

Free flow cost (ܿ௔଴) 2 1 0.5 2.5 1 

Link capacity (ݕ௔) 2.5 2.5 5 10 2.5 

 

Connecting the two intermediate nodes by a new link (link 5) will generate an additional path 

(Path 3: ܱ ՜ ͵ ՜ ͷ ՜ ʹ ՜  as shown in Figure 2(b). The performance function of link 5 ,(ܦ

is also the BPR function with the free flow travel cost ܿହ଴ ൌ ͳ and link capacity ݕହ ൌ ʹǤͷ, as 

listed in Table 1. The new UE path flow pattern is ሺ ଵ݂͓ ǡ ଶ݂͓ ǡ ଷ݂͓ ሻ ൌ ሺͳǤ͹ͺǡ ͸Ǥͷ͸ǡ ͳǤ͸͸ሻ. 

 

5.2. Comparison of the first-order and second-order day-to-day models 

 

We compare the performance of our proposed second-order model with some classic 

first-order models in the literature, on the simple two-path network in Figure 2(a). The 

first-order models include the proportional-switch adjustment process (PSAP) in Smith 

(1984), ݂ሶ௥௪ ൌ ߙ ෍ ሺ ௦݂௪ሾܿ௦௪ െ ܿ௥௪ሿା െ ௥݂௪ሾܿ௥௪ െ ܿ௦௪ሿାሻ௦אோೢ ǡ ݎ א ܴ௪ǡ ݓ א ܹǡ ߙ ൐ Ͳ 

where ሾڄሿା ൌ maxሼڄ ǡͲሽ; the NTP in Friesz et al. (1994), ܎ሶ ൌ ሾܲ࣠ߙ ሺ܎ െ ሻ܋ߚ െ ߙ ,ሿ܎ ൐ Ͳ, ߚ ൐ Ͳ (͵ͻ) 

where ࣠ ൌ ሼ܎ȁ܎ ൒ ૙ǡ Ȧ܎ ൌ ሽ܌ , ܲ࣠ ሺܢሻ ൌ arg min࣠א܎ԡ܎ െ ܋ ԡଶ , andܢ ൌ ሺܿ௥௪ǡ ݎ א ܴ௪ǡ ݓ ሶ܎ ,ሻ୘; the PDS in Nagurney and Zhang (1997)ܹא ൌ ߙ limఌ՜଴ ܲ࣠ ሺ܎ െ ሻ܋ߝ െ ߝ܎ ǡ ߙ ൐ Ͳ 

and the first-in-first-out (FIFO) dynamics in Jin (2007), 

݂ሶ௥௪ ൌ െ݀ߙ௪ ௥݂௪ ቌܿ௥௪ െ ͳ݀௪ ෍ ௦݂௪ܿ௦௪௦אோೢ ቍ ǡ ݎ א ܴ௪ǡ ݓ א ܹǡ ߙ ൐ Ͳ 
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For all the above-mentioned first-order continuous-time dynamics in the two-path network, if 

the path flow pattern oscillates around UE, then the evolution trajectory must pass some path 

flow pattern ܎ twice, implying that the corresponding derivative ܎ሶ have two different values. 

This is impossible, because ܎ሶ is uniquely determined by ܎. Thus, the path flow pattern must 

evolve to UE monotonically without oscillation. In other words, the above-mentioned 

first-order continuous-time day-to-day models will exhibit only the overdamped-like patterns 

in the two-path network. In comparison, the second-order model will exhibit both 

overdamping and underdamping, depending on the value of parameters. Our statement is 

further illustrated by Figure 3.  

 
Figure 3. Comparison of the first- and second-order continuous-time models. 

 

It is worth mentioning that, the oscillation in path flows can appear in the first-order 

discrete-time models when the time step is relatively large. Under this circumstance, the 

fluctuation is due to travelers’ oversensitivity to the difference of travel costs, which is 

different from the reason of the oscillation in the second-order continuous-time model, and 

the latter will be further discussed in the subsequent subsections. 

 

5.3. Flow evolution under different ߟ 

 

In the following subsections, we will focus on the second-order dynamics and investigate the 

path flow evolution from the original UE pattern ሺ ଵ݂כǡ ଶ݂כǡ Ͳሻ to the new one ሺ ଵ݂͓ ǡ ଶ݂͓ ǡ ଷ݂͓ ሻ, 

under the dynamical process given by Eq. (ͳʹ). The initial flow swapping speeds between 

any two paths are all assumed to be zero. 

 

First, we fix ߠ ൌ ͳǤͲ and set ߟ to be 0.4, 1.0 and 10.0, respectively. Evolution trajectories 

of the path flows are depicted in Figure 4. 
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Figure 4. Evolution of path flows with fixed ߠ ൌ ͳǤͲ and different ߟ ൌ ͲǤͶǡ ͳǤͲǡ ͳͲǤͲ. 

ߟ   represents travelers’ sensitivity to the differences of perceived travel costs between 

different paths. A greater ߟ means that the travelers are more sensitive so that the swapping 

speeds are higher. It is interesting to see that, when ߟ is large (e.g., 10.0), the path flows will 

oscillate relatively dramatically. The system experiences several periods of oscillation with a 

relatively long convergence time, which is similar to the “underdamped” case of the damped 

harmonic oscillator as shown in Figure 1. When ߟ is small and less than one (e.g. 0.4), the 

path flows converge to the equilibrium slowly without oscillation. This situation corresponds 

to the “overdamped” case of a damped harmonic oscillator. When ߟ is chosen to be a proper 

value (e.g. 1.0, which may not be the exact critical value as that in the case of “critically 
damping” for a damped harmonic oscillator), the system converges faster than it does in the 

case of ߟ ൌ ͲǤͶ while oscillates less than it does in the case of ߟ ൌ ͳͲǤͲ. This example 

shows that, there may exist a critical value of ߟ as that in the “critically damped” case for a 

damped harmonic oscillator, under which the system converges fastest without oscillation. 

But due to the complexity of the traffic network, it is difficult to sort out this critical value 

analytically. 
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5.4. Flow evolution under different ߠ 

 

In this case, we fix ߟ ൌ ͳǤͲ and look at the flow evolution under different ߠ, where ߠ ൌ ͲǤʹǡ ͳǤͲǡ ͷǤͲ.  

 

 
Figure 5. Evolution of path flows with fixed ߟ ൌ ͳǤͲ and different ߠ ൌ ͲǤʹǡ ͳǤͲǡ ͷǤͲ. 

 reflects the initial decay rate of the memory, which will affect the weight travelers put on ߠ 

their experienced travel costs when updating their perceived travel costs. The larger ߠ is, the 

faster the memory fades and the larger weight travelers put on the experienced travel cost. As 

shown in Figure 5, the relationship between convergence time and ߠ is monotone. The 

larger ߠ is, the less the system oscillates and the faster the system converges.  

 

The phenomenon can be interpreted by analogy with the physical system. From Eq. (ͳͲ), 

given ߟ௪, ߠ௪ will affect the “mass”; the larger the ߠ௪, the smaller the “mass”. Moreover, 

referring to Eq. (ʹͳ), decreasing “mass” will increase “damping ratio”. Therefore, when ߠ௪ 

increases, the “damping ratio” will increase, and consequently, the system will evolve from 

“underdamped” to “overdamped”. 
 

In the following two subsections, we attempt to investigate two critical characteristics of the 
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network. For the sake of convenience, we borrow the terms “damping ratio” and “angular 
frequency” from the harmonic oscillator. The analogy here is really rough, but the findings 

we obtain through the analogy are still interesting. 

 

5.5. Synonymous damping ratio 

 

Comparing Eqs. (ͳͲ) and (ʹͳ), intuitively, we define the synonymous damping ratio of the 

traffic system as ߞ ൌ ଵଶ ඥߠ Τߟ . Since the synonymous damping ratio is determined by ߠ Τߟ , 

then by choosing appropriate values of ߠ and ߟ in Table 2, we can investigate the effect of 

the ߠ Τߟ  ratio on the system’s damping behavior. Flow trajectories on Path 1 are shown in 

Figure 6, and we adjust the horizontal axes on purpose to exhibit the shapes of the trajectories. 

It is clearly shown that, shapes of the trajectories with a same value of ߠ Τߟ  (marked by the 

same color and line style) are quite similar, but are quite different when ߠ Τߟ  are different. It 

provides some clue that the ratio of ߠ Τߟ  may determine the oscillation pattern of the system. 

However, whether the critical damping occurs at ߠ Τߟ ൌ Ͷ, i.e., ߞ ൌ ͳ, is still unclear. 

 

Table 2. Values of ߠ and ߟ 

ߠ  Τߟ  
 ߟ

1/4 1/2 1 2 4 

 ߠ

1/4 1 1/2 1/4 1/2 1 

1/2 2 1 1/2 1/4 1/2 

1 4 2 1 1/2 1/4 

2 8 4 2 1 1/2 

4 16 8 4 2 1 

 

 
Figure 6. Evolution of flow on Path 1 with different ߠ and ߟ 
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5.6. Synonymous angular frequency 

 

Similar to the physical system, we define the synonymous undamped angular frequency ߱଴ ൌ ඥߠߟ and the synonymous angular frequency ߱ଵ ൌ ߱଴ඥͳ െ ଶߞ ൌ ቀͳ െ ଵସ ఏఎቁ ඥߠߟ. To 

examine whether the angular frequency of the flow dynamics is really related to ߱ଵ, we first 

choose some combinations of ߠ and ߱ଵ, as listed in Table 3, and work out the values of ߟ 

by 

ߟ ൌ ൭߱ଵξߠ ൅ ඥ ଵ߱ଶߠ ൅ ߠʹଶߠ ൱ଶ
 

then the ߠ  and ߟ  listed in Table 3 are employed to simulate the evolution process. 

Trajectories of flow on Path 1 are displayed in Figure 7. The oscillating period decreases 

when ߱ଵ  increases, but almost remains the same when ߠ changes. When ߱ଵ  is large 

enough (e.g., 1.0 or above), doubling ߱ଵ will reduce the oscillating period by almost half. 

Nonetheless, the oscillating period is not consistent with the corresponding angular frequency, 

i.e., their product is not precisely equal to ʹߨ but a little bit larger than that. 

 

Table 3. Values of ߠ, ߱ଵ and ߟ 

 ߟ 
߱ଵ 

0.5 1.0 2.0 4.0 

 ߠ

0.2 1.71 5.49 20.50 80.50 

0.5 0.93 2.47 8.49 32.50 

1.0 0.65 1.46 4.49 16.50 

2.0 0.50 0.93 2.47 8.49 

 

 
Figure 7. Trajectories of flow on Path 1 with different ߠ and ߱ଵ 

 

The experimental results in Sections 5.5 and 5.6 indicate that, although the dynamical traffic 
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network is much more complicated than the harmonic oscillator, they do possess a lot of 

similarity, including the angular frequency and damping ratio. 

 

5.7. Flow evolution under different demand levels 

 

In this part, we investigate the influence of different demand levels on the behavior of the 

dynamical network. In Figure 8, we look at the trajectories of flow on Path 1 with fixed ߠ 

and ߟ under two different demand levels, which are 9 and 18, respectively. 

 

 
Figure 8. Flow evolution on Path 1 under different demands. 

 

We have two observations in this case. First, the demand would not affect the damping ratio 

(reflected by the shape and convergence speed of the flow trajectories). Second, increasing 

demand will increase the damping frequency. In this example, doubling the demand (from 9 

to 18) approximately doubles the frequency. 

 

The reason why the demand is related to frequency can be found by looking at the “restoring 
force”. Since we assume that the link performance function is convex, higher demand leads to 
higher congestion level, and under this circumstance, a certain amount of flow change will 

cause higher “restoring force”. By analogy to the harmonic oscillatory system, the damping 

frequency should increase.   
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5.8. Evolution of system energies 

 

Given different combinations of ߠ and ߟ, Figure 9 shows the change of system energies 

with time, including the kinetic energy, the relative potential energy and the relative total 

energy. The relative potential energy is defined as the potential energy deducted by the 

minimum potential energy of the system (i.e., the potential energy of the system at UE). The 

relative total energy is the sum of kinetic energy and relative potential energy. 

 

 
Figure 9. Change of the system energies with different ߠ and ߟ. 

 

As clearly shown in Figure 9, kinetic energy and potential energy fluctuate and convert to 

each other during the system evolution. However, the total energy is always decreasing with 

time: the kinetic energy finally reaches zero and the potential energy finally approaches 

minimum, which are consistent with the analytical results in Section 4.  

6. Conclusions and future research 
 

In this paper, we established the second-order day-to-day dynamics of network traffic flows 

by considering travelers’ learning and route swapping behavior. Travelers’ learning behavior 

is described as their updating behavior regarding the perceived path travel costs, based on the 

prior perception and real travel costs. Route swapping rate on a certain path is assumed to be 

related to the perceived travel costs on both this path and all other paths in the corresponding 

OD pair. Stationary states of our day-to-day model coincide with the UE path flow patterns, 

which were proven to be stable by LaSalle’s theorem. The numerical experiment uncovered 

some interesting findings, by characterizing our day-to-day model from the perspective of 

damped oscillatory systems. When travelers are more sensitive to the travel costs, the system 

converges more slowly. When travelers rely too much on the past information, the system 

would fall into a long-time oscillation and converge slowly as well. The system is similar to 

the harmonic oscillator in some important features such as damping ratio, angular frequency 
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and the obedience to the Minimum total potential energy principle. 

 

Two critical parameters ߠ and ߟ of the day-to-day model determine its oscillation pattern. 

However, calibrating these parameters in reality might be difficult, since travelers’ perception 
usually cannot be observed or measured directly. Under this circumstance, the concept of 

potential energy and kinetic energy proposed in this study could be helpful. As we can see from 

Figure 9 and Figure 10, the combination of ߠ and ߟ uniquely determines the oscillation 

pattern of the energies. This property might be useful for calibrating the day-to-day model by 

investigating the energy evolution process in a practical traffic network, as long as the energy is 

defined properly.  

 

 
Figure 10. The unique oscillation pattern of energies with ߠ ൌ ͲǤͳ and ߟ ൌ ͳͲ. 

 

This study builds a bridge from the transportation system to the physical system in day-to-day 

traffic analysis. It shows that those physical laws that govern the physical world may also 

apply for human’s aggregate social behavior. Through this bridge are a number of potentially 

valuable avenues that can be explored for further study, such as the empirical analysis of the 

proposed model, as well as the investigation of system behavior under traffic control, tolling 

and information provision. In addition, the implication of “mass” in the traffic system 
requires further discussion.  
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Appendix A. Equivalence between swapping rule in Eq. ( ͻ ) and the network 

tatonnement process (NTP) in Friesz et al. (1994) 
 

By Eq. (͵ͻ), a discrete NTP based on perceived costs can be constructed as follows, ܎௡ାଵ െ ௡܎ ൌ ሾܲ࣠ߙ ሺ܎௡ െ ۱௡ሻߚ െ ߙ ,௡ሿ܎ ൐ Ͳ, ߚ ൐ Ͳ (ͶͲ) 

where ۱ ൌ ሺܥ௥௪ǡ ݎ א ܴ௪ǡ ݓ א ܹሻ୘, and ݔ௡ denotes the value of variable ݔ on the discrete 

time step ݊. Define ܐ ൌ ܲ࣠ ሺ܎௡ െ ࣠אࢎ݊݅݉  ۱௡ሻ. To solveߚ ԡ܎௡ െ ۱௡ߚ െ  ԡଶ (Ͷͳ)ܐ

we write the Lagrangian 

ܮ ൌ ෍ ෍ ሺ ௥݂௪௡ െ ௥௪௡ܥߚ െ ݄௥௪ሻଶ௥אோೢ௪אௐ ൅ ෍ ௪ߤ ቌ݀௪ െ ෍ ݄ ௥௪௥אோೢ ቍ௪אௐ  (Ͷʹ) 

and then have the following first-order condition, ݄௥௪ ௥௪݄߲ܮ߲ ൌ ݄௥௪ሾʹሺ݄௥௪ െ ௥݂௪௡ ൅ ௥௪௡ܥߚ ሻ െ ௪ሿߤ ൌ Ͳ (Ͷ͵) 

Assume that ܐ ൐ ૙ always hold, then we have ʹሺ݄௥௪ െ ௥݂௪௡ ൅ ௥௪௡ܥߚ ሻ െ ௪ߤ ൌ Ͳ for all ݎ א ܴ௪ ݓ , א ܹ. So ߤ௪ ൌ ଶఉȁோೢȁ σ ோೢ  and ݄௥௪א௦௪௡௦ܥ ൌ ఉȁோೢȁ σ ோೢ ൅א௦௪௡௦ܥ ௥݂௪௡ െ ௥௪௡ܥߚ . Thus 

if ߚ is small enough, then ܐ ൐ ૙ can always hold. Further we have  

௥݂௪௡ାଵ െ ௥݂௪௡ ൌ ሺ݄௥௪ߙ െ ௥݂௪௡ ሻ ൌ ȁܴ௪ȁߚߙ ෍ ሺܥ௦௪௡ െ ௥௪௡ܥ ሻ௦אோೢ  (ͶͶ) 

So the discrete NTP degenerates to the swapping rule in Eq. (ͻ) when the projection always 

yields positive path flows.  

Appendix B. Equivalence between swapping rule in Eq. (ͻ) and the projected dynamical 

system (PDS) in Nagurney and Zhang (1997)  
 

A discrete-time PDS with strictly monotone travel cost functions was presented in Nagurney 

and Zhang (1997) as follows, 
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௪௡ାଵ܎ ൌ arg minאೢ܎௄ೢ ͳʹ ෍ ሺ ௥݂௪ሻଶ௥אோೢ ൅ ෍ ሺܽܥ௥௪௡ െ ௥݂௪௡ ሻ ௥݂௪௥אோೢ  (Ͷͷ) 

where ܎௪ ൌ ሺ ௥݂௪ǡ ݎ א ܴ௪ሻ୘ ௪ܭ , ൌ ൛܎௪ȁ σ ௥݂௪௥אோೢ ൌ ݀௪ൟ  and ܽ  is a fixed step size. 

Lagrangian of the minimization problem in Eq. (Ͷͷ) can be written as 

௪܎ሺܮ ǡ ௪ሻݑ ൌ ͳʹ ෍ ሺ ௥݂௪ሻଶ௥אோೢ ൅ ෍ ሺܽܥ௥௪௡ െ ௥݂௪௡ ሻ ௥݂௪௥אோೢ ൅ ௪ݑ ቌ݀௪ െ ෍ ௥݂௪௥אோೢ ቍ (Ͷ͸) 

from which we have ߲ܮሺ܎௪௡ାଵǡ ௪ሻ߲ݑ ௥݂௪௡ାଵ ൌ ௥௪௡ܥܽ െ ௥݂௪௡ ൅ ௥݂௪௡ାଵ െ   ௪ݑ

With Assumption 1, when ௥݂௪௡ାଵ ൐ Ͳ for all ݎ א ܴ௪, ݓ א ܹ, we have ܽܥ௥௪௡ െ ௥݂௪௡ ൅ ௥݂௪௡ାଵ െ ௪ݑ ൌ Ͳ  

which leads to  ݑ௪ ൌ ͳȁܴ௪ȁ ෍ ሺܽܥ௜௪௡ െ ௜݂௪௡ ൅ ௜݂௪௡ାଵሻ௜אோೢ ൌ ܽȁܴ௪ȁ ෍ ோೢא௜௪௡௜ܥ   

and thus 

௥݂௪௡ାଵ െ ௥݂௪௡ ൌ ௪ݑ െ ௥௪௡ܥܽ ൌ ܽȁܴ௪ȁ ෍ ሺܥ௜௪௡ െ ௥௪௡ܥ ሻ௜אோೢ  (Ͷ͹) 

Clearly Eq. (Ͷ͹) follows the same form as that of Eq. (ͻ), thus the two adjustment processes 

are equivalent.         Ŷ 

Appendix C. Derivation of the second-order ODE form of the proposed day-to-day 
dynamics 

 

Substituting Eq. (ͷ) into Eq. (ͻ) yields      ௥݂௪ሺݐሻ െ ௥݂௪ሺݐ െ ݐߜሻݐߜ  

ൌ െߟ௪ ෍ ൫ܥ௥௪ሺݐሻ െ ோೢאሻ൯௜ݐ௜௪ሺܥ  

ൌ െߟ௪ ෍ ൬ቀ߮௪ሺݐߜሻܿ௥௪ሺݐ െ ሻݐߜ ൅ ൫ͳ െ ߮௪ሺݐߜሻ൯ܥ௥௪ሺݐ െ ோೢאሻቁ௜ݐߜ െ ቀ߮௪ሺݐߜሻܿ௜௪ሺݐ െ ሻݐߜ ൅ ൫ͳ െ ߮௪ሺݐߜሻ൯ܥ௜௪ሺݐ െ  ሻቁ൰ݐߜ

(Ͷͺ) 
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ൌ െߟ௪߮௪ሺݐߜሻ ෍ ൫ܿ௥௪ሺݐ െ ሻݐߜ െ ܿ௜௪ሺݐ െ ோೢאሻ൯௜ݐߜ  

     െߟ௪൫ͳ െ ߮௪ሺݐߜሻ൯ ෍ ൫ܥ௥௪ሺݐ െ ሻݐߜ െ ݐ௜௪ሺܥ െ ோೢאሻ൯௜ݐߜ  

ൌ െߟ௪߮௪ሺݐߜሻ ෍ ൫ܿ௥௪ሺݐ െ ሻݐߜ െ ܿ௜௪ሺݐ െ ோೢאሻ൯௜ݐߜ  

     ൅൫ͳ െ ߮௪ሺݐߜሻ൯ ௥݂௪ሺݐ െ ሻݐߜ െ ௥݂௪ሺݐ െ ݐߜሻݐߜʹ  

Subtracting ൫ͳ െ ߮௪ሺݐߜሻ൯ ௙ೝೢሺ௧ሻି௙ೝೢሺ௧ିఋ௧ሻఋ௧  from Eq. (Ͷͺ) and then dividing it by ߮௪ሺݐߜሻ, we 

have      ௥݂௪ሺݐሻ െ ௥݂௪ሺݐ െ ݐߜሻݐߜ  

ൌ െߟ௪ ෍ ൫ܿ௥௪ሺݐ െ ሻݐߜ െ ܿ௜௪ሺݐ െ ோೢאሻ൯௜ݐߜ  

      െ ൫ͳݐߜ െ ߮௪ሺݐߜሻ൯߮௪ሺݐߜሻ ൫ ௥݂௪ሺݐሻ െ ௥݂௪ሺݐ െ ሻ൯ݐߜ െ ൫ ௥݂௪ሺݐ െ ሻݐߜ െ ௥݂௪ሺݐ െ ሻଶݐߜሻ൯ሺݐߜʹ  

(Ͷͻ) 

If ߮௪ሺݐߜሻ is differentiable at ݐߜ ൌ Ͳ, and ሶ߮௪ሺͲሻ ൐ Ͳ, then by l’Hospital’s rule, we have 

lim ఋ௧՜଴ ൫ͳݐߜ െ ߮௪ሺݐߜሻ൯߮௪ሺݐߜሻ ൌ lim ఋ௧՜଴ ͳ െ ߮௪ሺݐߜሻ െ ݐߜ ሶ߮௪ሺݐߜሻሶ߮௪ሺݐߜሻ ൌ ͳሶ߮௪ሺͲሻ  (ͷͲ) 

Denote ߠ௪ ൌ ሶ߮௪ሺͲሻ , then let ݐߜ ՜ Ͳ  in Eq. (Ͷͻ ) and we can obtain the following 

continuous form, ͳߟ௪ߠ௪ ݂ሷ௥௪ ൅ ͳߟ௪ ݂ሶ௥௪ െ ෍ ሺܿ௜௪ െ ܿ௥௪ሻ௜אோೢ ൌ Ͳǡ ௪ߠ ൐ Ͳǡ ௪ߟ ൐ Ͳ (ͷͳ) 

or equivalently, ͳߟ௪ߠ௪ȁܴ௪ȁ ݂ሷ௥௪ ൅ ͳߟ௪ȁܴ௪ȁ ݂ሶ௥௪ െ ͳȁܴ௪ȁ  ෍ ሺܿ௜௪ െ ܿ௥௪ሻ௜אோೢ ൌ Ͳǡ ௪ߠ ൐ Ͳǡ ௪ߟ ൐ Ͳ (ͷʹ) 

 


