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7 January 2016

Department of Mathematics, University of York

York YO10 5DD, United Kingdom

Abstract

We study the effect of friction on the dynamics of a classical point particle in a one-

dimensional double-well potential. It is shown that finite uncertainty in the initial

conditions of the particle may prevent us from reliably predicting the well in which

the particle will come to rest. This difficulty – to make reliable long-term predictions

– originates from the layered structure of phase-space regions sending the particle

to the left and the right well, respectively. Similar structures are known to arise, for

example, in models used to described the tossing of a coin where friction is, however,

not the root cause of the phenomenon.

1 Introduction

The difficulty to reliably predict the behaviour of a classical dynamical system is usually

related to the existence of fractal structures in the mathematical model describing the

system. Conservative non-integrable systems such as three interacting planetary bodies

[1] and chaotic dissipative systems such as Lorenz’s model of the atmosphere [2] provide

two well-known cases in point. Add, for example, a third body to the integrable system

of two planetary bodies interacting through gravitation. The KAM theorem [3] describes

how the original foliation of the system’s phase-space into tori is being replaced by a

highly intricate mixed phase space. Arbitrarily small balls of initial conditions may con-

tain both periodic trajectories and irregular ones which separate at an exponential rate. The

non-linearity present in the Lorenz model gives rise to a strange attractor [4]. Its proper-

ties dominate the long-term evolution of the system since trajectories with neighboring

initial conditions are likely to visit different regions of phase space at comparable later

times.

Repeatedly tossing a coin and recording the outcomes – “head” or “tail” – is com-

monly thought to create a random binary sequence. Attempts to justify this claim in

terms of chaotic behaviour of the type just described have not been successful: simple

mechanical models of a tossed coin neither lead to conservative non-integrable systems
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nor to chaotic dissipative systems. Typically, no fractal phase-space structures are found

which would support the creation of randomness.

Keller [5], for example, models a coin by a massive line segment which moves in a

two-dimensional plane under the influence of gravity. The orientation of the segment is

described by an angle increasing at a constant rate, independent of the center-of-mass

motion. Depending on the value of the angle when the line reaches the ground, a head

or a tail is recorded. Clearly, small variations of the initial conditions will not change the

outcome of the toss, except when the coin lands on its rim. Thus, no fractal structures

will emerge but a layered pattern of “zebra-stripes” associated with initial conditions

resulting in heads or tails, respectively. Finite balls of initial conditions correspond to

imprecisely prepared initial states. Such balls will, when straddling across more than

one stripe, contain pre-images of both heads and tails, effectively making it impossible to

predict the final state of the coin.

A more realistic model [6] describes the coin as a massive three-dimensional object

with rotational degrees of freedom, including air resistance as well. Ignoring inelastic

bounces off the floor, the main conclusion does not change: the dynamics of the coin is

not chaotic in a strict sense. Instead, any sufficiently large spread of initial conditions is

compatible with both head and tails, making the outcome of an individual toss effectively

unpredictable.

The purpose of this paper is to present a particularly simple scenario which also pro-

duces unpredictable final states if initial conditions are known only with finite accuracy.

Starting from an integrable system with multiple stable equilibria, we will show that the

addition of friction may create basins of attraction with intricate boundaries. The merits

of the model are its simplicity – only a single degree of freedom is necessary – and in the

fact that the unpredictability is solely due to the presence of friction.

Sec. 2 of this paper provides an initial, qualitative explanation of why adding friction

to an integrable system with two or more stable equilibria can lead to the difficulty of

predicting its final state. Then, in Sec. 3, we investigate the motion of a particle moving

in a piece-wise constant double-well potential. For two different types of friction, we

study the structure of the basins of attraction. We summarize and discuss our results in

Sec. 4.

2 Basins of attraction in a double-well potential

To illustrate how friction can make the prediction of the long-term evolution of a system

difficult, we consider a classical particle moving along a straight line in the presence of a

symmetric double-well potential. The system is described by the Hamiltonian function

H(p, q) =
p2

2m
+ W(q) , p, q ∈ R , (1)

where q and p denote position and the momentum of the particle, respectively. The

minima of the potential W(q) are located at q = q± , separated by a barrier of height
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W0 ≡ W(0) which defines the critical energy, Ec ≡ W0. The phase-space diagram of the

system is shown in Fig. 1, displaying the familiar types of trajectories. The minima L and

Figure 1: Phase-space structure of a double-well potential W(q) with minima L and R,
located within wells L and R (shaded areas), respectively; a particle with neighbouring
initial conditions z, z′ (full and dashed lines, respectively) may end up in different wells
when subjected to periodic, dissipative “kicks” which reduce its momentum and thus its
energy.

R of the potential are stable fixed points each surrounded by periodic orbits with energies

E not exceeding the critical value, 0 < E < Ec ≡ W0. For E = Ec, the particle may rest

at the unstable fixed point at q = 0, or travel on one of the two separatrices connected to it.

The trajectories with energy above the critical value, E > Ec are periodic, encircling both

minima on a single round trip. With a single degree of freedom and the energy H(p, q) as

a conserved quantity, the system is integrable, leading to the global foliation of its phase

space into one-dimensional tori.

Adding friction will modify all trajectories except when then particle initially rests at

one of the three fixed points. If located on a separatrix or on any periodic trajectory with

energy less than Ec, dissipation will cause the particle to “spiral” into either the left or the

right minimum of the potential W(q), depending on its original position relative to the

origin, q = 0. The particle cannot escape from a well once it has been trapped, and the

fixed points L and R turn into attractors.

The destiny of a particle with initial energy E > Ec, however, it is not immediately

obvious since it may end up in either well. Friction will inevitably “draw” the particle

towards the location of the separatrices of the unperturbed system. At some time, the

energy of the particle will drop below the critical value Ec. The position of the particle

relative to the origin at the time of the drop will determine whether it becomes trapped

in the left or in the right well.

For simplicity, let us assume that friction acts at discrete times only, repeatedly reduc-

ing the momentum of the particle by a constant factor. Suppose that for initial conditions

z = (p, q)T, the particle will – after a possibly long time – settle in the right well as illus-
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trated in Fig. 1. Intuitively, a slightly smaller initial momentum (see z′ in the figure) could

cause the particle to negotiate the barrier one less time and to settle in the left well instead.

The slight change in the initial condition has thus altered the long-term behaviour of the

system. Therefore, the finally state of a particle may become unpredictable from a practi-

cal point of view, i.e. whenever its initial conditions are known to lie within a small but

finite volume of phase space only.

More formally, the non-Hamiltonian equations of motion map an initial state z(t0) to

a new value z(t) at time t,

z(t0) 7→ z(t), z ≡

(

p

q

)

, (2)

leading to a decrease of the energy defined in (1): E0 → E < E0. To ascertain whether

a particle with initial state z(t0) ends up near L or near R, one needs to determine the

earliest time t such that its energy E falls below the critical value,

E < Ec . (3)

Repeating this calculation for all initial conditions will divide the phase space into two

disjoint sets known as basins of attraction which encode whether the particle ends up in

well L or R. Let us investigate the structure of their boundaries for two models of fric-

tion, using a particularly simple double-well potential.

3 Piece-wise constant double-well potential with friction

The double-well potential considered here is based on a “particle in a box” defined by

two infinitely high potential walls at q = ±ℓ which restrict motion to a line segment

of length 2ℓ. The particle bounces off the walls elastically resulting in an instantaneous

reversal of its momentum: p → −p; its position q = ±ℓ remains unchanged when hitting

a wall. A piece-wise constant potential,

W(q) =







W0 , |q| < ε ,

0 , ε < |q| < ℓ ,
(4)

models the smooth double-well. For simplicity, we take an arbitrarily thin potential bar-

rier, corresponding to ε → 0. The only impact of this “infinitesimal” barrier is to confine

the particle in a well once its energy drops below the critical value W0, thus creating the

wells L and R. Two continuous sets of potential minima exist because the bottom of the

potential is flat.

A widespread method to investigate non-integrable systems is to start with an inte-

grable system and add a perturbation, be it a time-independent potential term as in the

KAM theorem or a deterministic time-dependent force [7]. To support our claim that fric-

tion generically causes intricate phase space structures, we will model it in two different

ways which are inspired by the approaches just mentioned. In the first case, the elastic

collisions of the particle with the boundary walls are made inelastic (cf. Sec. 3.1) while an
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impulsive friction force is applied periodically in the second case (cf. Sec. 3.2). The first

model depends on a single parameter only, the coefficient of restitution. The second model

depends on two parameters, the frequency and the strength of the dissipative “kick.”

3.1 Inelastic collisions

The motion of the particle in the piece-wise constant double well (4) consists of free mo-

tion between the walls interspersed with momentum-reversing elastic collision at the

walls. The dynamics changes fundamentally upon replacing the elastic collisions at the

walls by inelastic ones, characterized by a coefficient of restitution, r ∈ (0, 1):

z 7→ z′ = R·z , R ≡

(

−r 0

0 1

)

for q = ±ℓ . (5)

This minor change turns the conservative system into a dissipative one and – as we will

see – is sufficient to create an embryonic form of “zebra-stripes” in phase space.

The long-term dynamics of the particle does not depend on its initial position: all

particles with fixed momentum p0 but arbitrary position q0 ∈ (−ℓ, ℓ) will experience the

same amount of friction, only to end up in same well. Thus, let us assume that the particle

starts out with positive initial momentum p0 > pc, beings located at q0 = ℓ−, i.e. just to

left of the right wall. Then, the initial state z0 = (p0, ℓ−) at time t0 evolves according to

z(tn) = Rn · z0 =

(

(−r)n p0

ℓ−

)

, n ∈ N0 , (6)

with the times tn being defined by particle returning to its initial position ℓ−. Monitoring

the value of its momentum at the walls is sufficient to determine the well which will trap

the particle. The particle will be trapped in well R, for example, if its last collision at the

right wall makes its energy drop below the critical value E = Ec due to p 7→ (−r)p.

For positive initial momentum p0 the particle will hit the right wall first. The well to

finally trap the particle is determined by the number of collisions n(E0) before it drops

below Ec. Denoting the energy of the particle after n collisions by En, we need to find the

number n(E0) such that the energy of the particle falls below Ec for the first time,

n(E0) = min
n∈N

{En < Ec} , with E0 > Ec . (7)

Using Eq. (6) the number n(E0) is easily found to be

n(E0) =

⌈

1

2

ln (Ec/E0)

ln r

⌉

=

⌈

ln (pc/p0)

ln r

⌉

, (8)

where the initial moment defines the initial energy, E0 = p2
0/2m, and ⌈x⌉ is the ceiling

function extracting the smallest integer greater or equal to the number x. If n is odd

(even), a particle with positive momentum p0 will end up in the well on the right (left).

The basins of attraction for the wells L and R are given by alternating horizontal bands in

phase space shown in Fig. 2. The widths of the bands decrease with decreasing friction
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(and they increase with energy E which the figure does not show due to the limited

momentum range).

Figure 2: Basins of attraction for the phase-space region (1 ≤ p/pc ≤ 1.2, 0 ≤ q/ℓ ≤ 0.1)
of a particle of unit mass in a double-well, with friction arising from inelastic collisions
at the boundary walls: initial conditions located in dark (light) regions will end up in
the right (left) well of the potential. The vertical bars correspond to different values of
the coefficient of restitution: r = 0.9, r = 0.99, r = 0.999 (left to right). Smaller values of
friction lead to increasing “complexity” of the basin boundaries, in the sense of producing
narrower bands.

If the initial conditions (p0, q0) of a particle are known exactly, then the deterministic

dynamics leads to a unique and well-defined final state which can be predicted with

certainty. However, limited precision of the initial conditions may results in a genuine

indeterminacy of the final state. Assume that the initial state of the particle is only known

to lie inside a rectangle with sides ∆q > 0 and ∆p > 0, centered about the point z0.

Trajectories with initial momenta p0 and p′0 ≡ rp0 are bound to end up in different wells.

Thus, if the inaccuracy in momentum exceeds this value,

∆p > p0 − p′0 , (9)

the uncertainty rectangle will cut across at least two adjacent basins of attraction. In other

words, given the initial momentum p0 and any finite uncertainty ∆p about it, the predic-

tion of the final state becomes impossible for a coefficient of restitution in the interval

1 −
∆p

p0
< r < 1 , (10)

since the rectangle with sides ∆q and ∆p will contain trajectories destined for the wells L

and R. We conclude that sufficiently weak inelasticity prevents the reliable prediction of

the final state. In this well-defined sense, adding friction to an integrable system provides

a mechanism which prevents accurate long-term predictions.
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3.2 Periodic damping force

Now we turn to a model where friction is caused by a periodic, dissipative force which

acts during a short time interval only. It will be convenient to consider the limit of an

instantaneous action which multiplies the momentum of the particle by a constant factor

γ ∈ (0, 1) at times Tk = kT, with k ∈ N, and a free parameter T. This approach is

analogous to periodically kicking a system with a deterministic force which, for a par-

ticle moving freely on a ring known as a “rotor,” produces deterministic chaotic motion

[3]. Since our model depends on two independent parameters, γ and T, we expect more

complicated basins of attraction compared to the model with inelastic reflections.

To construct the basins of attraction of the wells L and R, we need to determine when,

for arbitrary initial conditions (p0, q0)T, the energy of the particle falls below the critical

value for the first time We then record whether, at that moment of time, it is located to the

left or to the right of the origin, i.e. within L or R. For simplicity, the particle is assumed

to begin its journey at time t = 0+, i.e. just after t = 0, with positive momentum p0 > pc

and arbitrary initial position q0 ∈ (−ℓ, ℓ).

The particle moves freely during intervals of length T, with perfectly elastic collisions

occurring at the boundary walls which only change the sign of its momentum. An ex-

pression for its time evolution in closed form can be found if we “unfold” the trajectory

by imagining identical copies of the double-well to be arranged along the position axis.

Instead of being reflected at the right wall located at q = ℓ, the particle enters the next

double well, which occupies the range (ℓ, 3ℓ), and continues to move to the right, etc. In

this setting, the momentum does not change its sign when the particle moves from one

double well to the adjacent one. The sign of its momentum in the original double well

is negative (or positive) if the particle has reached the sth copy of the double well, with

s ∈ N being odd (or even).

To determine the dynamics of the system over one period of length T, we combine

the free motion with the dissipative kicks:

1. during the motion of the particle from t = 0+ to just before the first kick at time

t = T, its phase-space coordinates are given by

z(t) =

(

p0

q0 + p0t/m

)

≡ F(t)·z0 , F(t) =

(

1 0

t/m 1

)

, t ∈ (0+, T−) , (11)

where q ∈ (0, ∞) due to the unfolding;

2. the dissipative kick at time T reduces the momentum of the particle by the factor

γ ∈ (0, 1),

z(T+) =

(

γp(T−)

q(T−)

)

≡ D · z(T−) , D =

(

γ 0

0 1

)

, t ∈ (T−, T+). (12)

To obtain the actual position and momentum of the particle inside the box at time t, we

map (or “fold back”) the expression F(t) · z to the interval q ∈ (−ℓ, ℓ), by writing
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z(t) =

(

(−)s(t)p0

[(q0 + p0t/m)mod 2ℓ]− ℓ

)

, t ∈ (0+, T+) , (13)

where the value of the integer s(t) is determined by writing q + pt/m = q(t) + 2ℓs, with

q(t) ∈ (−ℓ,+ℓ). The momentum p changes sign whenever the “unfolded” coordinate

passes through the values ℓ, 3ℓ, 5ℓ, . . .

The time evolution of the initial state z0 from time t = 0+ to t = T+
k ≡ (kT)+, i.e. just

after the kick with label k, follows from concatenating Eqs. (11) and (12) k times,

z(T+
k ) =

(

D · F(T−)
)k

· z0 ≡

(

γ 0

γT/m 1

)k

· z0 =

(

γ
k 0

σk(γ)T/m 1

)

· z0 , (14)

where

σk(γ) =
1 − γ

k

1 − γ
, k ∈ N . (15)

In analogy to Eq. (13), the “true” coordinates of the particle inside the box are obtained

as

z(T+
k ) =

(

(−)s(t)
γ

k p0

[(q0 + σk(γ)p0T/m) mod 2ℓ]− ℓ

)

, (16)

assuming that, after k kicks, the energy Ek = p2
k/2m of the particle has not yet dropped

below the critical value Ec.

We are now in the position to determine which initial conditions z0 will send the

particle to the left and the right well, respectively. Using Eq. (16), we first determine

the smallest value of k which reduces the energy of the particle below the critical value,

Ek < Ec, or

kc =

⌈

1

2

ln(Ec/E0)

ln γ

⌉

=

⌈

ln(pc/p0)

ln γ

⌉

, kc ∈ N , (17)

assuming, of course, that p0 > pc. This relation structurally resembles the result (8), with

the number kc of dissipative kicks playing the role of the number of inelastic collisions

nc. The sign of the position coordinate after kc kicks, q(T+
kc
), follows from Eq. (16) and

determines whether the particle is trapped in L or R. The explicit dependence of z(T+
k )

on the initial position implies that changes in q0 may also produce different final states, in

contrast to the model studied in Sec. 3.1.

Fig. 3, which has been generated numerically on the basis of Eq. (16), illustrates these

conclusions. The first vertical bar visualizes the basins of attraction associated with the

wells L and R, respectively. The expected dependence on both initial momentum and

position becomes clearly visible in the magnifications which also reveal that the bound-

aries of the apparently irregular basins of attractions are not fractal.

The boundaries of the basins can be found directly from Eq. (16): all initial conditions

(p0, q0) mapped to a fixed value of position at time kT are located on lines of the form

p0(q0) = −
m

σk(γ)T
q0 + const ≃ −

1

k

m

T
q0 + const , γ > 1 , (18)
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Figure 3: Basins of attraction for the phase-space region (1 ≤ p/pc ≤ 11, 0 ≤ q/ℓ ≤ 0.2)
of a particle with unit mass in a double-well, with friction arising from periodic dissipative
kicks at times kT, k ∈ N, with ℓ = 1, T = 100s and γ = 0.99: initial conditions located in
dark (light) regions will end up in the right (left) well of the potential. Each of the three
vertical bars on the right magnifies a horizontal strip of the bar to its left by a factor of
ten. The basin boundaries clearly exhibit both a momentum and a position dependence.
Each bar results from iterating 501 × 501 regularly spaced initial conditions inside the
area shown.

using σk(γ) ≃ (1/k) +O(1 − γ), which holds for weak damping, i.e. for γ approaching

the value one from below. Consequently, the boundaries of the basins of attraction are

straight lines in phase space just as for the model with inelastic reflections off the wall. The

lines are no longer horizontal but their slope approaches the value zero if a large number

of kicks is required for the particle to settle in a well.

Assume once again that the initial conditions of the particle can be prepared with finite

precision only, i.e. they lie inside a phase-space rectangle with area ∆q∆p > 0 and center

z0. For any finite imprecision one can always find a damping strength γ such that at least

one basin boundary crosses the rectangle; this is sufficient to prevent the prediction of

the well to finally trap the particle. For large initial momenta p0, the reasoning behind

the derivation of the inequality (10) also applies here since the strips constituting the

basins of attraction will, typically, have almost horizontal boundaries. Thus, for any

initial conditions (p0, q0) and finite uncertainties, damping strengths within the interval

1 −
∆p

p0
< γ < 1 (19)

correspond to a situation with an unpredictable final state. Occasionally, the uncertainty

rectangle with sides ∆q and ∆p may cover an area where a slight change in initial position

only causes the particle to reach different wells, corresponding to a more intricate phase-

space structure.
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4 Summary and discussion

We have shown that adding friction to an integrable one-dimensional double-potential

well causes its dynamics to turn from integrable to unpredictable – at least in the presence

of imprecise initial conditions. For simplicity, the double well has been modeled as a

piece-wise constant potential, i.e. a “box” divided into two regions by a thin wall. Two

types of dissipative forces have been considered which, by reducing its initial energy,

cause the particle to necessarily settle in one the wells after a finite, possibly long time.

The main result of our study is that adding friction to an integrable system produces

layered basins of attraction with smooth boundaries.

Damping introduced by inelastic collisions of the particle with the confining walls re-

sults in basins which foliate the phase space of the system into horizontal layers of vari-

able width. The stripes get narrower for decreasing friction. Any ball of initial conditions

which extends beyond more than one stripe prevents us from predicting with certainty

the well in which the particle will finally settle. Periodic dissipative kicks create basins of

attraction with slightly more intricate boundaries, due to the additional position depen-

dence. Since the particle must settle in a well after finite time the observed structures

cannot be fractal. In practice, however, it is crucial whether the initial conditions can be

specified with sufficient accuracy to avoid a spread across basins which send the particle

to different final states.

Both models clearly demonstrate that adding friction to an integrable system with two

attractive wells can have a fundamental impact on long-term predictability. The motion

is not “deterministically random” which would require fractal phase-space structures.

However, if the accuracy of the initial conditions falls below a specific threshold, the final

state of the system cannot be predicted reliably. Experimentally, the precision required

for a reliable long-term prediction may well be out of reach.

We expect our conclusions to be structurally stable in the sense that they should not

depend on the model of friction used. Any dissipative mechanism will, firstly, contract

all initial conditions into a small phase-space region which is energetically just above the

barrier of the double well; secondly, the energy of the particle will drop below Ec in a

way which depends sensitively on the initial conditions. Continuous Stokes friction, for

example, is thus likely to generate similar basins of attraction.

It is interesting to highlight the differences of the scenario studied here to model sys-

tems leading to similar conclusions. Keller [5] introduces a model of a massive rotating

wheel which slows down due to the presence of a constant torque opposing its motion.

Again, imprecise initial conditions lead to the difficulty of predicting in which position

the wheel will come to rest. This result seems to justify the use of the wheel as a gambling

device at fairs. However, the model predicts that, once at rest, the wheel would continue

to rotate in the opposite direction which makes it unrealistic. In any case, friction does

not cause foliation of phase space in this model but it is also based on a single degree of

freedom only.

Isomäki et al. [8] study the motion of a particle moving along the positive real axis

only, in the presence of two forces which result in more complicated behaviour includ-
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ing fractal structures. A linear force attracts the particle towards the origin from which

it bounces off inelastically when hitting it. In addition, a periodic driving force acts on

the particle. The combination of these forces gives rise to different types of limiting be-

haviour and associated basins of attraction with fractal boundaries. In the absence of

the both friction and the driving force, the system exhibits only a single stable equilib-

rium, contrary to the double-well potential studied. Thus, adding only friction would

not reproduce the phenomenon observed for the double well.

Basins of attraction with smooth boundaries may also arise by washing out existing

fractal structures, through the addition of friction. This phenomenon has been described

for a spherical pendulum with three stable equilibrium positions, in the presence of grav-

ity [9]. In this scenario, however, friction is responsible for the smoothing of pre-existing

fractal structures not for causing the basins in the first place.

The interest of layered phase-space structures with smooth boundaries is based on

the fact no macroscopic physical system is actually capable of exhibiting fractal struc-

tures. With quantum mechanical properties of matter emerging on an atomic scale, the

description of a physical system in terms of classical mechanics cannot hold on arbitrary

length scales [10]. Experimentally observed structures may be highly intricate over many

– but not all – orders of magnitude.

To conclude, we mention a natural application of our main result connecting it to

work by Poincaré. Consider a large number of identical potential wells succeeding each

other on a ring, (37 or 38 in number, say), mimicking a one-dimensional roulette wheel.

Effectively, the final state of a particle moving in this potential will – in the presence of

friction – become unpredictable given a finite spread in initial momenta and positions.

This system provides an explicit and tractable dynamical realization of a model which

was introduced by Poincaré in order to explain the emergence of probability. His roulette-

like wheel, which slows down and stops under the influence of friction [11], continues to

be relevant to philosophically inclined discussions of the notion of chance (e.g. in [12]).
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