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Abstract1

Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity.2

Mitochondrial abnormalities may contribute as the PPARȖ pathway is involved in structural 3 

and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal4

nicotine exposure results in lung mitochondrial dysfunction that can be rescued by5

rosiglitazone (RGZ; PPARȖ receptor agonist). Sprague-Dawley dams received placebo 6 

(CON), nicotine (NIC, 1 mg.kg-1), or NIC+RGZ (3 mg.kg-1) daily from embryonic day 6 to7

postnatal day 21. Parenchymal lung (~10mg) was taken from adult male offspring for8

mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and9

NIC+RGZ compared to CON (F[2,14]=17.8; 4.5±0.8 and 4.1±1.4 vs. 8.8±2.5 pmol.s.mg-1;10

p<0.05). The respiratory control ratio for ADP, an index of mitochondrial coupling, was11

reduced in NIC and remediated in NIC+RGZ (F[2,14]=3.8; p<0.05). Reduced mitochondrial12

oxidative capacity and abnormal coupling was evident after perinatal nicotine exposure.13

Rosiglitazone improved mitochondrial function through tighter coupling of oxidative14

phosphorylation.15

16
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18
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Introduction19

Perinatal tobacco smoke and nicotine exposure predisposes to low birth weight, chronic lung20

disease, and increased morbidity and mortality [1]. This is of particular concern in21

population-dense regions at the outset of tobacco-related disease epidemics [2], or where22

nicotine delivery via e-cigarettes is growing in popularity, especially among young people23

[3,4]. We have shown that epigenetic silencing of peroxisome proliferator-activated receptor24

Ȗ (PPAR-Ȗ) results in morphological and functional airway deficits that accompany smoke 25 

and nicotine exposure in utero [5,6]. Encouragingly, PPAR-Ȗ receptor agonists are effective 26 

in augmenting structural and functional lung maturation and repair, through either peri- or27

postnatal administration [7,8]. As PPAR-Ȗ is an important regulator of mitochondrial 28 

biogenesis, we used the same rat model of perinatal nicotine exposure to investigate the29

effects of perinatal nicotine exposure on lung mitochondrial respiration in situ. Since PPAR-Ȗ 30 

receptor agonist rosiglitazone (RGZ) ameliorates nicotine-induced alterations in pulmonary31

compliance, resistance, and airway reactivity [9], we examined potential RGZ-mediated32

rescue of lung mitochondrial oxidative capacity as a possible protective mechanism against33

perinatal nicotine-induced lung damage. We hypothesized perinatal nicotine exposure34

results in lung mitochondrial dysfunction that can be rescued by RGZ.35

36

Methods37

First-time pregnant Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg.kg-38

1), or NIC+RGZ (3 mg.kg-1) daily from embryonic day 6 to postnatal day 21. Postpartum,39

pups were nursed ad libitum until weaning on postnatal day 21. Initially, respirometry was40

performed on mitochondria isolated from lung [10,11], however the isolation procedures41

consistently resulted in damage to the outer mitochondrial membrane [11]. Following these42

pilot studies, high-resolution respirometry was performed on parenchymal tissue dissected43

from the base of the lung (~10mg) of adult males at 5 months of age (CON n=6, NIC n=6,44

NIC+RGZ n=5). High-resolution respirometry provides measurement of the rate of45

mitochondrial O2 consumption in situ via measurement of [O2] in stirred media with a46



4

polarographic O2 sensor. The titration protocol described below allows for the respiratory47

states to be assessed either in absolute (O2 consumption per tissue mass) or as flux control48

ratios.49

50

Following dissection, tissues were placed immediately in preservation solution at 4°C until51

measurement could be made (~30 min to 4 hr after euthanasia). Preservation medium52

(BIOPS) contained 10 mM Ca2+EGTA buffer, 20 mM imidazole, 50 mM K+-4-53

morpholineothanesulfonic acid (MES), 0.5 mM dithiothreitol, 6.56 mM MgCl2, 5.77 mM ATP,54

15 mM phosphocreatine and a pH of 7.1. Tissue samples (~10 mg) were weighed using a55

microbalance and transferred into a calibrated respirometer (Oxygraph 2k, OROBOROS56

INSTRUMENTS, Innsbruck, AT) containing 2 ml of media in each chamber. Respirometry57

was performed in duplicate at 37°C in stirred media (MiR05) containing 0.5 mM EGTA, 3 mM58

MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM59

sucrose, and 1 g/l BSA essentially fatty acid free, adjusted to pH 7.1. [O2] in the media was60

kept between 300-500 ȝM.  61 

62

A substrate-uncoupler-inhibitor-titration (SUIT) protocol [12,13] included: 10 mM glutamate63

and 2 mM malate to support electron entry through complex I (GM; ‘LEAK’ state), 5 mM ADP64

to stimulate oxidative phosphorylation, 10 mM succinate to maximize convergent electron65

flux at the Q-junction (ADP+S), 10 ȝM cytochrome-c to test for outer mitochondrial 66 

membrane integrity (cyt-c), carbonyl cyanide p-trifluoro-methoxyphenyl hydrazine (FCCP)67

titrated in 0.5 uM steps to achieve maximal uncoupled respiration for measurement of68

electron transport system capacity, 0.5 ȝM rotenone to inhibit complex I (Rot), and 2.5 ȝM 69 

antimycin A + 0.5 mM N,N,N',N'-Tetramethyl-p-phenylenediamine dihydrochloride to inhibit70

complex III and measure complex IV maximal flux (A+TMPD). Flux control ratios were71

calculated, where appropriate, with the reference value of electron transport system capacity72

(FCCP titration). The respiratory control ratio (RCR) for ADP was calculated as (ADP+GM /73

GM). The substrate control ratio for succinate was calculated as (ADP+S / ADP+GM).74
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Differences between CON, NIC, and NIC+RGZ groups were tested with a one-factor75

ANOVA and Bonferroni post-hoc t-tests where appropriate. Data are presented as76

mean±SD.77

78

Results79

Body mass of the pups was not different at 5 months among treatment conditions (CON80

637±65, NIC 624±49, NIC+RGZ 582±32 g; p=n.s.). ADP-stimulated O2 consumption (JO2)81

with GM was less in NIC and NIC+RGZ compared to CON (F[2,14]=9.4; 3.2±0.9 and 3.2±1.382

vs. 5.7±1.2 pmol.s.mg-1; p<0.05; ADP in Figure 1). Maximal ADP-stimulated O2 consumption83

(JO2) with GM and S was less in NIC and NIC+RGZ compared to CON (F[2,14]=17.8;84

4.5±0.8 and 4.1±1.4 vs. 8.8±2.5 pmol.s.mg-1; p<0.05; ADP+S in Figure 1). Uncoupled JO285

was ~60% less in NIC and NIC+RGZ compared to CON (F[2,14]=10.8; 6.4±1.5 and 6.8±2.586

vs. 15.4±5.7 pmol.s.mg-1; p<0.05, FCCP in Figure 1), with excess complex IV capacity in all87

cases (A+TMPD Figure 1).88

89

The flux control ratio for GM (LEAK respiratory state) was elevated in NIC and rescued in90

NIC+RGZ (F[2,14]=3.6, p=0.055; GM in Figure 2). Flux control ratios of other respiratory91

states where unaffected by NIC or NIC+RGZ (Figure 2). The respiratory control ratio for ADP92

was reduced in NIC, and remediated in NIC+RGZ (F[2,14]=3.8; p<0.05; RCR for ADP in93

Figure 3). The substrate control ratio for succinate was not different across the conditions94

(F[2,14)=0.6; p>0.5; SCR for Succinate in Figure 3).95

96

Discussion97

Mitochondrial respiration in parenchymal lung tissue from perinatal nicotine-exposed pups98

was reduced by >50% across the respiratory states. When the respiratory states were99

normalized to electron transport system capacity, maximal ADP-stimulated respiration was100

similar across conditions, except for LEAK respiration. Thus, the large suppression of101

maximal mitochondrial respiration following perinatal nicotine exposure was most likely due102
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to reduced mitochondrial density, rather than due to functional changes of the mitochondrial103

electron transport system per se. This reduction of total oxidative capacity in the lung104

mitochondria fits with our recent report on the epigenetic silencing of PPAR-Ȗ through PPAR-105 

Ȗ promoter methylation controlled by DNA methyltransferase 1 (DNMT1) and methyl CpG 106 

binding protein 2 (MeCP2) [6]. The respiratory control ratio for ADP, an index of coupling,107

was reduced following perinatal nicotine exposure. Mild uncoupling following nicotine108

exposure, potentially to mitigate the effects of reactive O2 species (ROS) production, was109

improved with simultaneous rosiglitazone administration.110

111

Although PPAR-Ȗ agonists are known to increase mitochondrial biogenesis [14], and RGZ 112 

protects against the development of an asthma phenotype following perinatal nicotine113

exposure [9], lung mitochondrial oxidative capacity in the adult lung was unaffected by114

perinatal RGZ treatment. However, nicotine exposure was accompanied by reduced115

mitochondrial coupling, as reflected by the greater GM flux control ratio in NIC exposure116

group and lower RCR for ADP: an effect that was attenuated by RGZ (Figures 2 and 3).117

Increased transmembrane proton flux to compensate for an increased proton leak (or LEAK118

state; [13]) is the predominant component of this greater non-phosphorylating respiratory119

rate. This physiological uncoupling, or pathological dyscoupling, of respiration in120

parenchymal mitochondria with perinatal nicotine exposure may be a protective feedback121

response to excessive mitochondrial hydrogen peroxide or superoxide production [15].122

Rescue effects of RGZ on alveolar development and airway hyper-reactivity [9], may operate123

in part through reduced oxidative stress, and therefore less reliance on LEAK state124

dyscoupling to mitigate the deleterious effects of reactive oxygen species.125

126

In conclusion, perinatal nicotine exposure reduced mitochondrial oxidative capacity in adult127

parenchymal lung by more than 50%, and exacerbated non-phosphorylating respiration.128

Rosiglitazone did not rescue oxidative capacity, but may have helped preserve inner129

mitochondrial membrane integrity. Whether perinatal nicotine exposure (via tobacco smoke130
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or e-cigarette delivery) predisposes offspring towards chronic lung disease by increased131

reactive oxygen species production, and/or through development deficits following low lung132

tissue mitochondrial density remains to be confirmed.133

134
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135

136

Figure 1. Rate of oxygen consumption (JO2) during a high-resolution respirometry substrate-137

uncoupler-inhibitor-titration (SUIT) protocol. GM: glutamate+malate. ADP: ADP. ADP+S:138

ADP+succinate. cyt-c: exogenous cytochrome-c. FCCP: Carbonyl cyanide p-trifluoro-139

methoxyphenyl hydrazone. Rot: Rotenone. A+TMPD: Antimycin A + N,N,N',N'-Tetramethyl-140

p-phenylenediamine dihydrochloride. Error bars are SD. *Different to NIC. **Different141

compared to NIC+RGZ.142
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143

144

Figure 2. Flux control ratios during a high-resolution respirometry substrate-uncoupler-145

inhibitor-titration (SUIT) protocol. GM: glutamate+malate. ADP: ADP. ADP+S:146

ADP+succinate. S+Rot: Succinate+rotenone. A+TMPD: Antimycin A + N,N,N',N'-147

Tetramethyl-p-phenylenediamine dihydrochloride. Error bars are SD. *Different compared to148

CON.149
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150

Figure 3. Respiratory and substrate control ratios during a high-resolution respirometry151

substrate-uncoupler-inhibitor-titration (SUIT) protocol. RCR for ADP = (ADP+GM / GM).152

SCR for Succinate = (ADP+S / ADP+GM). Error bars are SD. *Different compared to CON.153

154

155
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