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Abstract

We present algorithms and experiments for multi-scale

assembly of complex structures by multi-robot teams. We

focus on tasks where successful completion requires multi-

ple types of assembly operations with a range of precision

requirements. We develop a hierarchical planning approach

to multi-scale perception in support of multi-scale manipu-

lation, in which the resolution of the perception operation is
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matched with the required resolution for the manipulation

operation. We demonstrate these techniques in the context

of a multi-step task where robots assemble large box-like

objects, inspired by the assembly of an airplane wing. The

robots begin by transporting a wing panel, a coarse manip-

ulation operation that requires a wide field of view, and

gradually shift to narrower field of view but more accurate

sensors for part alignment and fastener insertion. Within

this framework we also provide for failure detection and

recovery: upon losing track of a feature, the robots retract

to using wider field of view systems to re-localize. Finally,

we contribute collaborative manipulation algorithms for

assembling complex large objects. First, the team of robots

coordinates to transport large assembly parts which are too
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heavy for a single robot to carry. Second, the fasteners and

parts are co-localized for robust insertion and fastening. We

implement these ideas using four KUKA youBot robots and

present experiments where our robots successfully complete

all 80 of the attempted fastener insertion operations.

Keywords

Robotic Assembly, Robotic Manufacturing, Robot Teams,

Distributed Control, Multi-Scale Assembly, Multi-Scale

Perception

1. Introduction

Manufacturing systems of today have very limited flexibil-

ity, often requiring months of fine-tuning before an industrial

assembly line is ready for production. We envision the man-

ufacturing systems of the future, in which agile, flexible

teams of mobile robots coordinate to assemble complex

and diverse structures autonomously. This approach has the

potential to meet the demands of modern production: ever-

shortening product life-cycles, customized production, and

efficiency (Bourne, 2013).

Manufacturing and assembly tasks require multiple types

of operations with a range of precision requirements, from

coarse manipulation to fine manipulation. Take the exam-

ple presented in Fig. 1, which is inspired from an airplane

wing assembly task. The task involves attaching a wing panel

(Fig. 2a) to a wing box (Fig. 2b) by the insertion of fasteners

through holes (Fig. 2c). To perform this task, the robot team

coordinates to transport the wing panel from a storage rack

to the assembly site (Fig. 1a-Fig. 1b). This operation requires

perception and control at a spatial scale which captures the

parts and sometimes the whole factory floor and tolerates

relatively large errors in positioning. Then the robot team

aligns the holes on the wing panel with the holes on the wing

box (Fig. 1c-Fig. 1d), and inserts fasteners to attach the two

parts securely (Fig. 1e-Fig. 1h). These operations require

fine perception and control with much tighter tolerances.

In this paper we present a multi-scale perception and

manipulation framework for multi-robot assembly tasks.

Multi-scale perception. In §5.1, we contribute a hierar-

chical approach in which different layers of localization and

control systems interact to satisfy the continuously chang-

ing scale and precision requirements. We characterize each

sensor in our system with its scope and accuracy. Then we

formalize the problem of multi-scale perception as finding

the sequence of sensors to use such that the system’s state

can be tracked at the required accuracy through the compo-

sition of these sensors. Our implementation is based on the

integration of computer vision with other sensors.

Failure recovery. Complex assembly operations require

performing a long sequence of subtasks. For the assembly

operation to succeed, each subtask must succeed. Even if a

system uses controllers that have very low failure rates for the

individual subtasks, the combined probability of failure for

the complete system can be large. Building a robust system

for such long operations requires detecting and recovering

from failures. We present such a failure recovery approach

in §5.3 by extending our system’s multi-scale perception

formalization. We detect when precision is insufficient for

a particular operation, and move freely between adjacent

levels in the perception hierarchy, allowing us to re-seed

failed searches and tracking procedures with better initial

guesses.

Coordinated multi-scale manipulation. A team of robots

working in a factory requires coordination and collabo-

ration. Our system displays coordination between robots

at various spatial scales. We present an approach in §4.1

for coordination between a team of robots for transporting

large structures. We also present a coordination system in

§4.2 which enables fine manipulation skills, particularly for

inserting a fastener or screwing a nut. Much like human

workers, robots need specialized tools to perform these oper-

ations to specifications. In the same section we also present

a tool accompanying the control algorithm which unifies

sensing and actuation in the tool frame, thus delivering high

precision.

In this work we present a system for autonomously assem-

bling complex and large structures in flexible factory envi-

ronments. We identify the challenges and present our solu-

tions to build a robust, multi-robot system. Our goal is to

develop algorithms and systems which can be transferred

to real factories even though the scale of the tasks, or

the kinematics and dynamics of the robots, change. Our

contributions are:

• A multi-robot mobile manipulation algorithm that uses

robot-to-robot communication for complex assembly

problems consisting of task assignment, cooperative
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(a) Locate/grasp parts (b) Transport of parts (c) Part alignment

(d) Hole alignment (e) Fastener insertion

(f) Fastener 2 (g) Fastener 3 (h) Fastener 4

Fig. 1. Assembly tasks involve large-scale operations such as transport and fine manipulation operations such as hole alignment and

fastener insertion.

transport of parts, and assembly of parts using fasten-

ers, with an instantiation in the form of an end-to-end

system for connecting an airplane wing panel to a wing

box;

• Individual collaborative algorithms for multi-robot

transport and multi-robot part assembly using fasteners;

• A system with multi-scale perception, manipulation, and

failure-recovery capabilities, along with a formalization

of the planning problem for multi-scale systems.

As the experiments in §6 show, our system is robust,

despite the complexity of the task and the flexibility in the

environment.

2. Related Work

This paper builds on important prior research on collabora-

tive robotic systems (Worcester et al., 2014; Mellinger et al.,

2013; Willmann et al., 2012), fine manipulation for assembly

(Komendera et al., 2014; Galloway et al., 2010; Lozano-

Perez et al., 1984), and visual perception for manipulation

(Collet et al., 2011; Rusu et al., 2010).

2.1. Collaborative robotic systems

There have been recent work in developing collaborative

systems for the assembly and construction of large struc-

tures. In Worcester et al. (2014, 2011) robots can either

attach parts to build a complex structure or they can sense

the current state of the structure using an RGBD camera.

The system displays high degree of parallelization as well as

failure recovery. With our system we focus on a task which

requires collaboration between the robots during manipu-

lation tasks as well, such as the multi-robot transport of a

large wing panel and the multi-robot alignment of holes for

attachment. This requires our system to be highly hetero-

geneous in terms of the different sensors, the manipulation

operations, and also the tools used by the robots.
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(a) (b) (c)

Fig. 2. Assembly parts used in our experiments. (a) wing panel. (b) wing box. (c) A fastener and hole (misaligned) as used in this task.

The fastener is an adapted cleco. The holes were drilled to permit a cleco to fit up to the flange with a tolerance of 1.5 mm.

Willmann et al. (2012); Lindsey et al. (2012) present

assembly and construction systems consisting of flying

robots. Petersen et al. (2011) present a system where mobile

robots can build structures and climb the structures they

build. These systems provide impressive examples of multi-

robot coordination in building structures that are much larger

than the robots. Heger and Singh (2010) present a planner

for the assembly of complex lattice structures, and Yun and

Rus (2010); Stein et al. (2011); McEvoy et al. (2014) present

planners which takes into account the parallelization of the

assembly task and the stability of truss structures. While

these systems focus on using identical building blocks, e.g.

bricks or truss-like structures, for the modular construction

of structures, we focus on manipulating parts with shapes

that are inspired from real manufacturing and assembly

applications.

Different methods have been proposed for collaborative

manipulation/transport of objects by a team of robots (Desai

and Kumar, 1999; Khatib et al., 1996; Li et al., 2008; Sugar

and Kumar, 2002; Yamashita et al., 2003; Miyata et al.,

2002; Kume et al., 2007). Particularly, Desai and Kumar

(1999) propose a motion planning approach for a team of

robots transporting an object among obstacles; and Khatib

et al. (1996) present a decentralized control framework for

the manipulation of an object with a system of multiple

manipulators. The control problem for a team of quadro-

tors transporting an object (Mellinger et al., 2013) has also

been studied. Similar approaches have been applied to the

factory floor (Reinhart and Zaidan, 2009; Lenz et al., 2008;

Hirata and Kosuge, 2000), where a team of robots trans-

port an object with the help of human input. Our system is

not structured specifically for a transport task, but is generic

enough to accommodate other assembly tasks.

2.2. Fine manipulation for assembly

One generic and important assembly operation is fastening

multiple parts together. In our system this is achieved by

inserting fasteners through holes on the parts. This oper-

ation, sometimes called peg-in-hole in the literature, has

been studied extensively. One approach to this problem is

to use hybrid force-position control (Mason, 1981; Raibert

and Craig, 1981), which, through force sensing and compli-

ant motion (Inoue, 1974), enables a manipulator to slide

along surfaces. Combined with a principled approach to

dealing with uncertainty (Lozano-Perez et al., 1984), a high-

precision operation such as peg-in-hole can be accomplished

through a set of guarded-moves. This approach, however,

may not be feasible if the assembly parts are very sensitive

and prone to scratching. In our implementation we avoid

making forceful interactions with the surfaces of assembly

parts. Instead of a series of guarded moves, we use exten-

sive and high-accuracy sensor readings to localize the hole,

and a compliant shape for the fastener tip to account for any

remaining inaccuracy in localization.

Complete systems that can perform complex and precise

manipulation tasks (Righetti et al., 2014; Hudson et al., 2012;

Bagnell et al., 2012) are also presented in various robotic

challenges (Pratt and Manzo, 2013; Hackett et al., 2013;
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Balakirsky, 2010; Balakirsky et al., 2012). These systems

attempt to explore the problems associated with building

complete, intelligent, and flexible manipulation systems. We

share these goals but focus on multi-robot tasks, and partic-

ularly assembly tasks which require high precision. While

many of the above systems achieve precision by exploiting

environmental contacts through force-feedback, working

with delicate assembly parts requires us to use a hierarchi-

cal system of visual and laser-based sensors to locate objects

and features, to avoid scratching and damaging the parts.

Manipulation systems for different types of assembly tasks

have also been proposed. Galloway et al. (2010) present

a robotic system that can construct truss-like structures.

Rather than using mobile robots, they propose a static sys-

tem which moves the constructed structure as new layers

are added. Komendera et al. (2014) investigate approaches

to roboticized tools which can be used to achieve pre-

cise assembly of truss structures. Rojas and Peters (2012)

develop different controllers for assembly operations and

analysed their relative performances. Hamner et al. (2010)

build a mobile manipulator for assembly tasks. Heger et al.

(2005) investigate the application of sliding autonomy for

mixed robot-human teams performing assembly tasks. Our

focus is on the integration of multi-scale perception and

manipulation techniques for autonomous multi-robot teams.

During long sequences of complex assembly operations,

failure becomes unavoidable. The literature in failure detec-

tion and recovery starts with the geometrical models pro-

posed by Donald (1988, 1989). Other approaches have also

been proposed based on the analysis of joint torques in a

robotic system (Visinsky et al., 1994). Worcester et al. (2014)

propose a visual inspection approach comparing a rendered

view of 3D object models to a depth view from a visual

depth sensor. We formalize failure recovery in the context

of multi-scale perception and visual servoing.

2.3. Visual perception for manipulation

Robotic visual perception literature provides a rich set of

tools which can be employed to address various problems

in the factory settings, including object instance recognition

(Tang et al., 2012; Collet et al., 2011), 6-DOF pose estima-

tion (Rusu et al., 2010; Choi et al., 2012), and pose tracking

(Newcombe et al., 2011; Choi and Christensen, 2012). While

these systems work best when the object is closer than a few

meters, the accuracy drops as the object gets too far or too

close. In addition, visual perception is highly challenged in

many cases: occlusions, cluttered backgrounds, and image

blurring because of fast motions either in objects or camera.

To overcome these limitations of visual perception, it is often

combined with motion estimation (Klein and Drummond,

2004) or tactile sensing (Ilonen et al., 2013; Allen, 1988).

Skotheim et al. (2008) use functional feature detection for

low-level industrial manipulation. Although the literature

provides these powerful techniques, any single technique is

insufficient to overcome the challenges of flexible factory

environments.

3. Problem Description and Solution Overview

We present a class of problems, which we can solve using

our multi-scale sensing and coordination framework.

3.1. Problem Specification

The multi-scale assembly problem consists of:

• A set of robotic mobile manipulators. These manipula-

tors may each be equipped with different end-effectors

and tools to help complete the task.

• A set of sensors, which can be moved by robots. Each

sensor has two important properties: its scope, or field-

of-view, defining the volume of the environment the

sensor can view at a given moment, and accuracy, defin-

ing the upper bound on the error with which the sensor

can localize a certain object or feature in its scope.

• A set of assembly parts which must be put into a goal

configuration.

• Part Feeders. A part feeder provides one or more iden-

tical parts to workers with a known configuration and

bounded error. In our flexible factory setting the loca-

tions of part-feeders can change; therefore robots need

to localize part-feeders in the large scale of the factory

floor.

• Goal Configuration. The goal configuration in the

assembly problem is a relative positioning of all assem-

bly parts to within specified error tolerances.
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Given a set of mobile manipulators, sensors, and part

feeders, the problem is to transform assembly parts into

the specified goal configuration. In other words, the robots

must use the resources available to them to create a physical

instantiation of the desired assembly.

3.2. Exemplar Task

We present the airplane wing assembly task as an instantia-

tion of the problem specification.

Robotic mobile manipulators. We use four KUKA

youBots with 5 degrees-of-freedom arms and parallel plate

grippers. One robot gripper is augmented with a tool for

detecting holes and inserting fasteners. Another robot’s grip-

per is augmented with a RGB-D camera. The two remaining

robots are not modified.

Sensors. We are provided three sensors for use. First, we

are provided a marker-based tracking system, which can

perform tracking with a large scope. This sensor, however,

requires markers to be placed on objects for tracking, and

thus cannot directly track parts which may not be marked or

tarnished. Second, we are provided a RGB-D camera which

we use for medium scope tracking with medium precision.

Finally, we have a laser scanner which we use for fine scale

detection of fastener holes as a part of a specialized tool.

Note that all of our sensing systems are subject to occlu-

sion. Non-line-of-sight sensing could be enabled using an

RF-based technology such as RFID (Wang et al., 2013).

Assembly parts. We have a miniaturized wing box

(Fig. 2b), an upper wing panel (Fig. 2a), and four fas-

teners (Fig. 2c). The assembled wing has dimensions

(l × w × h) = (69cm× 36cm× 27cm). The wing box

and wing panel each has a hole on each corner to allow

for the insertion of fasteners.

Part feeders. A rack and legs which we rigidly fix to the

wing box are outfitted with markers for localization. Both

can be seen in Fig. 1b. The rack and legs, along with a

fastener dispenser affixed to one of the youBots, also act

as part feeders.

Goal configuration. Our goal state is the alignment of

the wing panel’s and wing box’s holes with four fasteners

connecting the two.

This example task enables us to explore key issues related

to the future of factory automation:

Fig. 3. A bird’s-eye view of the overall system. The marker-based

tracking cameras which surround the assembly area are not shown.

Flexibility. A key component of flexibility on factory

floors is the ability to rearrange part feeders, assembly

spaces, and robots. Therefore, we require a re-arrangeable

set-up which can be tested in multiple arrangements.

Collaboration. Robots must be able to assemble large and

heavy objects with masses which surpass the limits of the

robots’ individual strength. The transport and alignment of

the wing panel require multiple robots to collaborate.

Precision and speed. Robotic assembly systems must be

able to adapt to the varying precision and speed requirements

within a single task. The two subtasks, transporting the wing

panel and inserting the fasteners, require our system to be

able trade-off between precision and speed using a multi-

scale perception approach.

Robustness. The airplane wing assembly task consists of

multiple steps, each of which must be completed success-

fully.

3.3. Task Solution Overview

The team of robots executes the following operations to solve

the assembly problem1. Some of these tasks can be per-

formed in parallel, as suggested by Tab. 1. In the table, the

transporting robots are denoted as R1 and R2, the coarse per-

ception robot is denoted as R3, and the fine perception robot

is denoted as R4. A bird’s-eye view of the overall system

can also be seen in Fig. 3.

1. The fine perception youBot moves to the wing box feeder

using the marker on the wing box feeder. Once the robot

1 We also recommend viewing a video of the sequence of operations in
Extension 1
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Robot

R1 R2 R3 R4

Move to hole 1

neighborhood

Navigate to and move gripper to wing

panel
Localize box

Find hole 1 in wing

box

Close grippers and form fleet
Find hole 1 in wing

box

Pick up wing panel

Orient wing panel to horizontal

Transport wing panel into neighborhood

of wing box

Servo wing panel into alignment with

wing box

Localize wing

panel

Servo wing panel hole 1 into alignment

with wing box hole 1

Localize wing

panel hole 1

End fleet formation and open grippers Insert fastener 1

Move out of the

way

Align panel hole 2

to wing box hole 2

Move out of the

way

Navigate to wing

panel hole 2

Move out of the

way
Localize hole 2

Insert fastener 2

Navigate to hole 3

Localize hole 3

Insert fastener 3

Navigate to hole 4

Localize hole 4

Insert fastener 4

Table 1: Flow of actions among four robots during attachment of a wing panel to a wing box. Time flows from top

to bottom. Cell colors indicate the scale and type of localization used in each action. Blue cells indicate large-scale

marker-based localization. Green cells denote medium-scale object-shape-based tracking. Pink cells indicate fine-scale

functional-feature level localization. White cells indicate sensorless operations.

is in the neighborhood it then uses the laser scanner to

search and locate one of the wing box holes.

2. The coarse perception youBot localizes the wing box

using the RGB-D sensor.

3. The two transporting youBots lift a vertically oriented

wing panel (Fig. 1a) and rotate it horizontally (Fig. 1b).

Two youBots are needed since a single youBot is unable

to exert the forces necessary to lift the wing panel on

its own. Pose information is communicated from the

marker-based detection system to the two transporting

youBots.

4. The coarse perception robot localizes the wing panel

once the panel is within the RGB-D scope. The relative

pose of the wing panel with respect to the wing box is

continuously communicated from the coarse perception

robot to the two transporting youBots. These two robots

align the wing panel above the wing box.

5. The transporting fleet moves the wing panel collabora-

tively under the fine perception robot’s laser scanner.

When the hole is seen under the laser scanner, the rela-

tive pose of the wing panel hole with respect to the wing

box hole is communicated from the fine perception robot

to the two transporting youBots. After the two holes are

aligned, the wing panel is lowered onto the wing box. If,

after a search trajectory finishes, the hole is not found, it

is assumed that the initial estimate was not close enough

for alignment, and the youBots return to the previous

step.
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6. The fine perception youBot inserts the first fastener into

the two now-aligned holes. The system now has two

holes aligned and a fastener connecting them, restricting

the wing panel’s movement to one degree of freedom,

rotation about the wing box surface.

7. The two transporting youBots open their grippers and

back away from the wing box.

8. One of the transporting robots uses its arm to push the

panel flush against the wing box, first on one side, and

then the other, along the rotational degree of freedom to

achieve final alignment.

9. For each of the remaining three holes, the following three

sub-steps are performed in order: a) The fine-perception

youBot gets in the neighborhood of the hole using

marker-based localization. b) A search is performed to

localize the hole in the laser scanner frame, aligning the

laser scanner and the hole. If this step fails, it means that

the error in our initial guess of the hole’s location from

step a) was high, and failure recovery is triggered. c) A

fastener is inserted, securing the two holes.

In the next section we describe the multi-scale manipula-

tion algorithms that enable the robot team to perform these

operations.

4. Coordinated Multi-Scale Manipulation

Assembly tasks require robots to coordinate with one

another to transport parts, large and small, over large dis-

tances and into millimeter-scale alignment. Here we describe

both coarse manipulation and fine manipulation approaches

to team formation and coordination.

4.1. Fleet Control for Transport

For collaborative transport of large parts, the robots perform

a distributed, collective behavior inspired by human group

behavior using force feedback and observation of others. In

fleet control mode, the robots maintain a fixed formation of

arbitrary shape while holding an object, as in Fig. 7. Alg. 1

summarizes the algorithm.

Initially, each robot separately moves into formation by

grasping the object at an appropriate location. Robot i’s pose,

pi is measured at this grasp point and defines a coordinate

frame fi at the robot’s hand. Formation control initializes

via a synchronization broadcast message. Upon initializa-

tion, the robots compute a common reference origin fo for

the object (line 3). Robot i represents the fleet origin in its

own frame as poi . The position of the origin defaults to the

mean of all robot hand positions, and its orientation initial-

izes to that of the global coordinate frame (i.e. Vicon frame).

Henceforth, the global frame is not needed as all coordinates

are given in fo or fi. If desired, fo can be moved with respect

to the fleet to define the center of rotation.

Group motions are commanded as a twist (vo, ωo) speci-

fied in frame fo (line 6). Each robot computes its own hand

motion in order to comply with the twist command in six

degrees of freedom (DoFs). Hand motions are achieved in

line 14 through base motion when possible (X, Y, yaw)

and arm motion otherwise (Z, roll, pitch). It should be

noted, however, that the KUKA youBot cannot achieve full

six DoF motion due to its arm kinematics. Therefore, the

task presented in this paper involves only five DoF object

manipulation.

An important function of the fleet controller is to maintain

a stable fleet formation. Any position error introduced by

group motion will cause the fleet origin to drift away from

its target pose in the frame of the robots. A P-controller

introduces correction terms to the body and arm motions in

order to maintain the correct fleet formation (lines 8–11).

Similarly, force exchange among the robots through

the object can indicate an error in desired position. The

robots’ arms adjust position to comply with external forces

(lines 12–13). In the steady state, an error derived from the

joint torques can be attributed to a combination of grav-

ity and an error in the fleet formation. Thus, the robot has

detected a resultant force from the combined motion of the

rest of the fleet. In response to this force, the fleet controller

applies a correction term to poi .

Since each robot computes a motion consistent with the

fleet twist command, any residual force results from an error

in the formation, which may have two causes. First, the robot

may drift slightly out of formation while carrying a rigid

object. Second, the object may be somewhat deformable.

Although the fleet cannot deliberately exploit deformability

of material, it will accommodate deformations induced by

the transport operation by slightly varying the formation in

response to these joint torques.
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�✒
Laser Scanner

✲Fastener

❍❨
Robot hand

Fig. 4. Left: Hole alignment and insertion tool. Center: Alignment of two holes is achieved by estimating the width of the opening.

Right: Example real data used to estimate the width of the opening.

Algorithm 1 Fleet control algorithm.

1: function FleetControl(i, n)

Input: i – index of this robot

Input: n – number of robots

2: p← GetCurrentRobotPositions()

3: (poi , R
o
i )← ComputeFleetPose(n,p)

4: while FleetStillActive() do

5: publish (poi , R
o
i ) ⊲ Fleet origin estimate

6: receive (vo, ωo) ⊲ Last twist command (fr. fo)

7: (vi, ωi)← (Ro
i vo, R

o
iωo) ⊲ Convert to frame fi

8: p← GetCurrentRobotPositions()

9: (p̃oi , R̃
o
i )← ComputeFleetPose(n,p)

10: (pe, θe)← (poi − p̃oi , R
o
i − R̃o

i ) ⊲ Pose error term

11: (vi, ωi)← (vi − kvp
e, ωi − kωθ

e) ⊲ P-control

12: Fi ← GetForceAtEndEffector()

13: (vi, ωi)← AddForceErrorTerm(Fi, vi, ωi)

14: (a,b)←ComputeArmAndBaseCommands(vi, ωi)

15: publish a to robot arm

16: publish b to robot base

17: function ComputeFleetPose(n,p)

Input: n – number of robots

Input: p – vector of hand positions

18: po ←
∑

p

|p| ⊲ Mean of hand positions

19: Φo
i ← Ri

g ⊲ Global origin frame orientation

20: return (poi ,Φ
o
i )

4.2. Coordinated Mating of Holes and Fastener

Insertion

One critical fine manipulation skill for assembly is mating

holes on parts and inserting fasteners through these holes.

We use a distributed procedure and an associated tool to

perform such fine operations.

To achieve millimeter-scale accuracy, we employ a

custom-built end-effector tool on which both a Hokuyo laser

scanner and a fastener are rigidly affixed (Fig. 4-left). This

sensor fulfills the functional-feature-based localization in

the hierarchy.

Our feature detector performs filtering over the laser read-

ings to first fit a plane to the assembly part’s surface and then

to detect a hole in this plane (Fig. 4-right).

We present the collaborative procedure by which our sys-

tem aligns the holes of two different parts in Alg. 2. This

procedure is executed after the robot with the tool locates

the hole on one of the parts (the wing box, in our example)

and the fleet of robots brings the other part (the wing panel)

into the vicinity using the object-level tracking.

The goal in Alg. 2 is to achieve an alignment within the

tolerance required by the fastener. At each step the robot

with the tool estimates (line 5) the alignment of the two

holes (Fig. 4-center) by measuring the width of the opening

(Fig. 4-right). If the opening is not large enough (line 2),

the fastener robot commands a new velocity twist for the

moving part (lines 3-4). In computing this, the fastener robot

can use the history of readings to maximize the alignment

using gradient ascent. We implement this by making the fleet

follow a series of waypoints.

A twist for the moving part commands the robots in the

fleet to move using decentralized fleet control, in Alg. 1.

After the holes are aligned, the fastener can be inserted. The

fastener is placed directly in line with the laser scan, thus

allowing the robot to know exactly where the fastener is

with respect to a detected hole at all times, and to bring the

fastener over the hole.

The robot achieves precise alignment of two holes by

decomposing in time the localization of each hole. Before

the panel arrives, the laser scanner localizes the bottom
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Algorithm 2 Coordinated alignment of holes

1: function AlignHoles

2: while hole_width < threshold do

3: twist← FastenerRobot.DesiredPartMotion(history)

4: publish twist ⊲ Send twist command to fleet controller

5: hole_width← FastenerRobot.EstimateHoleWidth()

6: history.Add(hole_width)

hole in the box. While the laser scanner holds position,

the fleet brings the panel into approximate position using

other localization methods. Control then passes to the laser

scanner, which commands a micro-alignment based on the

remembered location of the bottom hole.

In the following section, we describe the perception and

control algorithms that direct these manipulation algorithms.

5. Multi-Scale Perception

Perception is a critical component of the mobile manipula-

tion system for the complex assembly of the wing. Especially

challenging is the need to localize at different scales, which

requires sensors that can deliver the accuracy needed at each

scale. Object transport requires perception at the scale of the

room. Object placement demands perception that operates

at the scope of the assembly. Finally, object insertion needs

perception to operate at the scope of small parts, such as fas-

teners. We employ three technologies to address localization

at these three scales.

Marker-based technology tracks objects not in produc-

tion, including parts, part sources, and robots, using a

motion capture system like Vicon2. Motion capture provides

highly accurate, sub-centimeter localization accuracy, but it

is restricted to tracking parts to which external markers may

be affixed. For many production parts, attaching markers is

undesirable and impractical. Furthermore, occlusion can be

a problem. Thus, complementary localization methods are

needed.

Object-shape-based tracking is implemented as a parti-

cle filtering approach using an RGB-D camera (Choi and

Christensen, 2013). 3D mesh models of production parts

are known a priori, and three visual features—colors, depth

points, and normals—are used to calculate the likelihood of

each particle hypothesis with respect to the current RGB-D

2 http://www.vicon.com/

scene. Our system localizes the wing box and wing panel

from a single RGB-D camera. The robot carrying the cam-

era can be seen in Fig. 1c, and example tracking scenes are

shown in Fig. 5. The system may exploit the freedom of the

camera’s point of view to avoid occlusion.

Functional-feature-based tracking for hole alignment and

insertion is the most demanding part of our task as it requires

very high-precision coordination among multiple robots. We

use a specialized tool with an integrated laser scanner. In our

example task, the holes are the functional-features which are

tracked and aligned.

We believe that without the use of all three levels in the

sensing and control hierarchy, the system cannot achieve

robust fastener insertion. In the rest of this section, we dis-

cuss the levels of the hierarchy and how the robots may

smoothly transition up and down through them.

5.1. Sequential Composition of Sensors

The funnel analogy has long served in robotics literature

to represent the act of reducing uncertainty or error in the

configuration of an object. Mason (1985) first introduced

the concept in the context of performing sensorless manipu-

lation actions that employ passive mechanics to reduce part

uncertainty. Burridge et al. (1999) applied the funnel analogy

to feedback control in the form of sequential composition of

controllers, spawning much follow-on work (Conner et al.,

2003; Tedrake et al., 2010; Das et al., 2002). This body

of work is sensor-agnostic in that the type and quality of

sensor data is assumed to be homogeneous throughout the

configuration space.

The sequential sensor composition planning problem.

Given a set of n sensors, each with its own characteristics,

the problem we pose is to plan a sequence of single-sensor-

based servoing actions that can be composed in order to

servo the target object from an initial to a goal configuration,
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(a) Localizing the wing box object (b) Transporting the wing panel to the box (c) Localizing the wing panel object

Fig. 5. An object-shape-based tracking is employed to localize both wing box and wing panel objects as well as their relative transfor-

mation for alignment. The tracking solution is based on 6-DoF particle filter and utilizes color and depth information from an RGB-D

camera. Each green dot in (a) and (c) shows the origin of the object coordinate frame of each particle, and their distribution represents

the posterior probability distribution of the object pose. Mean of the particles is rendered with a corresponding object CAD model.

while meeting criteria for likelihood of success and desired

accuracy.

Since localization estimates are probabilistic, we compute

an uncertainty volume of space by thresholding the PDF.

For example, thresholding a Gaussian distribution gives an

ellipsoid describing the uncertainty of a localization esti-

mate. Such uncertainty volumes specify the initial (I∗) and

goal (G∗) configurations for the planning problem.

Let S = {s1, s2, . . . , sn} be a set of available sensors,

and let X̃ be the space of uncertainty volumes describing

localization estimates. The function vi : X̃ → X̃ represents

a sensor-based servoing action performed with respect to

sensor si.

A sensor si is characterized by a tuple (vi, Ci, Ai), where

vi maps the uncertainty volumeCi describing scope (volume

of coverage) to the uncertainty volume Ai giving accu-

racy (volume of localization). These uncertainty volumes are

analogous to the top and bottom of the funnel corresponding

to the visual servoing controller for sensor si (see Fig. 6).

In the figure, the funnel’s bottom can be moved within its

scope in order to satisfy a desired goal estimate.

A precondition of sensor-based servoing action vi(x̃) is

that x̃ ⊂ Ci, meaning that the current localization estimate

is within the bounds of the scope, Ci. The sensor-based ser-

voing problem is solved by a sequence (si, sj , . . . , sz) such

that (vz ◦ · · · ◦ vj ◦ vi)(I∗) ⊂ G∗.

We leave the generalized sequential sensor composition

planning problem for future work. In the factory automation

setting, we propose to utilize a predefined plan. In this paper,

we present a hierarchical policy with three sensors.

The composition of three sensors is as follows. When the

wing panel is initially picked up from the part-feeder and

transported to the wing box, the necessary scope is large but

the precision requirements are coarse; for this task, marker-

based localization is appropriate. Once the panel is in the

vicinity of the wing box, the uncertainty in the panel pose

is too high for the scope of the laser scanner. Therefore,

object-based tracking is used to align the panel to the wing

box such that the hole on the wing panel is in the scope of

the laser scanner. Once the panel hole is in the scope of the

laser scanner, the information from this sensor is used to

micro-align the two holes to each other.

It should be noted that we do not perform any sensor fusion

here, in which multiple independent localization estimates

are combined into a higher quality estimate. Although sensor

fusion is a powerful capability, it comes at a computational

cost that can, in our case, be avoided by intelligently select-

ing the most reliable sensor. Furthermore, sensor fusion

demands careful tuning to correctly balance relative reliabil-

ity of localization estimates. An incorrect tuning could easily

result in a lower-quality estimate than would be provided by

the most reliable sensor alone.

5.2. Error Sources

Each of the localization technologies we employ imposes

errors that limit accuracy in three categories: (1) sensor

error, (2) indirection error and (3) semantic calibration

error. Sensor error, the accuracy claimed by the sensor man-

ufacturer, is typically the smallest contribution to overall

error in performing localization.
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Approach Sensor
Scope

(m3)

Error (m) Uncertainty

volume

(m3)Sensor Indirection
Semantic

calib.

Marker-based Vicon 102 10−3 10−1 10−2 10−3

Object-shape-based Kinect 100 10−2 10−2 10−2 10−6

Functional-feature-

based Hokuyo
10−2 10−3 10−3 0 10−9

Table 2: Order of magnitude analysis of sensor capabilities and of errors induced by the usage model. Sensor error derives

from the manufacturer’s specification. Indirection error results from the sensed features being located away from the key

functional features. Semantic calibration error stems from the difficulty in correctly calibrating the functional feature

locations with respect to the sensed feature frame. Note that the Hokuyo is used to directly sense a functional feature, and

so its semantic calibration error is zero. See §5.2 for full descriptions of error sources. The uncertainty volume results from

the combination of the three distance errors. For instance, a Gaussian distribution thresholded at one standard deviation

gives an uncertainty volume in the shape of an ellipsoid.

1 stdv

2 stdv

Failure recovery

Scope

Accuracy

Fig. 6. Each localization modality is represented by a funnel. The

area of the mouth represents the scope of the sensor. The area of

the exit represents the accuracy, as measured by the measure of

the uncertainty volume representing one standard deviation from

the mean estimate. Each sensor’s accuracy must be of substan-

tially smaller measure than the subsequent sensor’s scope to avoid

localization failure. In the event that the new sensor fails to detect

the target object, the system must revert to an earlier stage of the

localization pipeline.

Indirection error stems from the fact that sensors rarely

localize the desired coordinate frame directly. Instead, they

sense some set of features, each with some transform to the

desired frame. This indirection leads to small errors in orien-

tation being magnified by translation. All three localization

technologies exhibit indirection error.

Finally, semantic calibration error originates from the fact

that a perception model used for localization must be cal-

ibrated against the semantic model used for manipulation.

For example, markers placed on the robot for motion capture

must be manually calibrated to the robot’s pose. Similarly,

for object-shape-based tracking, the origin and shape of the

CAD model of the tracked object may not match the origin

and shape of the physical object. The functional-feature-

based hole tracker has no semantic calibration error because

the sensor directly tracks a semantic feature.

Tab. 2 summarizes the capabilities of our sensors. For all

sensors, the indirection error dominates and determines the

net accuracy.

Given a position estimate of the object with uncertainty,

it may be within scope of several sensors, giving the system

some flexibility in which technology to use. This flexibility

allows the system to be tolerant of effects such as occlusion

or communication drop-outs. The typical progression of the

localized feedback control system is to servo the object into

position at increasingly finer scales.

5.3. Failure Recovery

Failures in execution can happen at any step of the assembly

operation. To make sure that the assembly operation com-

pletes successfully, our system detects and tries to recover

from failures.

The multi-scale perception/control structure provides the

backbone of our failure recovery approach. During success-

ful execution, the control is handed-off from higher levels

to the lower levels: higher levels perform coarse localization

and lower levels perform precise tasks. Failure recovery is

implemented as the inverse process, where the control is
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handed off from lower levels to higher levels: lower lev-

els of perception are precise in tracking objects/features

but have limited scope, which may result in the tracked

objects/features getting lost. In such a case the control is

handed-off to the higher level for a coarse but large scope

localization.

Formally, suppose our system executes a

series of sensor-based servoing operations

(vz ◦ · · · ◦ vl ◦ · · · ◦ vk ◦ · · · ◦ vj ◦ vi)(I∗). Without loss

of generality, we say that we detect a failure during the

execution of vl if the state uncertainty becomes larger than

Cl, the scope of sensor l. This triggers backtracking in the

plan such that the previous sensor-based servoing operation,

vk, which encapsulates the state uncertainty is found and

the execution is restarted from there.

In our task, a crucial example of the failure recovery pro-

cess occurs during alignment of the panel-hole with the

box-hole. To accomplish this task, the wing panel is first

aligned with the wing box using the object-shape-based per-

ception system, which has a large scope but low accuracy.

Once the wing panel is coarsely aligned with the wing box,

the functional-feature-based localizer takes over to track the

panel-hole and align it with the box-hole. This localizer has

high accuracy but a small scope. The scanner occasionally

loses track of the hole due to the small scope and the noise

in the arm and base motions of the robots during alignment.

In such a case, the system reverts back to the previous level,

the object-shape-based alignment. The larger scope re-aligns

the wing panel with the wing box and hands over the control

to the functional-feature-based tracker once more. This pro-

cess continues until this sensor successfully tracks the wing

panel-hole and aligns it with the wing box-hole.

This approach to detecting and recovering from failure

provides significant robustness to our system. Even if the

individual layers permit failure, the overall architecture dis-

plays very high robustness as long as failures are detected

and the system is started from a recoverable state.

6. Experiments

We use a team of four KUKA youBots for our experi-

ments. These robots are tasked with assembling a wing panel

(Fig. 2a) on a wing box (Fig. 2b) using fasteners (Fig. 2c).

The wing panel and wing box are initially placed on support-

ing racks, which have markers for the marker-based Vicon

tracking system. Two of the robots, R1 and R2, are respon-

sible for the manipulation of the panel. Robot R3 carries

a Kinect RGB-D camera which performs the object-shape-

based tracking of the wing panel and the wing box. Robot

R4 carries the insertion tool (Fig. 4-left). The insertion tool

has an integrated Hokuyo laser scanner which performs the

functional-feature-based alignment with the holes on the

wing box and the wing panel. The robots communicate using

the messaging framework of the Robot Operating System

(Quigley et al., 2009).

We measure the effectiveness of different components of

our perception and control hierarchy by running experiments

with three different configurations of this system:

1. Marker-based + Object-shape-based (MO): In this

case, the wing panel and wing box are aligned only

using the object-shape-based tracking and control. The

functional-feature-based tracking, i.e. the Hokuyo laser

scanner is not used.

2. Marker-based + Functional-feature-based (MF): In this

case, the object-shape-based tracking of the wing panel

and wing box is left out, i.e. the Kinect RGB-D sensor

is not used. Instead, the robots remember their grasping

configuration of the wing panel and assume it does not

change relative to the robot hands during the course of

the task.

3. Marker-based + Object-shape-based + Functional-

feature-based (MOF): Our complete system where the

objects are tracked using the Kinect RGB-D camera and

the hole is aligned using the Hokuyo laser scanner.

With our system we performed two sets of experiments.

First, we ran our system in the MOF configuration 22 times to

measure the robustness, the contribution of our failure recov-

ery system to the robustness, and the overall speed of our

system. A video of one such run is available as Extension 1.

Second, we performed experiments to measure the con-

tribution of the hierarchical perception architecture to the

robustness of our system. In this set of experiments we cre-

ated perturbations to the pose of the wing panel as it was

being carried. Under these perturbations we ran our system
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f1

Fig. 7. Through fleet control, an arbitrary number of robots collaboratively transporting a part in an arbitrary shape formation. Individual

robot motions are computed with respect to a commanded twist at the fleet origin, o. Each robot n maintains the pose of the fleet origin

in its own local coordinate frame, fn, so there is no need for a global reference. The algorithm is fully distributed.

four times in each of the MO, MF, and MOF configurations,

totaling to 12 more runs.

7. Results

We start with reporting the results of 22 experiments in the

MOF configuration. In total, the system worked 20 out of

22 times. The 2 failures were caused by the arms overheat-

ing due to the weight of the wing panel and the forces that

arise during transport. All steps preceding and following

the transport step, including any and all fastener insertions,

resulted in 0 failures (note that we do not consider it to be

a failure if/when our failure recovery system overcomes a

problem autonomously). Tab. 3 shows the average time of

20 successful runs along with the minimum and maximum

durations. The first column shows the time spent for local-

izing the four holes on the assembly during each run. The

second column shows the time spent during aligning the

wing panel to the wing box using the object-shape-based

tracking system. The last column shows the execution time

for the complete assembly operation. The rest of the time

is spent on transport of parts which vary according to the

different starting poses of the wing panel, wing box, and

robots.

The first set of experiments also showed the important con-

tribution of failure recovery to the robustness of our system.

Hole

localization

Ladder-panel

alignment
Total

Mean Time (sec) 92 37 679

Min Time (sec) 27 17 569

Max Time (sec) 259 141 849

Table 3: Execution times

In 20% of wing panel alignment attempts the two holes were

not aligned precisely, which resulted in failure recovery get-

ting triggered. After failure recovery the holes were aligned

and the fasteners were successfully inserted. During these

experiments our system attempted 80 fastener insertions and

succeeded in all of them.

We report the result of our second set of experiments in

Tab. 4. Here we perturb the position of the grasped panel to

measure the robustness of our system. The first two cases

show the system running with certain layers of the hierar-

chical perception system removed. In these cases the system

was not able to get precise alignment between the holes of

the wing panel and the wing box. The full hierarchical per-

ception system was able to get precise alignment between

the holes in all four cases, but had trouble with the insertion

of the fastener since the insertion routine was not adaptive

to the changed height of the panel due to the perturbation.
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Config. Success Notes

MO 1/4 Successful run scratched panel surface on 2 of the 4 holes.

MF 2/4 Panel hole search timed out at 10 minutes.

MOF 3/4 All succeeded for hole alignment but one failed during fastener insertion.

Table 4: Comparison of the performance of different configurations of our system. Configuration abbreviations correspond

to localization methods: (M)arker-based, (O)bject-shape-based, and (F)unctional-feature-based.

However our full system was robust in achieving the precise

hole alignment.

After the initial experiment which consists of 22 runs, we

continued testing our system in a larger experiment including

more than 100 runs. Our system displayed a similar suc-

cess profile during these experiments. This confirmed the

robustness and repeatability of our system.

8. Insights and Conclusion

The results show that using a multi-scale approach can

greatly improve the robustness of a manufacturing system

to be nearly perfect. The system not only is able to perform

collaborative transport, precise alignment, and collision-free

insertion, but is also able to detect and fix the rare errors in

alignment. Further, the only failures were in the cases of

high-torque-driven arm failures, in which the system failed

in the collaborative transport step. In addition, we have

demonstrated that use of object-shape-based tracking makes

the system robust to outside perturbations or other internal

errors that could lead to poor grasps.

Traditional factory robots are bolted to the floor, thus

achieving sensorless high precision through kinematics.

Modern factory automation processes eliminate uncertainty

through careful, time-consuming human design. Product

changes require re-engineering of the process, contributing

to a lack of versatility. Instead, we present a flexible system

which can perform assembly operations with high accuracy.

The intelligent control and filtering algorithms provide

flexibility but also take time (see Tab. 3). In our implemen-

tation, these times are significantly affected by the hard-

ware we use. Particularly, the omni-directional mecanum

wheels on our robots introduce control noise during base

motion, which results in longer convergence times. Reduc-

ing control noise through the use of high-accuracy hardware

can improve our system’s performance even further in real

manufacturing environments.

The millimeter scale precision achieved by our system

is adequate for many assembly operations, but there are

also other tasks in manufacturing which require higher, sub-

milimeter, precision. There are two ways we can further

improve the precision of our system. First, we can reduce

the control noise of our system, for example by using a

different driving mechanism. Second, we can augment our

multi-scale sensor set with a high-resolution camera capable

of identifying submillimeter features.

Different sensor modalities can also be considered for

other challenging tasks, such as assembling specular or

transparent objects. When the passive visual perception

approaches fail, active perception based on physical contact

can provide valuable information. In manufacturing indus-

try, coordinate measuring machines are the most typical

contact-based dimensional inspection tools. Tactile/haptic

sensors on a robotic effector can also complement inaccu-

rate visual sensors, which is a direction we are pursuing.

Our design was guided by three principles which we think

are essential for an assembly system: flexibility, dexterity,

and robustness. Flexibility is what makes our system dif-

ferent from the factory robots of today. Part locations, part

shapes, and the location of holes on the parts can change,

and our hierarchical perception system is designed to iden-

tify and adapt to these changes. Dexterity refers to the wide

variety of skills that an assembly system must display. Our

system can perform collaborative transport, aligning of parts

to each other, and fastener insertion operations, all requir-

ing different levels of scope and precision. Robustness is a

key attribute for maximizing productivity in manufacturing.

As many assembly procedures are composed of successive

individual steps each of which must succeed, identifying

and recovering from failures proved crucial for the level of

robustness we required of this system.
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A. Index to Multimedia Extensions

The multimedia extensions to this article are at http://

www.ijrr.org.

Extension Type Description

1 Video System capabilities
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