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Abstract: The influence of ligands on the spin state of a metal
ion is of central importance for bioinorganic chemistry, and the
production of base-metal catalysts for synthesis applications.
Complexes derived from [Fe(bpp)2]

2+ (bpp = 2,6-di{pyrazol-1-
yl}pyridine) can be high-spin, low-spin, or spin-crossover
(SCO) active depending on the ligand substituents. Plots of the
SCO midpoint temperature (T1=2

) in solution vs. the relevant
Hammett parameter show that the low-spin state of the
complex is stabilized by electron-withdrawing pyridyl (“X”)
substituents, but also by electron-donating pyrazolyl (“Y”)
substituents. Moreover, when a subset of complexes with
halogeno X or Y substituents is considered, the two sets of
compounds instead show identical trends of a small reduction
in T1=2 for increasing substituent electronegativity. DFT calcu-
lations reproduce these disparate trends, which arise from
competing influences of pyridyl and pyrazolyl ligand substitu-
ents on Fe-L s and p bonding.

The ability of first-row transition ions to adopt different spin
states in strong or weak ligand fields is of great importance to

their catalysis and reactivity.[1–3] For example, fundamental
mechanistic steps in biological and synthetic oxidation
catalysis involve a change in spin state at an iron catalyst
center, described as two-state reactivity.[3] Catalysts with
different resting spin states follow different pathways through
these two-state processes, leading to altered reactivity and
product distributions.[4] Similar considerations also apply for
“base-metal” catalysts for organometallic reactions,[5] which
give access to high-spin active species with different reactivity
patterns compared to conventional precious-metal cata-
lysts.[6, 7] Another consequence of spin-state dichotomy is the
phenomenon of spin crossover (SCO), where a molecular or
framework compound exhibits a transition between high- and
low-spin states under a physical stimulus.[8, 9] SCO compounds
have been developed into versatile molecular switches for
molecular materials chemistry and nanoscience.[9, 10]

The relationship between chemical structure and spin
state is central to these phenomena.[2, 11] A sterically crowded
ligand sphere generally leads to high-spin complexes.[12]

However, the effect of ligand electronic character on metal-
ion spin state is less clear-cut, with electron-withdrawing
substituents being reported to stabilize either the low-
spin[13–16] or the high-spin state[17, 18] in different series of
compounds. While the literature includes data from solution
and the solid-state, these effects are best quantified by
solution measurements which determine a complexÏs spin
state in the absence of crystal-packing effects or any other
influences from a rigid solid lattice.[19] We report herein
a comprehensive study to resolve this contradiction, through
a survey of twenty-five complexes from the [Fe(bppX,Y)2]

2+

family (bppX,Y = a 2,6-di(pyrazol-1-yl)pyridine derivative;
Scheme 1).[20] Our results show that substituents at the X
and Y sites have different, opposing effects on the iron-atom
spin state.

The spin states of these complexes were measured in
solution by the variable-temperature Evans method,[21] in
(CD3)2CO or CD3NO2 depending on their solubility
(Figure 1). Our use of different weakly interacting solvents
should cause only small perturbations to the data.[22] The
complexes with X = NH2 and NMe2 remain high-spin within
experimental error over the liquid range of the solvent. All
the other complexes exhibit SCO, although the midpoint
temperature of the transition (T1=2

) varies from 158 K (X =

OMe)�T1=2
� 305 K (X = NO2).[23] Where they could be

derived, thermodynamic parameters for these equilibria are
mostly similar to other [Fe(bppX,Y)2]

2+ complexes.[20,23] How-
ever, higher DH and DS values for [Fe(bppCO2H,H)2]

2+ and
[Fe(bppSO2Me,H)2]

2+ imply that ligand-dissociation equilibria in
those complexes may be occurring, promoted by the nucle-
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ophilic carboxylic and sulfoxide substituents. Since ligand
dissociation only occurs in the labile high-spin state of
a complex, as a pre-equilibrium to SCO, it will have little
effect on T1=2

.[19, 22]

Plots of T1=2
versus the substituent electronegativity (cP [24])

for [Fe(bppX,H)2]
2+ and [Fe(bppH,Y)2]

2+ show identical corre-
lations for substituents with weak p-bonding character (X,
Y= halogen and SH; Figure 2). Within this series, electro-
negative substituents lower T1=2

to a small extent, so less
electron-rich X and Y groups slightly stabilize the high-spin
state. That is consistent with basic ligand-field arguments.
However, simple X and Y substituents with p-bonding
resonance properties (X, Y= CH3, NH2, and OH) deviate
strongly from this relationship. That implies metal–ligand
p bonding must contribute to the spin states of these
complexes.

Resonance effects for ligand “X” substituents are
accounted for by the sp Hammett parameter.[25] A plot of
T1=2

versus sp for [Fe(bppX,H)2]
2+ contains some scatter,

particularly around sp� 0, but shows a positive linear
correlation (Figure 3, top). That is, more electron-withdraw-
ing pyridyl X substituents stabilize the low-spin state of
[Fe(bppX,H)2]

2+. This result is consistent with previous studies
of complexes with pyridyl donor ligands,[14–16] but it is the

Scheme 1. Different substitution patterns of [Fe(bpp)2]
2+ (top), and the

different bppX,Y ligands referred to in this study (bottom).

Figure 1. Solution-phase magnetic susceptibilty data: [Fe(bppOH,H)2]-
[BF4]2 (*); [Fe(bppOMe,H)

2][PF6]2 (!); [Fe(bppNH2 ,H)2][BF4]2 (~);
[Fe(bppMe,H)2][BF4]2 (&); [Fe(bppF,H)2][BF4]2 (^); [Fe(bpppz,H)2][BF4]2 (&);
[Fe(bppCl,H)2][BF4]2 (^); [Fe(bppBr,H2 ][BF4]2 (!!); [Fe(bppI,H)2][BF4]2 (&);
[Fe(bppCO2H,H)2][BF4]2 (*); [Fe(bppNO2 ,H)2][BF4]2 (~).[23]

Figure 2. Plot of T1=2
versus the substituent electronegativity (cP) for

[Fe(bppX,H)2]
2+ (*) and [Fe(bppH,Y)2]

2+ (&) complexes with simple heter-
oatom X and Y substituents.[23] T1=2

for X =NH2 (*) represents an upper
limit for that measurement, since the complex is fully high-spin over
the liquid range of the solvent. The line shows the best fit correlation
(R2 = 0.91), omitting the X/Y =Me, OH and NH2 datapoints.

Figure 3. Plots of T1=2
for [Fe(bppX,H)2]

2+ versus the X substituent
Hammett parameters sP (top) and sP

+ (bottom; Table S1 in the
Supporting Information).[23] Error bars are mostly smaller than the
symbols on the graph. The lines show the best fit correlation
(R2 = 0.86 [top] and 0.92 [bottom]), omitting the X =NH2 and NMe2

datapoints (*) which represent the upper limits for those T1=2 measure-
ments.
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opposite trend to the electronegativity plot (Figure 2). An
improved correlation is found when T1=2

is plotted against sp
+,

a modified Hammett parameter accounting for conjugation of
the ligand substitutents with a positively charged reaction
center (Figure 3, bottom).[25] Hence, these data appear to be
influenced by p bonding between the Lewis acidic Fe2+ ion
and the ligand pyridyl donors. In contrast, a plot of T1=2

for
[Fe(bppH,Y)2]

2+ versus the relevant substituent Hammett
parameter (sM

[25]) shows the opposite trend from the
[Fe(bppX,H)2]

2+ series. That is, more electron-withdrawing
pyrazolyl substituents stabilize the high-spin state in [Fe(bp-
pH,Y)2]

2+ derivatives, even when substituent resonance effects
are included (Figure 4). Such a dependence of T1=2

on the
positioning of ligand substituents, in the absence of any steric
influence, has not been noted before.

This question was probed by density functional (DFT)
calculations of [Fe(bppX,Y)2]

2+ using the BP86 functional. The
correlation between the measured T1=2

and the computed
difference between the high-spin and low-spin total energies,
DErel(HS-LS), is very good despite the relatively simplistic
computational method used,[26] with a R2 correlation coef-
ficient of 0.79.[23] The agreement between DErel(HS-LS) and
the X or Y substituent Hammett parameter is moderate when
all the compounds are plotted together, but improves when
[Fe(bppX,H)2]

2+ and [Fe(bppH,Y)2]
2+ are considered separately

(Figure 5). Hence, the calculations have captured the spin-
state behavior of the two sets of compounds.

The s and p contributions to Fe¢L bonding for each
bppX,Y ligand were quantified by considering the d-orbital
energies of the low-spin compounds. Electron-withdrawing X
or Y substituents lower the energy of all the metal d-orbitals
(Figure 6), but the effect is 2–3 times greater for Y substitu-
ents than for X substituents since there as twice as many Y
substituents as X groups in a [Fe(bppX,Y)2]

2+ molecule. The X
substituents in [Fe(bppX,H)2]

2+ have a greater effect on the
averaged t2g orbital energies than on the eg orbitals, from the
slopes of their least squares correlations (Figure 6). In
contrast, Y substituents in [Fe(bppH,Y)2]

2+ have a much
larger influence on the averaged eg orbital energies than on
the t2g energies (Figure 6).[27]

The relationship between T1=2
and the bppX,Y ligand is

a competition between Fe¢L s- and p-bonding effects.
Electron-withdrawing substituents inductively lower the
energy of the bpp lone pairs, weakening the s ligand field
and thus stabilizing the high-spin state. Conversely, electron-
withdrawing substituents also reduce the energy of the bppX,Y

p* MOs, which increases the ligand field by strengthening
Fe!bpp p backbonding and favors the low-spin state. Fe¢L
p-bonding effects dominate in the [Fe(bppX,H)2]

2+ series,
where electron-withdrawing substituents stabilize the t2g

orbital manifold more strongly than the eg, thus increasing
the ligand field and raising T1=2

. In contrast, the spin state of
the [Fe(bppH,Y)2]

2+ family is controlled by Fe¢L s bonding,
since electron-withdrawing Y substituents stabilize the eg

orbitals more strongly, promoting the high-spin state and
lowering T1=2

.
When complexes with halogen X and Y substituents are

considered separately, the stabilization of Eav(eg) by electron-
withdrawing substituents is approximately 25 % greater than
Eav(t2g) for both sets of complexes.[23] Thus, electronegative
halogen X and Y groups both reduce T1=2

, and the essentially
identical T1=2

values shown by [Fe(bppX,H)2]
2+ and [Fe(bp-

pH,Y)2]
2+ when X, Y= a halogen (Figure 2) are also supported

by this computational study, despite being contrary to the rest
of the data.[17]

These results reconcile the differing conclusions from
earlier studies. Electron-withdrawing substitutents indeed

Figure 4. Plot of T1=2
versus the Y substituent Hammett parameters sM

for [Fe(bppH,Y)2]
2+ complexes with different Y substituents.[23] Error bars

are shown, but are smaller than the symbols on the graph. The line
shows the best fit correlation (R2 = 0.61). The graph is drawn for the
same range as Figure 3 (top), to aid comparison.

Figure 5. Plot of the relevant substituent Hammett parameter vs. the
computed energy difference between the high- and low-spin states
relative to X =Y = H [DErel(HS-LS)], for: [Fe(bppX,H)2]

2+ (top, *) and
[Fe(bppH,Y)2]

2+ (bottom,&).[23] The graphs are plotted to the same
scale to aid comparison, and the lines show the best fit correlations
(R2 = 0.89 [top] and 0.67 [bottom][28]).

Angewandte
ChemieCommunications

4329Angew. Chem. Int. Ed. 2016, 55, 4327 –4331 Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


stabilize either the low-spin[13–16] or the high-spin state[17, 18] of
a complex, depending on their position in the molecule and
on which types of substituent are considered. The relationship
between ligand design and metal-ion spin state is a fine
balance between opposing M¢L s- and p-bonding effects.
Rational design of a complex with defined spin-state proper-
ties for SCO, catalysis, or other applications requires consid-
eration of all these aspects of the metal–ligand interaction.
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