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Abstract

The use of Hausdorff measures and dimension in the theory of Diophantine approx-

imation dates back to the 1920s with the theorems of Jarńık and Besicovitch regarding

well-approximable and badly-approximable points. In this paper we consider three inhomo-

geneous problems that further develop these classical results. Firstly, we obtain a Jarńık type

theorem for the set S×
2
(ψ; θ) of multiplicatively approximable points in the plane R

2. This

Hausdorff measure statement does not reduce to Gallagher’s Lebesgue measure statement as

one might expect and is new even in the homogeneous setting (θ = 0). Next, we establish

a Jarńık type theorem for the set S×
2
(ψ; θ) ∩ C where C is a non-degenerate planar curve.

This completes the Hausdorff theory for planar curves and clarifies a potential oversight in

[2]. Finally, we show that the set Bad(i, j; θ) of simultaneously inhomogeneously badly ap-

proximable points in R
2 is of full dimension. The underlying philosophy behind the proof

has other applications; e.g. towards establishing the inhomogeneous version of Schmidt’s

Conjecture. The higher dimensional analogues of the planar results are also discussed.
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1 Multiplicatively ψ-well approximable points

Throughout ψ : N → [0,+∞) is a non-negative function. We will normally assume that ψ
is strictly positive and monotonically decreasing in which case ψ will be referred to as an
approximating function. Given ψ, a real number x will be called ψ-well approximable or
simply ψ-approximable if there are infinitely many q ∈ N such that

‖qx‖ < ψ(q) .

Here and throughout ‖ · ‖ denotes the distance of a real number to the nearest integer. Let
S1(ψ) denote the set of all ψ-approximable real numbers. The set S1(ψ) is invariant under
translations by integers. Hence, we will often restrict x to lie in the unit interval I := [0, 1].

The well known theorem of Dirichlet states that S1(ψ) = R when ψ(q) = q−1. In turn, a
rather simple consequence of the Borel-Cantelli lemma from probability theory is that S1(ψ)
is null (that is of Lebesgue measure zero) whenever

∑∞
q=1 ψ(q) <∞. However, Khintchine’s

theorem [24] tells us that the set S1(ψ) is full (that is its complement is of Lebesgue measure
zero) whenever

∑∞
q=1 ψ(q) = ∞ and ψ is monotonic. In order to quantify the size of S1(ψ)

when it is null, Jarńık [22] and Besicovitch [14] pioneered the use of Hausdorff measures
and dimension. Throughout, dimX will denote the Hausdorff dimension of a subset X
of Rn and Hs(X) the s-dimensional Hausdorff measure (see §1.1.2 for the definition and
further details). The modern version of the classical Jarńık-Besicovitch theorem (see [7] or
[8]) states that for any approximating function ψ

dimS1(ψ) = min

{

1,
2

τ + 1

}

where τ := lim inf
q→∞

− logψ(q)

log q
. (1)

In other words, the ‘modern theorem’ relates the Hausdorff dimension of S1(ψ) to the lower
order at infinity of 1/ψ and up to a certain degree allows us to discriminate between ψ-
approximable sets of Lebesgue measure zero. A more delicate measurement of the ‘size’ of
S1(ψ) is obtained by expressing the size in terms of Hausdorff measures Hs. With respect
to such measures, the modern version of Jarńık theorem (see [7] or [8]) states that for any
s ∈ (0, 1) and any approximating function ψ

Hs
(

S1(ψ) ∩ I
)

=







0 if
∑∞

q=1 q
1−sψs(q) <∞ ,

Hs(I) if
∑∞

q=1 q
1−sψs(q) = ∞ .

(2)

Note that for 0 < s < 1 we have that Hs(I) = ∞. However, since H1(I) = 1, the statement
as written also holds for s = 1 due to the aforementioned theorem of Khintchine. Note
that it is trivially true for s > 1. The upshot is that statement (2) is true for any s > 0 and
is referred to as the Khintchine-Jarńık theorem. It is worth pointing out that there is an
even more general version of (2) that makes use of more general Hausdorff measures, see
[7, 8, 10, 17]. Within this paper we restrict ourselves to the case of s-dimensional Hausdorff
measures.
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In higher dimensions there are various natural generalizations of S1(ψ). Given an ap-
proximating function ψ, the point x = (x1, . . . , xn) ∈ R

n will be called ψ-well approximable
or simply ψ-approximable if there are infinitely many q ∈ N such that

max{‖qx1‖, . . . , ‖qxn‖} < ψ(q) (3)

and it will be called multiplicatively ψ-well approximable or simply multiplicatively ψ-
approximable if there are infinitely many q ∈ N such that

‖qx1‖ · · · ‖qxn‖ < ψ(q) . (4)

Denote by Sn(ψ) the set of ψ-approximable points in R
n and by S×

n (ψ) the set of mul-
tiplicatively ψ-approximable points in R

n. On comparing (3) and (4) one easily spots
that

Sn(ψ1/n) ⊂ S×
n (ψ) .

For the sake of clarity, in what follows we will mainly restrict our attention to the case
of the plane R

2. The Khintchine-Jarńık theorem for S2(ψ) (see [7] or [8]) states that for
any s > 0 and any approximating function ψ

Hs
(

S2(ψ) ∩ I
2
)

=







0 if
∑∞

q=1 q
2−sψs(q) <∞ ,

Hs(I2) if
∑∞

q=1 q
2−sψs(q) = ∞ .

(5)

Regarding the Lebesgue case, which corresponds to when s = 2, Gallagher [21] showed
that the monotonicity of ψ is unnecessary. As a consequence of the Mass Transference
Principle [10] we have that (5) holds for any ψ (not necessarily monotonic) and any s > 0.

In the multiplicative setup, Gallagher [20] essentially proved that for any approximating
function ψ

H2
(

S×
2 (ψ) ∩ I

2
)

=







0 if
∑∞

q=1 ψ(q) log q <∞ ,

H2(I2) if
∑∞

q=1 ψ(q) log q = ∞ .
(6)

The extra log factor in the above sum accounts for the larger volume of the fundamental
domains defined by (4) compared to (3). The recent work [9] has made an attempt to
relax the monotonicity assumption on ψ within the multiplicative setting. Our goal in this
paper is to investigate the Hausdorff measure theory within the multiplicative setting.

Problem 1: Determine the Hausdorff measure Hs of S×
n (ψ).

This problem is somewhat different to the non-multiplicative setting where we have the
uniform solution given by (5). First of all, we note that

if s 6 1 then Hs(S×
2 (ψ) ∩ I

2) = ∞ irrespective of approximating function ψ. (7)
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To see this, we observe that for any ψ-approximable number α ∈ R the whole line x1 = α
is contained in S×

2 (ψ). Hence,

S1(ψ)× R ⊂ S×
2 (ψ) . (8)

It is easy to verify (for example, by using the theory of continued fractions) that S1(ψ)
is an infinite set for any approximating function ψ and so (8) implies (7). Next, since
S×
2 (ψ) ⊆ R

2, we trivially have that

if s > 2 then Hs(S×
2 (ψ) ∩ I

2) = 0 irrespective of ψ.

The upshot of this and (7) is that when attacking Problem 1, there is no loss of generality in
assuming that s ∈ (1, 2]. Furthermore, the Lebesgue case (s = 2) is covered by Gallagher’s
result so we may as well assume that 1 < s < 2.

Recall that Gallagher’s multiplicative statement (6) has the extra ‘log factor’ in the
‘volume’ sum compared to the simultaneous statement (5). It is natural to expect the log
factor to appear in one form or another when determining the Hausdorff measure Hs of
S×
2 (ψ) for s ∈ (1, 2); in other words when s is not an integer and so Hs is genuinely a

fractal measure. This, as we shall soon see, is very far from the truth. The ‘log factor’
completely disappears! Thus, genuine ‘fractal’ Hausdorff measures are insensitive to the
multiplicative nature of S×

2 (ψ). Indeed, what we essentially have is that

Hs
(

S×
2 (ψ)

)

= Hs−1
(

S1(ψ)
)

.

Thus, that for s < 1 the s-dimensional Hausdorff measure of both sides of (8) is the
same. In short, for any s ∈ (0, 1), the points of S×

2 (ψ) that do not lie in R × S1(ψ) do
not contribute any substantial ‘mass’ in terms of the associated s-dimensional Hausdorff
measure.

The ideas and tricks used in our investigation of Problem 1 are equally valid within the
more general inhomogeneous setup: given an approximating function ψ and a fixed point
θ = (θ1, . . . , θn) ∈ R

n, let S×
n (ψ; θ) denote the set of points (x1, . . . , xn) ∈ R

n such that
there are infinitely many q ∈ N satisfying the inequality

‖qx1 − θ1‖ · · · ‖qxn − θn‖ < ψ(q) . (9)

We prove the following inhomogeneous statement.

Theorem 1 Let ψ be an approximating function, θ = (θ1, θ2) ∈ R
2 and s ∈ (1, 2). Then

Hs
(

S×
2 (ψ; θ) ∩ I

2
)

=











0 if
∑∞

q=1 q
2−sψs−1(q) <∞ ,

Hs(I2) if
∑∞

q=1 q
2−sψs−1(q) = ∞ .

(10)
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Remark 1.1. Note that Hs(I2) = ∞ when s < 2. We reiterate the fact that unlike the
Khintchine-Jarńık theorem, the statement of Theorem 1 is false when s = 2.

Remark 1.2. In higher dimensions, Gallagher’s multiplicative statement reads

Hn
(

S×
n (ψ) ∩ I

2
)

=







0 if
∑∞

q=1 ψ(q) log
n−1 q <∞ ,

H2(I2) if
∑∞

q=1 ψ(q) log
n−1 q = ∞ .

For n > 2, the proof of Theorem 1 can be adapted to show that for any s ∈ (n− 1, n)

Hs
(

S×
n (ψ; θ) ∩ I

n
)

= 0 if

∞
∑

q=1

qn−sψs+1−n(q) logn−2 q <∞ .

Thus, for convergence in higher dimensions we lose a log factor from the Lebesgue volume
sum appearing in Gallagher’s result. This of course is absolutely consistent with the n = 2
situation given by Theorem 1. Regarding a divergent statement, the arguments used in
proving Theorem 1 can be adapted to show that for any s ∈ (n− 1, n)

Hs
(

S×
n (ψ; θ) ∩ I

n
)

= Hs(In) if

∞
∑

q=1

qn−sψs+1−n(q) = ∞ .

Thus, there is a discrepancy in the above ‘s-volume’ sum conditions for convergence and
divergence when n > 2. In view of this, it remains an interesting open problem to determine
the necessary and sufficient condition for Hs

(

S×
n (ψ; θ)∩ I

n
)

to be zero or infinite in higher
dimensions.

1.1 Proof of Theorem 1

To simplify notation the symbols ≪ and ≫ will be used to indicate an inequality with an
unspecified positive multiplicative constant. If a ≪ b and a ≫ b we write a ≍ b, and say
that the quantities a and b are comparable. For a real number x, the quantity {x} will
denote the fractional part of x and [x] the integer part of x.

Without loss of generality, throughout the proof of Theorem 1 we can assume that
θ = (θ1, θ2) ∈ I

2.

1.1.1 A covering of S×
2 (ψ, θ) ∩ I

2

In this section we obtain an effective covering of the set S×
2 (ψ, θ) ∩ I

2 that will be used in
establishing the convergence case of Theorem 1.
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Lemma 1 Let 0 < ε < 1, (x1, x2) ∈ I
2, (θ1, θ2) ∈ I

2, q ∈ N and

2
∏

i=1

‖qxi − θi‖ < ε . (11)

Then there exist m ∈ Z and p1, p2 ∈ {−1, 0, . . . , q} such that

‖qxi − θi‖ = |qxi − θi − pi| for i = 1, 2 ,

‖qx1 − θ1‖ < 2m
√
2ε, ‖qx2 − θ2‖ < 2−m

√
2ε (12)

and
2|m|

√
ε 6 1 . (13)

Proof. The existence of pi ∈ {−1, 0, . . . , q} with |qxi−pi−θi| = ‖qxi−θi‖ is an immediate
consequence of the fact that xi, θi ∈ I. Thus, the only thing that we need to prove is the
existence of m satisfying (12) and (13).

If ‖qxi − θi‖ <
√
2ε for each i = 1, 2 then we can define m = 0. In this case (12) is

obvious and (13) is a consequence of the fact that 0 < ε < 1.

Without loss of generality, assume that ‖qx1− θ1‖ >
√
2ε and let m ∈ Z be the unique

integer such that
2m−1

√
2ε 6 ‖qx1 − θ1‖ < 2m

√
2ε .

Since ‖qx1 − θ1‖ >
√
2ε, we have that m > 0. Furthermore, since ‖qx1 − θ1‖ 6 1/2, we

have that 2m
√
ε < 1 whence (13) follows. The left hand side of (12) holds by the definition

of m. To show the right hand side of (13) we use (11). Indeed, we have that

2m−1
√
2ε‖qx2 − θ2‖ 6

2
∏

i=1

‖qxi − θi‖ < ε

whence the right hand side of (13) follows. This completes the proof of the lemma.
⊠

Lemma 2 Let ψ : N → [0, 1) be decreasing and θ = (θ1, θ2) ∈ I
2. Then for any ℓ ∈ N

S×
2 (ψ; θ) ∩ I

2 ⊂
∞
⋃

t=ℓ

⋃

2t6q<2t+1

⋃

m∈Z

2|m|
√
ψ(2t)61

q
⋃

p1=−1

q
⋃

p2=−1

Sθ(t, q,m, p1, p2) , (14)

where

Sθ(t, q,m, p1, p2) :=























(x1, x2) ∈ I
2 :

∣

∣

∣

∣

x1 −
p1 + θ1
q

∣

∣

∣

∣

<
2m
√

2ψ(2t)

2t

∣

∣

∣

∣

x2 −
p2 + θ2
q

∣

∣

∣

∣

<
2−m

√

2ψ(2t)

2t























.

6



Proof. It is easily verified that

S×
2 (ψ; θ) ∩ I

2 =

∞
⋂

ℓ=1

∞
⋃

t=ℓ

⋃

2t6q<2t+1

{

(x1, x2) ∈ I
2 :

2
∏

i=1

‖qxi − θi‖ < ψ(q)
}

.

Since ψ is decreasing, ψ(q) 6 ψ(2t) for 2t 6 q < 2t+1. Then, for any ℓ ∈ N

S×
2 (ψ; θ) ∩ I

2 ⊂
∞
⋃

t=ℓ

⋃

2t6q<2t+1

{

(x1, x2) ∈ I
2 :

2
∏

i=1

‖qxi − θi‖ < ψ(2t)
}

. (15)

For a fixed pair t and q with 2t 6 q < 2t+1, by Lemma 1 with ε = ψ(2t), we get that

{

(x1, x2) ∈ I
2 :

2
∏

i=1

‖qxi − θi‖ < ψ(2t)
}

⊂
⋃

m∈Z

2|m|
√
ψ(2t)61

q
⋃

p1=−1

q
⋃

p2=−1

Sθ(t, q,m, p1, p2) .

This together with (15) completes the proof of the lemma.
⊠

1.1.2 Hausdorff measure and dimension

We briefly recall various facts regarding Hausdorff measures that will be used in the course
of establishing Theorem 1. Given δ > 0 and a set X ⊂ R

n, any finite or countable collection
{Bi} of subsets of Rn such that

X ⊂
⋃

i

Bi (i.e. {Bi} is a cover for X)

and
diamBi 6 δ for all i

is called a δ-cover of X . Given a real number s, let

Hs
δ(X) := inf

{Bi}

∑

i

diam(Bi)
s ,

where the infimum is taken over all possible δ-covers {Bi} of X . The s-dimensional Haus-
dorff measure Hs(X) of X is defined to be

Hs(X) := lim
δ→0+

Hs
δ(X)

and the Hausdorff dimension dimX of X by

dimX := inf{s : Hs(X) = 0} = sup{s : Hs(X) = ∞} .

The countable collection {Bi} is called a fine cover of X if for every δ > 0 it contains
a subcollection that is a δ-cover of X . The following statement is an immediate and well
known consequence of the definition of Hs.
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Lemma 3 Let {Bi} be a fine cover of X and s > 0 be such that
∑

i diam(Bi)
s <∞ . Then

Hs(X) = 0.

1.1.3 Proof: the convergence case

We are given that
∑∞

q=1 q
2−sψ(q)s−1 < ∞. As already mentioned, we can assume that

θ ∈ I
2. The proof will make use of the covering of S×

2 (ψ; θ) ∩ I
2 given by Lemma 2. The

rectangle Sθ(t, q,m, p1, p2) arising from this lemma has sides of lengths

A :=
2−|m|+1

√

2ψ(2t)

2t
and B :=

2|m|+1
√

2ψ(2t)

2t

and so can be split into B/A = 22|m| squares with sidelength A. By Lemma 2, the collection
of such squares taken over t > ℓ and over q, p1, p2, m as specified in the lemma is a δ-cover
of S×

2 (ψ; θ) ∩ I
2 with δ :=

√
2A → 0 as ℓ → ∞. Therefore, the collection of all such

squares, say {Bi}, is a fine cover of S×
2 (ψ; θ) ∩ I

2. It follows that

∑

i

diam(Bi)
s ≪

∞
∑

t=ℓ

∑

2t6q<2t+1

∑

m∈Z

2|m|
√
ψ(2t)61

q
∑

p1=−1

q
∑

p2=−1

(

2−|m|

√

ψ(2t)

2t

)s

22|m|

≪
∞
∑

t=ℓ

∑

m∈Z

2|m|
√
ψ(2t)61

(

2−|m|

√

ψ(2t)

2t

)s

22|m| 23t

≪
∞
∑

t=ℓ

(

√

ψ(2t)

2t

)s

23t
∑

m∈Z

2|m|
√
ψ(2t)61

2(2−s)|m| . (16)

Since 1 < s < 2, the sum over m 6= 0 in the right hand side of (16) is a finite increasing
geometric progression, which is easily estimated to give

∑

m∈Z

2|m|
√
ψ(2t)61

2(2−s)|m| ≪
(

1
√

ψ(2t)

)2−s

=
(
√

ψ(2t)
)s−2

. (17)

Substituting this into (16) gives

∑

i

diam(Bi)
s ≪

∞
∑

t=ℓ

(

√

ψ(2t)

2t

)s

23t
(

√

ψ(2t)
)s−2

=

∞
∑

t=ℓ

2(3−s)tψ(2t)s−1 ≪
∞
∑

q=1

q2−sψ(q)s−1 <∞ .

By Lemma 3, Hs(S×
2 (ψ; θ)∩I2) = 0 and thus the proof of the convergence part is complete.
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1.1.4 Proof: the divergence case

We are given that
∑∞

q=1 q
2−sψ(q)s−1 = ∞. Then, by the inhomogeneous version of Jarńık’s

theorem [15] (see also the remark in [8, §12.1]), it follows that Hs−1(S1(ψ; θ1) ∩ I) = ∞.
The observation that led to (8) is equally valid in the inhomogeneous setup; that is to say
that

S1(ψ; θ1)× R ⊂ S×
2 (ψ; θ).

Thus, Hs
(

S×
2 (ψ; θ) ∩ I

2
)

> Hs
(

(S1(ψ; θ1) ∩ I) × I
)

. Since Hs−1(S1(ψ; θ1) ∩ I) = ∞, the
slicing lemma [11, Lemma 4] implies that

Hs
(

(S1(ψ; θ1) ∩ I)× I
)

= ∞ .

Hence Hs
(

S×
2 (ψ; θ) ∩ I

2
)

= ∞ and the proof of Theorem 1 is complete.

2 Diophantine approximation on planar curves

When the coordinates of the approximated point x ∈ R
n are confined by functional rela-

tions, we fall into the theory of Diophantine approximation on manifolds [13]. Over the
last decade or so, the theory of Diophantine approximation on manifolds has developed
at some considerable pace with the catalyst being the pioneering work of Kleinbock &
Margulis [25]. For details of this and an overview of the almost complete results regarding
Sn(ψ) restricted to manifolds M ⊂ R

n see [6, 8] and references within. However, much
less is known regarding multiplicative Diophantine approximation on manifolds. It would
be highly desirable to address this imbalance by investigating the following analogue of
Problem 1 for manifolds.

Problem 2: Determine the Hausdorff measure Hs of S×
n (ψ) ∩M.

Our goal in this paper is to consider the problem in the case M is a planar curve C and
Hs is a genuine fractal measure.

Theorem 2 Let ψ be any approximating function, θ = (θ1, θ2) ∈ R
2 and s ∈ (0, 1). Let C

be a C(3) curve in R
2 with non-zero curvature everywhere apart from a set of s-dimensional

Hausdorff measure zero. Then

Hs
(

S×
2 (ψ; θ) ∩ C

)

=







0 if
∑∞

q=1 q
1−sψs(q) <∞,

∞ if
∑∞

q=1 q
1−sψs(q) = ∞.

(18)

Remark 2.1. In [2], the authors prove that Hs
(

S×
2 (ψ) ∩ C

)

= 0 under the more restrictive
assumption that

∑∞
q=1 q1−sψs(q)(log q)s < ∞. Although not an error, in their proof of
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this homogeneous statement [2, Theorem 1] there is a certain degree of ambiguity in the
manner in which a key counting estimate originating from [30, Theorem 1] is applied. More
precisely, it is important to stress that the implied constant appearing in inequality (13)
associated with [2, Theorem VV] is independent of ψ. This is crucial as it is applied over
a countable family of functions ψ(Q) that depend on a parameter m ∈ Z.

2.1 Proof of Theorem 2

2.1.1 Rational points near planar curves

The proof of Theorem 2 relies on the results obtained in [12] regarding the distribution of
‘shifted’ rational points near planar curves, which we recall here. In view of the metrical
nature of Theorem 2, there is no loss of generality in assuming that C :=

{

(x, f(x)) : x ∈ I
}

is the graph of a C(3) function f : I → R defined on a finite closed interval I and that f ′′

is continuous and non-vanishing on I. By the compactness of I, there exist positive and
finite constants c1, c2 such that

c1 6 |f ′′(x)| 6 c2 for all x ∈ I . (19)

Given θ = (θ1, θ2) ∈ R
2, δ > 0 and Q > 1, consider the set

Aθ(Q, δ) :=

{

(p1, q) ∈ Z× N :
Q < q 6 2Q, (p1 + θ1)/q ∈ I

‖qf( (p1 + θ1)/q )− θ2‖ < δ

}

.

The function Nθ(Q, δ) = #Aθ(Q, δ) counts the number of rational points (p1/q, p2/q) with
bounded denominator q such that the shifted points ((p1 + θ1)/q, (p2 + θ2)/q) lie within
the δ/Q-neighborhood of the curve C. The following result is a direct consequence of
Theorem 3 from [12] – the inhomogeneous generalization of Theorem 1 from [30].

Theorem 3 Let f ∈ C(3)(I) and satisfy (19) and let ε > 0. Then, for any Q > 1 and
0 < δ 6 1

2
we have that

Nθ(Q, δ) ≪ δQ2 +Q1+ε

where the implied constant is independent of Q and δ.

2.1.2 Proof: the convergence case

We are given that
∑∞

q=1 q
1−sψ(q)s <∞. Since ψ is monotonic, we have that

∞
∑

t=1

2(2−s)tψ(2t)s <∞. (20)
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Hence
2(2−s)tψ(2t)s < 1 for all sufficiently large t. (21)

As in the proof of Theorem 1, without loss of generality we assume that θ = (θ1, θ2) ∈ I
2

and moreover that C ⊂ I
2. By Lemma 2, for any ℓ ∈ N we have that

S×
2 (ψ; θ) ∩ C ⊂

∞
⋃

t=ℓ

⋃

2t6q<2t+1

⋃

m∈Z

2|m|
√
ψ(2t)61

q
⋃

p1=−1

q
⋃

p2=−1

C ∩ Sθ(t, q,m, p1, p2) . (22)

Using condition (19), it is easily verified that

diam(C ∩ Sθ(t, q, p1, p2, m)) ≪ 2−|m|

√

ψ(2t)

2t
(23)

and that whenever C ∩ Sθ(t, q, p1, p2, m) 6= ∅ we have that (p1, q) ∈ Aθ(Q, δ) with

δ ≍ 2|m|
√

ψ(2t) and Q = 2t , (24)

where t, q, p1, p2, m are constrained as in (22) and the implied constants in (23) and (24)
depend on c1 and c2 that appear in (19). By (22), the collection of all such sets C ∩
Sθ(t, q,m, p1, p2) is a fine cover of S×

2 (ψ; θ)∩C. By Theorem 3 with ε := s/4, we have that

Nθ(Q, δ) ≪ 2|m|
√

ψ(2t) 22t + 2(1+s/4)t

and so the s-dimensional volume of the above fine cover is

≪
∞
∑

t=1

∑

m∈Z

2|m|
√
ψ(2t)61

(

2−|m|

√

ψ(2t)

2t

)s(

2|m|

√

ψ(2t)

2t
23t + 2(1+s/4)t

)

≪
∞
∑

t=1

(

√

ψ(2t)

2t

)s+1

23t
∑

m∈Z

2|m|
√
ψ(2t)61

2(1−s)|m| +

+

∞
∑

t=1

∑

m∈Z

2|m|
√
ψ(2t)61

(

2−|m|

√

ψ(2t)

2t

)s

2(1+s/4)t

(17)
≪

∞
∑

t=1

(

√

ψ(2t)

2t

)s+1

23t
(

√

ψ(2t)
)s−1

+

+

∞
∑

t=1

(

√

ψ(2t)

2t

)s

2(1+s/4)t

(21)
≪

∞
∑

t=1

2(2−s)tψ(2t)s +
∞
∑

t=1

2−ts/4
(20)
< ∞ .
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By Lemma 3, Hs(C ∩ S×
2 (ψ; θ)) = 0 and the proof of the convergence part of Theorem 2

is complete.

2.1.3 Proof: the divergence case

We are given that
∑∞

q=1 q
1−sψ(q)s = ∞. Then, by the inhomogeneous version of Jarńık’s

theorem [15] (see also the remark in [8, §12.1]), we have that Hs(S1(ψ; θ1) ∩ I) = ∞. The
same observation that led to (8), gives rise to the following obvious inclusion

X :=
{

(x, f(x)) : x ∈ S1(ψ; θ1) ∩ I
}

⊂ C ∩ S×
2 (ψ; θ).

Since f ∈ C(1), we have that f is locally bi-Lipshitz and thus the map x 7→ (x, f(x))
preserves s-dimensional Hausdorff measure. Therefore,

Hs
(

S×
2 (ψ; θ) ∩ C

)

> Hs(X) = Hs(S1(ψ; θ1) ∩ I) = ∞

and so completes the proof of Theorem 2.

3 Inhomogeneous badly approximable points

A real number x is said to be badly approximable if there exists a positive constant c(x)
such that

‖qx‖ > c(x) q−1 ∀ q ∈ N .

Here and throughout ‖ · ‖ denotes the distance of a real number to the nearest integer.
It is well know that the set Bad of badly approximable numbers is of Lebesgue measure
zero. However, a result of Jarńık [23] states that

dimBad = 1 . (25)

Thus, in terms of dimension the set of badly approximable numbers is maximal; it has the
same dimension as the real line.

In higher dimensions there are various natural generalizations of Bad. Restricting our
attention to the plane R

2, given a pair of real numbers i and j such that

0 6 i, j 6 1 and i+ j = 1 , (26)

a point (x1, x2) ∈ R
2 is said to be (i, j)-badly approximable if there exists a positive constant

c(x1, x2) such that

max{ ‖qx1‖1/i , ‖qx2‖1/j } > c(x1, x2) q
−1 ∀ q ∈ N .

Denote by Bad(i, j) the set of (i, j)-badly approximable points in R
2. If i = 0, then we

use the convention that x1/i := 0 and so Bad(0, 1) is identified with R × Bad. That

12



is, Bad(0, 1) consists of points (x1, x2) with x1 ∈ R and x2 ∈ Bad. The roles of x1 and
x2 are reversed if j = 0. It easily follows from classical results in the theory of metric
Diophantine approximation that Bad(i, j) is of (two-dimensional) Lebesgue measure zero.
Building upon the work of Davenport [16], it is shown in [29] that

dimBad(i, j) = 2 . (27)

For alternative proofs and various strengthenings see [3, 19, 26, 27, 28]. In particular, a
consequence of the main result in [3] is that the intersection of any finite number of (i, j)-
badly approximable sets is of full dimension. Obviously this implies that the intersection
of any two such sets is non-empty and thus establishes a conjecture of Wolfgang Schmidt
dating back to the eighties. Most recently, Jinpeng An [1] has shown that the set Bad(i, j)
is winning in the sense of Schmidt games and thus the intersection of any countable number
of (i, j)-badly approximable sets is of full dimension.

The goal in this paper is to obtain the analogue of (27) within the inhomogeneous setup.

Problem 3: Find an analogue of (27) for inhomogeneous approximation.

For θ = (θ1, θ2) ∈ R
2, let Bad(i, j; θ) denote the set of points (x1, x2) ∈ R

2 such that

max{ ‖qx1 − θ1‖1/i , ‖qx2 − θ2‖1/j } > c(x1, x2) q
−1 ∀ q ∈ N .

Naturally, given θ ∈ R the inhomogeneous generalisation of the one-dimensional set Bad

is the set

Bad(θ) := {x ∈ R : ∃ c(x) > 0 so that ‖qx− θ‖ > c(x) q−1 ∀ q ∈ N}

and so, for example, Bad(0, 1; θ) is identified with R × Bad(θ). It is straightforward to
deduce that Bad(i, j; θ) is of measure zero from the inhomogeneous version of Khintchine’s
theorems with varying approximating functions in each co-ordinate. We will prove the
following full dimension statement which represents the inhomogeneous analogue of (27).

Theorem 4 Let i, j satisfy (26) and θ = (θ1, θ2) ∈ R
2. Then

dimBad(i, j; θ) = 2 .

The basic philosophy behind the proof is simple and is likely to be applicable to other
situations where the goal is to generalize a known homogenous badly approximable state-
ment to the inhomogeneous setting – see Remark 3.5 below. The key is to exploit the known
homogeneous ‘intervals construction’ proof and use the power of subtraction; namely

(homogeneous construction) + (θ − θ = 0) =⇒ (inhomogeneous statement).

Before moving onto the proof of Theorem 4, several remarks are in order.

13



Remark 3.1. For i and j fixed, the proof can be easily modified to deduce that the inter-
section of any finite number of Bad(i, j; θ) sets is of full dimension. In fact, by making use
of standard trickery (such as the argument that proves that the countable intersection of
winning sets is winning) one can actually deduce that for any countable sequence θt ∈ R

2

dim
(

∩∞
t=1 Bad(i, j; θt)

)

= 2 .

Remark 3.2. In another direction, the proof can be adapted to obtain the following more
general form of Theorem 4 in which the inhomogeneous factor θ depends on (x1, x2). More
precisely, let θ = (θ1, θ2) : R

2 → R
2 and let Bad(i, j; θ) denote the set of points (x1, x2)

such that

max{ ‖qx1 − θ1(x1, x2)‖1/i , ‖qx2 − θ2(x1, x2)‖1/j } > c(x1, x2) q
−1 ∀ q ∈ N .

Then, if θ1 = θ1(x1) and θ2 = θ2(x2) are Lipshitz functions of one variable, we have that

dimBad(i, j; θ) = 2 .

As an example, this statement implies that there is a set of (x1, x2) ∈ R
2 of Hausdorff

dimension 2 such that

max{ ‖qx1 − x21‖1/i , ‖qx2 − x32‖1/j } > c(x1, x2) q
−1 ∀ q ∈ N .

It is worth pointing out that in the case i = j, the statement is also true if θ1 = θ1(x1, x2)
and θ2 = θ2(x1, x2) are Lipshitz functions of two variables.

Remark 3.3. There is no difficulty in establishing the higher dimension analogue of Theo-
rem 4. For any θ = (θ1, . . . , θn) ∈ R

n and n–tuple of real numbers i1, ..., in ≥ 0 such that
∑

ir = 1, denote by Bad(i1, . . . , in; θ) the set of points (x1, ..., xn) ∈ R
n for which there

exists a positive constant c(x1, ..., xn) such that

max{ ||qx1 − θ1||1/i1 , ..., ||qxn − θn||1/in } > c(x1, ..., xn) q
−1 ∀ q ∈ N.

By modifying the proof of Theorem 4, in the obvious way, it is easy to show that

dimBad(i1 . . . , in; θ) = n .

Moreover, the various proofs of the homogeneous results obtained in [28] regarding
Bad(i1 . . . , in) ∩ Ω, where Ω is some ‘nice’ fractal set (essentially, the support set of an
absolutely friendly, Ahlfors regular measure) can be adapted to give the corresponding
inhomogeneous statements without any serious difficulty. We have decided to restrict our-
selves to proving Theorem 4 since it already contains the necessary ingredients to obtain
the inhomogeneous statement from the homogeneous proof.

Remark 3.4. In the symmetric case i1 = . . . = in = 1/n, our Theorem 4 and indeed its
generalizations mentioned in the previous remark are covered by the work of Einsiedler &
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Tseng [18, Theorem 1.1]. They actually deal with badly approximable systems of linear
forms and show that the intersection of such sets with the support set Ω of an absolutely
friendly measure is winning in the sense of Schmidt games. We mention in passing, that
Einsiedler & Tseng proved their results roughly at the same time as us, but for some
mystical reason, it has taken us over four years to present our work. Indeed the second
author had a useful discussion with Einsiedler regarding their preprint at the conference
‘The Diverse Faces of Arithmetic’ in honour of the late Graham Everest in 2009.

Remark 3.5. The basic philosophy behind the proof of Theorem 4 can be exploited to
yield the inhomogeneous strengthening of Schmidt’s Conjecture. More precisely, we are
able show that any inhomogeneous Bad(i, j; θ) set is winning and thus

dim
(

∩∞
t=1 Bad(it, jt; θt)

)

= 2 .

Furthermore, it is possible to show that the intersection of Bad(i, j; θ) with any non-
degenerate planar curve C is winning as is the intersection with any straight line satisfying
certain natural Diophantine conditions. The former implies that

dim
(

∩∞
t=1 Bad(it, jt; θt) ∩ C

)

= 1 ,

which strengthens even the homogeneous results obtained in [4, 5] that solve an old problem
of Davenport. These winning results will be the subject of a forthcoming joint paper with
Jinpeng An.

3.1 Proof of Theorem 4

Throughout, we fix i, j > 0 satisfying (26) and θ = (θ1, θ2) ∈ R
2. The situation when

either i = 0 or j = 0 is easier and will be omitted.

Since Bad(i, j; θ) ⊆ R
2, we obtain for free the upperbound result:

dimBad(i, j; θ) 6 2 .

Thus, the proof reduces to establishing the complementary lowerbound. With this in mind,
for a fixed constant c > 0 let

Badc(i, j; θ) := {(x1, x2) ∈ R
2 : max{‖qx1 − θ1‖1/i, ‖qx2 − θ2‖1/j} > c/q ∀ q ∈ N} .

Clearly Badc(i, j; θ) ⊂ Bad(i, j; θ) and

Bad(i, j; θ) =
⋃

c>0

Badc(i, j; θ) .

Geometrically, the set Badc(i, j; θ) consists of points (x1, x2) ∈ R
2 which avoid all rectan-

gles centred at shifted rational points ((θ1 − p1)/q, (θ2 − p2)/q) with sidelengths 2ciq−(1+i)
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and 2cjq−(1+j). The sides are taken to be parallel to the coordinate axes. The overall
strategy is to construct a ‘Cantor–type’ subset Kθ

c (= Kθ

c (i, j)) of Badc(i, j; θ) with the
property that dimKθ

c → 2 as c→ 0. This together with the fact that

dimBad(i, j; θ) > dimBadc(i, j; θ) > dimKθ

c

implies the required lower bound result.

To obtain the desired Cantor type set Kθ

c , we adapt the homogeneous construction
of Kc = Kc

0 given in [29, §3.1] that is at the heart of establishing (27); that is to say
Theorem 4 with θ = 0.

3.1.1 The homogeneous construction

Let R > 11 be an integer and c > 0 be given by

c := 8−1/iR−2(1+i)/i . (28)

It is established in [29, §3.1], by induction on n > 0, the existence of a nested collection
Fn of closed rectangles Fn := In × Jn with the property that for all points (x1, x2) ∈ Fn
the following (homogeneous) condition is satisfied:

max{ ‖qx1‖1/i , ‖qx2‖1/j } > c q−1 ∀ 0 < q < Rn . (H)

The lengths of the sides In and Jn of Fn are given by

|In| := 1
4 R

−(1+i)(n+1) and |Jn| := 1
4 R

−(1+j)(n+1) (n > 0) . (29)

Without loss of generality assume that 0 < i 6 j < 1 so that the rectangles Fn are long
and thin unless i = j in which case the rectangles are obviously squares.

The crux of the induction is as follows. We work within the closed unit square and
start by subdividing the square into closed rectangles F0 of size I0×J0 – starting from the
bottom left hand corner of the unit square (i.e. the origin). Denote by F0 the collection
of rectangles F0. For n = 0, condition (H) is trivially satisfied for any rectangle F0 ⊂ F0,
since there are no integers q satisfying 0 < q < 1. Given Fn satisfying condition (H), we
wish to construct a nested collection Fn+1 for which the condition is satisfied for n + 1.
Suppose Fn is a good rectangle; that is, all points (x1, x2) ∈ Fn satisfy condition (H). In
short, Fn ∈ Fn. Now partition Fn into rectangles Fn+1 := In+1 × Jn+1 – starting from
the bottom left hand corner of Fn. From (29), it follows that there are [R1+i] × [R1+j ]
rectangles in the partition. Since they are nested, anyone of these rectangles will satisfy
condition (H) for n+ 1 if for any point (x1, x2) in Fn+1 the inequality

max{ ||qx1||1/i , ||qx2||1/j } > c q−1 (30)

is satisfied for
Rn 6 q < Rn+1 . (31)
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With q in this ‘denominator’ range, suppose there exists a bad rational pair (p1/q, p2/q)
so that (30) is violated, in other words

|x1 − p1/q| 6 ci q−(1+i) and |x2 − p2/q| 6 cj q−(1+j)

for some point in Fn and therefore in some Fn+1. Such Fn+1 rectangles are bad in the
sense that they do not satisfy condition (H) for n+1 and those that remain are good. The
upshot of the ‘Stage 1’ argument in [29, §3.1] is that there are at most

3

[ |Jn|
|Jn+1|

]

6 3R1+j (32)

bad Fn+1 rectangles in Fn. Hence, out of the potential [R1+i]× [R1+j ] rectangles, at least

(R1+i − 1)(R1+j − 1) − 3R1+j > R3(1− 5R−(1+i))

are good Fn+1 rectangles in Fn. Now choose exactly [R3 (1 − 5R−(1+i))] of these good
rectangles and denote this collection by F(Fn). Finally, define

Fn+1 :=
⋃

Fn⊂Fn

F(Fn) .

Thus, given the collection Fn for which condition (H) is satisfied for n, we have constructed
a nested collection Fn+1 for which condition (H) is satisfied for n+ 1. This completes the
proof of the induction step and so the construction of the Cantor-type set

Kc :=
∞
⋂

n=0

Fn .

3.1.2 Bringing the inhomogeneous approximation into play

The idea is to merge the inhomogeneous approximation constraints into the above homo-
geneous construction. In short, this involves creating a subcollection Fθ

n of Fn so that for
all points (x1, x2) ∈ Fn with Fn ⊆ Fθ

n , both the (homogeneous) condition (H) and the
following (inhomogeneous) condition are satisfied:

max{ ‖qx1 − θ1‖1/i , ‖qx2 − θ2‖1/j } > c∗ q
−1 ∀ 0 < q < Rn−d , (I)

where

ci∗ := 1
8R

−(1+i)(d+2) and d :=

[

3

i

]

. (33)

For n = 0, condition (I) is trivially satisfied for any rectangle F0 ⊂ F0, since there are no
integers q satisfying 0 < q < 1. Put Fθ

0 := F0. Now suppose Fθ

n ⊆ Fn has been constructed
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and for each Fn in Fθ

n construct the collection F(Fn) as before. Then by definition, each
Fn+1 ∈ F(Fn) satisfies condition (H) for n + 1. The aim is to construct a subcollection
Fθ(Fn) such that for each Fn+1 in Fθ(Fn) condition (I) for n+ 1 is also satisfied; in other
words, for any point (x1, x2) in Fn+1 the inequality

max{ ‖qx1 − θ1‖1/i , ‖qx2 − θ2‖1/j } > c∗ q
−1 (34)

is satisfied for
Rn−d 6 q < Rn+1−d . (35)

With q satisfying (35), suppose there exists a bad shifted rational pair ((θ1 + p1)/q, (θ2 +
p2)/q) so that (34) is violated, in other words

|x1 − (θ1 + p1)/q| 6 ci∗ q
−(1+i) and |x2 − (θ2 + p2)/q| 6 cj∗ q

−(1+j)

for some point (x1, x2) in Fn. Then, in view of (35), it follows that

|x1 − (θ1 + p1)/q| 6 ci∗R
−(1+i)(n−d) 6 1

2 |In+1| (36)

if
ci∗ 6 1

8R
−(1+i)(d+2) . (37)

Similarly,
|x2 − (θ2 + p2)/q| 6 1

2 |Jn+1| (38)

if
cj∗ 6 1

8R
−(1+j)(d+2) . (39)

Observe that (37) implies (39). In view of (33), we have equality in (37), thus (36) and
(38) are satisfied and it follows that any bad shifted rational pair gives rise to at most
four bad rectangles Fn+1 in F(Fn); i.e. rectangles for which (I) is not satisfied for n + 1.
Now suppose there exist two bad shifted rational pairs, say ((θ1 + p1)/q, (θ2 + p2)/q) and
((θ1 + p̃1)/q̃, (θ2 − p̃2)/q̃). Then, for any (x1, x2) ∈ Fn we have that

|x1 − (θ1 + p1)/q|
(36)

6 1
2 |In+1|+ |In| < 2|In|

=⇒ |qx1 − θ1 − p1| < q 2|In|
(35)

6 2Rn+1−d|In|

and

|x2 − (θ2 + p2)/q|
(38)

6 1
2 |Jn+1|+ |Jn| < 2|Jn|

=⇒ |qx2 − θ2 − p2| < q 2|Jn|
(35)

6 2Rn+1−d|Jn| .

Similarly, we obtain that

|q̃x1 − θ1 − p̃1| < 2Rn+1−d|In| and |q̃x2 − θ2 − p̃2)| < 2Rn+1−d|Jn| .
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Let q∗ := |q − q̃| and observe that

0 < q∗ < Rn+1−d < Rn (40)

It now follows that

|q∗x1 − (p1 + p̃1)| = |(qx1 − θ1 − p1)− (q̃x1 − θ1 − p̃1)|

6 |qx1 − θ1 − p1|+ |q̃x1 − θ1 − p̃1|

6 4Rn+1−d|In| 6 R−d(1+i)q−i∗

(33)

6 R−3(1+i)q−i∗

(28)

6 ciq−i∗ . (41)

Similarly,

|q∗x2 − (p2 + p̃2)| = |(qx2 − θ2 − p2)− (q̃x2 − θ2 − p̃2)|

6 |qx2 − θ2 − p2|+ |q̃x2 − θ1 − p̃2|

6 4Rn+1−d|Jn| 6 R−d(1+j)q−j∗

(33)

6 R− (3−i)
i

(1+j)q−j∗

(28)

6 cjq−j∗ . (42)

The upshot of inequalities (40), (41) and (42) is that the homogeneous condition (H) is
not satisfied for points in Fn. This contradicts the fact that Fn ∈ Fθ

n ⊆ Fn. In turn, this
implies that there exists at most one bad shifted rational pair that gives rise to at most 4
bad Fn+1 rectangles amongst those in F(Fn). In other words, at least

#F(Fn)− 4 = [R3 (1 − 5R−(1+i))]− 4 > R3(1− 6R−(1+i))

of the Fn+1 rectangles satisfy both conditions (H) and (I) for n + 1. Now choose exactly
[R3 (1 − 6R−(1+i))] of these good rectangles and denote this collection by Fθ(Fn). Finally,
define

Fθ

n+1 :=
⋃

Fn⊂Fθ
n

Fθ(Fn) and Kθ

c :=
∞
⋂

n=0

Fθ

n .

3.1.3 The finale

It remains to show that
dimKθ

c → 2 as c→ 0 .
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This involves essentially following line by line the arguments set out in [29, §3.2 and §3.3].
The details are left to the reader.
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[15] Y. Bugeaud. An inhomogeneous Jarńık theorem Journal dAnalyse Mathmatique, 92
(2004), 327-349

[16] H. Davenport. A note on Diophantine approximation. II. Mathematika, 11:50–58,
1964.

[17] H. Dickinson, S. Velani. Hausdorff measure and linear forms. J. reine angew. Math.,
490:1–36, 1997.

[18] M. Einsiedler, J. Tseng. Badly approximable systems of affine forms, fractals, and
Schmidt games. J. Reine Angew. Math, 660 , 83–97, 2011.

[19] L. Fishman. Schmidt’s game, badly approximable matrices and fractals. J. Number
Theory, 129(9):2133–2153, 2009.

[20] P. X. Gallagher. Metric simultaneous diophantine approximation. J. London Math.
Soc., 37:387–390, 1962.

[21] P. X. Gallagher. Metric simultaneous diophantine approximation. II. Mathematika,
12:123–127, 1965.

[22] I. Jarńık : Sur les approximations diophantiennes des nombres p–adiques. revista Ci
Lima. 47, 489–505.
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